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Algebraic Coding Research Group

Centre for Communications Research
University of Bristol, U.K.

Abstract

We generalise structure theorems of Calderbank and Sloane for linear and cyclic codes over
Zpa to a finite chain ring. Our results are more detailed and do not use non-trivial results
from Commutative Algebra.
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1 Introduction

Codes over finite rings have received much attention recently after it was proved that important
families of binary non-linear codes are in fact images under the Gray map of linear codes over Z4,
see [HKC+94] and the references cited there.

We work with codes over a finite chain ring. Section 2 reviews finite chain and Galois rings and
establishes several basic results. Examples of finite chain rings are Galois rings, and in particular
Zpa where p is a prime and a ≥ 1. A finite chain ring is a local ring and we can define and decode
alternant codes over a finite chain ring, see [NS00b]. See also [Woo99]. Galois rings are a natural
setting for Reed-Solomon and generalised Reed-Muller codes. BCH codes can also be defined over
Galois rings, in analogy to BCH codes over Galois fields, see [MS77, Chaper 7].

Let R be a finite chain ring, K its residue field, γ a fixed generator of the maximal ideal of R
and ν the nilpotency index of γ. The canonical projections from R[X] and Rn to K[X] and Kn,
respectively, will be denoted by .

The paper proper begins in Section 3 with more detailed versions of the structure theorems for
linear and for cyclic codes given in [CS95]. We generalise these results to finite chain rings and
give new, elementary proofs. An important role is played by the tower C = (C : γ0) ⊆ . . . ⊆
(C : γi) ⊆ . . . ⊆ (C : γν−1) of linear/cyclic codes over K associated to any linear/cyclic code C
over R, see Definition 3.3. (Here (C : r) denotes the submodule quotient of C by r ∈ R.) We
construct generator matrices/ generator polynomials for these codes, given a generator matrix/
generator polynomials of C. We also prove that for a cyclic code over R there is a unique set of
generators of a form similar to the one given in [CS95] for R = Zpa .

Our proofs avoid the non-trivial Commutative Algebra invoked in [CS95], using instead properties
of the codes (C : γi) and the technique used in [CS95, Corollary to Theorem 6] for proving that
Zpa [X]/(Xn − 1) is principal. In [KL97] it is claimed that this technique is incorrect, by giving a
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counterexample. We show that their counterexample is incorrect, see Remark 4.7. The fact that
for any finite chain ring R, R[X]/(Xn− 1) is principal also follows by the technique of [CS95, loc.
cit.].

There is a different set of generators which also provides a useful description of properties of a
cyclic code; see [PQ96] for codes over Z4 and [KL97] for the generalisation to Zpa . For a discussion
of the connection between these two sets of generators, see [KL97].

When R is a Galois field our results are either straightforward or reduce to classical results.

We make use of the structure theorems of this paper in [NS00a] for proving results about the
Hamming distance of codes over a finite chain ring.

2 Preliminaries

2.1 Finite chain rings and Galois rings

We begin with the definition and some properties of finite chain rings and continue with Galois
rings, following mainly [McD74].

Definition 2.1 A finite commutative ring is called a finite chain ring if its ideals are linearly
ordered by inclusion.

A simple example of a finite chain ring is the ring Zpa of integers modulo pa, for some prime p and
a ≥ 1. A finite chain ring is, obviously, a local ring. It is well known, and not difficult to prove
that a ring is a finite chain ring if and only if it is a finite local principal ideal ring. Let γ be a
fixed generator of the maximal ideal of R. Then γ is nilpotent and let ν be its nilpotency index
i.e. the smallest integer such that γν = 0. Denote by K the residue field R/γR, which is finite.
Throughout this paper, R denotes a finite chain ring with 1 6= 0, γ a fixed generator of the maximal
ideal of R, ν the nilpotency index of γ and K the residue field of R.

The ideals of R are γiR, i = 0, . . . , ν. All the elements of the maximal ideal Rγ are nilpotent and
the elements of R \ γR are units. There is a form of unique factorisation in R:

Lemma 2.2 ([McD74, p. 340]) For any r ∈ R, r 6= 0 there is a unique integer i, 0 ≤ i < ν
such that r = uγi, with u a unit. The unit u is unique modulo γν−i only.

The following result will be used throughout the paper:

Corollary 2.3 If 1 ≤ i < j ≤ ν and γic ∈ γjR then c ∈ γj−iR. In particular, if γiR = 0 then
c ∈ γν−iR.

There is a canonical projection homomorphism from R to K. Denote by r the image of an element
r ∈ R under this projection.

We now compute the cardinality |γjR| of γjR for 0 ≤ j ≤ ν − 1, in terms of K and ν.

Lemma 2.4 Let V ⊆ R be a system of representatives for the equivalence classes of R under
congruence modulo γ. ( Equivalently, we can define V to be a maximal subset of R with the
property that r1 6= r2 for all r1, r2 ∈ R, r1 6= r2.) Then:

(i) For all r ∈ R there are unique r0, . . . , rν−1 ∈ V such that r =
∑ν−1

i=0 riγ
i.

(ii) |V | = |K|.
(iii) |γjR| = |K|ν−j for 0 ≤ j ≤ ν − 1.
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Proof. (i) We construct r0, . . . , rν−1 ∈ V such that r ≡ ∑j
i=0 riγ

i mod γj+1 for j = 0, . . . , ν − 1
inductively. Let r0 be the unique element of V such that r0 = r. Assuming that j < ν − 1 and
that we have constructed r0, . . . , rj , we have r−∑j

i=0 riγ
i = vj+1γ

j+1 for some vj+1 ∈ R. We put
rj+1 equal to the element in V such that rj+1 = vj+1. Then r ≡ ∑j+1

i=0 riγ
i mod γj+2.

For the unicity, let r =
∑ν−1

i=0 riγ
i =

∑ν−1
i=0 siγ

i with ri, si ∈ V for i = 0, . . . , ν − 1. Then∑ν−1
i=0 (ri − si)γi = 0 and using Corollary 2.3 repeatedly we obtain ri = si for i = 0, . . . , ν − 1.

Since ri, si ∈ V , this implies ri = si for i = 0, . . . , ν − 1.

Part (ii) is easy. For part (iii), note that in the representation given by (i) we have |V | = |K|
possibilities for each of r0, . . . , rν−1 and that

∑ν−1
i=0 riγ

i ∈ γjR if and only if r0 = . . . = rj−1 = 0.
2

The projection R → K extends naturally to a projection R[X] → K[X]; for any f ∈ R[X] we
denote by f its image under this projection; also, for a set C ⊆ R[X] we define C = {f | f ∈ C}.
A polynomial f ∈ R[X] is a unit if and only if f is a unit and it is a zero-divisor if and only if
f = 0, by [McD74, Theorem XIII.2]. Recall that a non-unit f ∈ R[X] is called basic irreducible if
f and f are irreducible.

Lemma 2.5 (i) Let f ∈ R[X]. If f is irreducible, then f is irreducible.

(ii) For any l ≥ 1 there is a basic irreducible f ∈ Zpa [X] of degree l.

Proof. (i) If f = f1f2 where f1, f2 are non-units, then f = f1f2 where f1, f2 are non-units
by [McD74, Theorem XIII.2].

(ii) Let f ∈ Zp[X] be irreducible and of degree l. Since Zpa is a local ring with residue field Zp,
we can find a monic g ∈ Zpa [X] with g = f . Hence g is irreducible of degree l by part (i). 2

For any l ≥ 1, one can construct a Galois extension ring of Zpa as GR(pa, l) = Zpa [X]/(f) with
p a prime number, a ≥ 1 and f ∈ Zpa [X] a monic basic irreducible polynomial of degree l, which
exists by Lemma 2.5. The ring GR(pa, l) is called a Galois ring and has pal elements. For l = 1 we
obtain the ring Zpa . For a = 1 we obtain the finite field with pl elements, GF (pl). For a ≥ b, there
is a natural projection homomorphism (reduction modulo pb) of GR(pa, l) to GR(pb, l) with kernel
GR(pa, l)pb. For any multiple m of l there is an inclusion homomorphism GR(pa, l) ⊆ GR(pa,m).

A Galois ring GR(pa, l) is a finite chain ring with maximal ideal generated by p, the nilpotency
index of p is a and the residue field is GF (pl).

Any finite chain ring is a certain homomorphic image of a polynomial ring GR(pa, l)[X], see [McD74,
Theorem XVII.5].

2.2 Factorisation and Hensel lifting

Hensel lifting plays a key role in the construction of cyclic codes over R. Recall that two non-unit
polynomials f, g ∈ R[X] are coprime if they generate R[X] i.e. there are u, v ∈ R[X] such that
fu + gv = 1. By [McD74, Theorem XIII.6], any f ∈ R[X] which is not divisible by γ can be
written as f = uf1 where u is a unit and f1 is monic. We will therefore restrict our attention to
monic polynomials and by monic we will mean having the leading coefficient equal to 1.

Theorem 2.6 (Hensel lifting,[McD74, Theorem XIII.4]) Let g ∈ R[X] be monic. Assume
there are f1, . . . , fk ∈ K[X] monic, pairwise coprime such that g =

∏k
i=1 fi. Then there are

g1, . . . , gk ∈ R[X] monic, pairwise coprime such that g =
∏k

i=1 gi and gi = fi.

We do not have unique factorisation in R[X] in general; for example in Zp2 [X] we have X2 =
(X − p)(X + p). However certain non-unit polynomials do factor uniquely into irreducibles, see
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Theorem 2.7. A polynomial f is called square-free if g2|f implies g is a unit.

Theorem 2.7 If g ∈ R[X] is monic and g is square-free, then g factors uniquely into monic,
coprime basic irreducibles.

Proof. By [McD74, Theorem XIII.11], g factors uniquely as g = g1 · · · gk where gi are monic,
coprime and each (gi) is a primary ideal. Since g is square-free, so are the gi. It follows from
[McD74, Proposition XIII.12] that gi = hi + vi where hi is basic irreducible and vi ∈ (γR)[X].
Thus each gi is irreducible and gi is also irreducible, by Lemma 2.5(i). 2

We will need the following lemma for analysing cyclic codes over R.

Lemma 2.8 Let f, g ∈ R[X]. Then f, g are coprime if and only if f, g are coprime.

Proof. Let I be the ideal of R[X] generated by f and g and J be the ideal of K[X] generated
by f and g. It is easy to show that I = J . Since h ∈ R[X] is a unit if and only if h is a unit, I
contains a unit if and only if J contains a unit. 2

Lemma 2.8 can also be proved constructively: given u, v ∈ K[X] such that fu+gv = 1, a technique
similar to Hensel lifting can be used to obtain u1, v1 ∈ R[X] such that fu1 + gv1 = 1.

2.3 The module Rn

We extend the projection of R to K to a projection of Rn to Kn. For any element c ∈ Rn we
denote by c its image under this projection. For a set C ⊆ Rn, we define C = {c| c ∈ C}.
For any constant r ∈ R and any c ∈ Rn we denote by rc the usual multiplication of a vector by
a scalar. Also, for a set C ⊆ Rn we write rC for the set {rc| c ∈ C}. We will say that a vector
is divisible by a constant r ∈ R if all its entries are divisible by r. For any c ∈ Rn there is a
unique i such that c = γie, 0 ≤ i ≤ ν − 1 and e ∈ Rn is not divisible by γ. As in Corollary 2.3, if
1 ≤ i ≤ j ≤ ν and γic ∈ γjRn then c ∈ γj−iRn. In particular, if γic = 0 then c ∈ γν−iRn. Thus for
any i with 0 ≤ i ≤ ν−1 we easily obtain a well-defined R-homomorphism ϕ : γiRn → (R/γν−iR)n

given by ϕ(γic) = (c1 + γν−iR, . . . , cn + γν−iR) for any c = (c1, . . . , cn) ∈ Rn. Indeed, ϕ is an
isomorphism. Now γiRn is also an (R/γν−iR)-module (with (r + γν−iR) ◦ γic = rγic in the usual
way) and it is easy to check that ϕ is also an (R/γν−iR)-homomorphism.

Lemma 2.9 Let 0 ≤ i ≤ ν − 1. The map ϕ : γiRn → (R/γν−iR)n given by ϕ(γic) = (c1 +
γν−iR, . . . , cn + γν−iR) for any c = (c1, . . . , cn) ∈ Rn is an isomorphism of R and of (R/γν−iR)-
modules. In particular ϕ : γν−1Rn → Kn given by ϕ(γν−1c) = c is an isomorphism of K-vector
spaces.

3 The structure of linear codes over R

Recall that a linear code of length n over R is an R-submodule of Rn. From now on, by “code”
we mean “linear code”. For R = Zpa , the structure of codes is described in [CS95, p.22] We will
now give more detailed versions of these theorems, generalised to a finite chain ring. We also give
new proofs.

3.1 Generator matrices

For k > 0, Ik denotes the k × k identity matrix.
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Definition 3.1 (Generator matrix) Let C be a code over R. A matrix G is called a generator
matrix for C if C = rowspanR(G) and none of the rows of G can be written as a linear combination
of the other rows.

We say that G is a generator matrix in standard form if after a suitable permutation of the
coordinates,

G =




Ik0 A01 A02 A03 . . . A0,ν−1 A0,ν

0 γIk1 γA12 γA13 . . . γA1,ν−1 γA1,ν

0 0 γ2Ik2 γ2A23 . . . γ2A2,ν−1 γ2A2,ν

...
...

...
...

...
...

0 0 0 0 . . . γν−1Ikν−1 γν−1Aν−1,ν




=




A0

γA1

γ2A2

...
γν−1Aν−1




(1)

say, where the columns are grouped into blocks of sizes k0, k1, . . . , kν−1, n −
∑ν−1

i=0 ki with ki ≥ 0.
We associate to G the matrix

A =




A0

...
Aν−1


 . (2)

Of course, if ki = 0, the matrices γiAi and Ai are suppressed in G and A respectively. For a given
G and 1 ≤ i ≤ ν − 1, the matrices Ai are unique modulo γν−i only (Lemma 2.2) and therefore the
Ai are unique.

Proposition 3.2 Any code has a generator matrix in standard form.

Proof. Given an arbitrary set of generators for a code, we obtain a generator matrix G by
successively eliminating from the set those elements that can be written as a linear combination
of the other elements currently in the set.

To bring G to standard form, we apply column permutations and elementary row operations:
permuting rows, dividing a row by a unit, adding to a row another row multiplied by an element
of R. Performing these operations on G as for Gaussian elimination (with the restriction of not
dividing by non-units) reduces G to standard form. 2

For any code C and any r ∈ R, (C : r) is the submodule quotient (C : r) = {e ∈ Rn| re ∈ C}.

Definition 3.3 To any code C over R we associate the tower of codes

C = (C : γ0) ⊆ . . . ⊆ (C : γi) ⊆ . . . ⊆ (C : γν−1)

over R and its projection to K,

C = (C : γ0) ⊆ . . . ⊆ (C : γi) ⊆ . . . ⊆ (C : γν−1).

For Z4, the codes C = (C : γ0) and (C : γ1) were introduced in [CS93] (denoted there C(1) and
C(2)). The tower of codes over K will play an important role throughout this paper.

The following result appears in [CS93, p. 34] for the particular case R = Z4.

Lemma 3.4 (i) Let C be a code with generator matrix G in standard form and A as in (2). Then
for 0 ≤ i ≤ ν − 1, (C : γi) has generator matrix




A0

...
Ai



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and dim((C : γi)) = k0 + . . . + ki.

(ii) If E0 ⊆ E1 ⊆ . . . ⊆ Eν−1 are codes of length n over K, then there is a code C of length n over
R such that (C : γi) = Ei for i = 0, . . . , ν − 1.

Proof. (i) It is easy to check that the row span of the given matrix is contained in (C : γi). Let
e ∈ (C : γi) and let g ∈ (C : γi) be such that g = e. Since γig ∈ C and G is a generating matrix
for C, there are vj ∈ Rkj such that

γig = (v0, v0A01 +γv1, . . . , v0A0,ν−1 +v1γA1,ν−1 + . . .+γν−1vν−1, v0A0,ν + . . .+γν−1vν−1Aν−1,ν).

Since γig is divisible by γi, we must have v0 = γiw0 for some w0 ∈ Rk0 . The second block of
entries of γig becomes γiw0A01+γv1, hence v1 = γi−1w1 for some w1 ∈ Rk1 . Continuing we obtain
vj = γi−jwj where wi ∈ Rki for j = 0, . . . , i. Therefore γig =

∑i
j=0 γiwjAj +

∑ν−1
j=i+1 vjγ

jAj and
g ≡ ∑i

j=0 wjAj +
∑ν−1

j=i+1 vjγ
j−iAj (mod γν−i) by Corollary 2.3. Hence e = g =

∑i
j=0 wjAj

i.e. (C : γi) is generated by the required matrix. The rows of this matrix are obviously linearly
independent over K, hence dim((C : γi)) = k0 + . . . + ki.

(ii) Let li = dim(Ei). After suitably permuting the coordinates we may assume that each Ei is
generated by an li × n matrix 


L0

...
Li




such that the square submatrix consisting of the first li columns is Ili . We then choose matrices
Ai over R such that Ai = Li and define C to be the code with generator matrix




A0

...
γν−1Aν−1


 .

Note that the code C is not unique as it depends on the choice of the Ai. 2

Theorem 3.5 Let C be a code of length n over R = GR(pa, l). Then:

(i) The parameters k0, . . . , kν−1 are the same for any generator matrix G in standard form for C.

(ii) Any codeword c ∈ C can be uniquely written as c = (v0, v1, . . . , vν−1)G where vi ∈ (R/γν−iR)ki ∼=
(γiR)ki .

(iii) |C| = |K|
Pν−1

i=0 (ν−i)ki .

Proof. (i) The unicity of the ki’s follows from the fact that k0 = dim(C) and ki = dim((C : γi))−
dim((C : γi−1)), for i = 1, . . . , ν − 1, by Lemma 3.4.

(ii) Put k =
∑ν−1

i=0 ki. Since G is a generator matrix for C the encoding map encG : Rk → Rn

defined by encG(v) = vG has the image encG(Rk) = C. We prove that the kernel of this map
is

∏ν−1
i=0 γν−iRki . Let v = (v0, . . . , vν−1) be such that vi ∈ Rki and encG(v) = (v0, v0A01 +

γv1, . . . , v0A0,ν−1+v1γA1,ν−1+. . .+γν−1vν−1, v0A0,ν+. . .+γν−1vν−1Aν−1,ν) = 0. Then v0 = 0 and
the second block of entries becomes γv1 and has to be 0, hence v1 ∈ γν−1Rk1 , as in Corollary 2.3.
Continuing this way we obtain vi ∈ γν−iRki for all i = 0, . . . , ν − 1. Hence

C ∼= Rk/

ν−1∏

i=0

γν−iRki ∼=
ν−1∏

i=0

(R/γν−iRki)ki ∼=
ν−1∏

i=0

(γiR)ki
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which also gives |C|, using Lemma 2.4. 2

The previous theorem justifies the following definition:

Definition 3.6 For any code C over R we define k(C) to be the numver of rows in a generator
matrix in standard form of C. We also define ki(C), i = 0, . . . , ν − 1 as being the number of rows
divisible by γi but not by γi+1 in a generator matrix in standard form for C. (Equivalently we
define k0(C) = dim(C) and ki(C) = dim((C : γi))− dim((C : γi−1)) for 1 ≤ i ≤ ν − 1.)

Clearly k(C) =
∑ν−1

i=0 ki(C).

Corollary 3.7 If C, D are codes of length n over R such that C ⊆ D and ki(C) = ki(D) for
i = 0, . . . , ν − 1, then C = D.

Since finite products and finite direct sums coincide, we have also proved the following known
result (see [McD74, Problem II, p.60 and Exercise XII.15]).

Corollary 3.8 Any R-submodule C of Rn can be uniquely decomposed as a direct sum:

C ∼=
ν−1⊕

i=0

(R/γν−iR)ki(C) ∼=
ν−1⊕

i=0

γiRki(C)

for some ki(C) ≥ 0.

Corollary 3.9 Let C be an R-submodule of Rn. If G ⊂ Rn is such that C = rowspan(G) and
C 6= rowspan(G′) for any proper subset G′ of G, then |G| = k(C).

3.2 The dual code

We will examine now the structure of the dual of a code C, denoted, as usual, C⊥.

Theorem 3.10 Let C be a code with generator matrix G in standard form as in (1). Then

(i) If for 0 ≤ i < j ≤ ν, Bi,j = −∑j−1
k=i+1 Bi,kAtr

ν−j,ν−k −Atr
ν−j,ν−i, then

H =




B0,ν B0,ν−1 . . . B0,1 In−k(C)

γB1,ν γB1,ν−1 . . . γIkν−1(C) 0
...

...
...

...
γν−1Bν−1,a γν−1Ik1(C) . . . 0 0


 =




B0

γB1

...
γν−1Bν−1


 (3)

is a generator matrix for C⊥ and a parity check matrix for C.

(ii) For i = 0, . . . , ν − 1, (C⊥ : γi) = ((C : γν−1−i))⊥. Also k0(C⊥) = n − k(C) and ki(C⊥) =
kν−i(C), for i = 1, . . . , ν − 1.

(iii) |C⊥| = |Rn|/|C| and (C⊥)⊥ = C.

Proof. (i) It is straightforward to check that HGtr = 0. Let D be the R-module generated by H.
We have k0(D) = n− k(C), ki(D) = kν−i(C) for i = 1, . . . , ν − 1 and D is orthogonal to C, hence
D ⊆ C⊥. The equality D = C⊥ will follow from Corollary 3.7 after proving that ki(C⊥) = ki(D)
for i = 0, . . . , ν − 1.

(ii) We prove first that (C⊥ : γi) ⊥ (C : γν−i−1). Let b ∈ (C⊥ : γi) and e ∈ (C : γν−i−1). Then
γib ∈ C⊥ and γν−i−1e ∈ C and γν−1betr = 0 i.e. betr = 0. For vector spaces, we know that

7



the sum of the dimensions of two orthogonal subspaces of Kn cannot exceed the dimension of the
whole space. Since D ⊆ C⊥, we have (D : γi) ⊆ (C⊥ : γi) for all i, and so

n ≥ dim((C : γν−i−1)) + dim((C⊥ : γi))

≥ dim((C : γν−i−1)) + dim((D : γi))
= k0(C) + . . . + kν−i−1(C) + k0(D) + . . . + ki(D)
= k0(C) + . . . + kν−i−1(C) + n− k(C) + kν−i(C) + . . . + kν−1(C) = n.

Hence dim((C⊥ : γi)) = dim((D : γi)) = n−dim((C : γν−1−i)), which implies (C⊥ : γi) = ((C : γν−1−i))⊥

and ki(C⊥) = ki(D) for i = 0, . . . , ν − 1.

(iii) Easy consequence of (ii). 2

We associate the matrix

B =




B0

...
Bν−1


 (4)

of Theorem 3.10 to H. As in (2), B is not unique: for example we could choose Bi,i+1 =
−Atr

ν−i−1,ν−i + γV with V an arbitrary kν−i(C)× kν−i−1(C) matrix.

Corollary 3.11 Let C be a code with generator matrix G as in (1), parity check matrix H as in
(3) and let A,B be associated to G,H as in (2) and (4). Then C has generator matrix A0 and
parity check matrix B.

Proof. Use the fact that (C)⊥ = ((C : γ0))⊥ = (C⊥ : γν−1). 2

3.3 Free codes

Definition 3.12 We say that a code over R is free if it is a free R-module.

Obviously, over a field any code is free. The following characterisations of a free code are immediate:

Proposition 3.13 Let C be a code over R. The following assertions are equivalent:

(i) C is a free code.

(ii) If G is a generator matrix for C in standard form, then G = (I M) for some matrix M .

(iii) k(C) = k0(C).

(iv) C = (C : γ) = . . . = (C : γν−1).

(v) C⊥ is a free code.

(vi) C has generator matrix G and parity check matrix H.

For other characterisations of free codes over a finite chain ring see also [NS00a, Corollary 3.12].

4 The structure of cyclic codes

The structure of cyclic codes over Zpa was presented in [CS95, Theorem 6]. Their proof uses
Lasker-Noether decomposition of ideals and the construction of an idempotent. We prefer an
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elementary approach which does not appeal to Commutative Algebra and which generalises easily
to finite chain rings. An alternative description of the structure of cyclic codes over Zpa , as well
as its connection to [CS95] appears in [KL97].

Recall that a code is cyclic if a cyclic shift of any codeword is a codeword. We assume that n is not
divisible by the characteristic of K so that Xn − 1 is square-free in K[X] and by Theorem 2.7 it
has a unique decomposition into distinct monic basic irreducible factors in R[X]. We write Rn for
the quotient ring of R[X] by the ideal generated by Xn − 1; Kn is similarly defined. As usual, we
identify (Rn,+) and (Rn, +). If f ∈ R[X] has degree n− 1 or less, we identify f and its quotient
class in Rn. A code over R of length n is cyclic if and only if it is an ideal of Rn. Clearly if C is
cyclic so is C. For a cyclic code C, (C : γi) = {e ∈ Rn| γie ∈ C} is the ideal quotient of C by γi

in Rn; in particular, (C : γi) is cyclic for 0 ≤ i ≤ ν − 1. The ideal generated by f1, . . . , fs ∈ Rn or
f1, . . . , fs ∈ Kn will be denoted by id(f1, . . . , fs).

4.1 Generating sets in standard form

Definition 4.1 (Generating set in standard form) We say that the set S = {γa0ga0 , γa1ga1 ,
. . . , γasgas

} is a generating set in standard form for the cyclic code C = id(S) if 0 ≤ s < ν,
0 ≤ a0 < a1 < a2 < . . . < as < ν, and gai ∈ R[X] are monic, deg(gai) > deg(gai+1) for
i = 0, . . . , s− 1 and gas |gas−1 | . . . |ga0 |Xn − 1.

We will use the following lemmas to construct a unique generating set in standard form for a
non-zero cyclic code.

Lemma 4.2 If C is a non-zero cyclic code, then (C : γν−1) 6= {0}.

Proof. Let c ∈ C, c 6= 0. By Lemma 2.2, we can write c = γiu for some i, 0 ≤ i ≤ ν − 1 and unit
u. Since C is an ideal, γν−1u ∈ C i.e. u ∈ (C : γν−1) and 0 6= u ∈ (C : γν−1). 2

Lemma 4.3 Let S = {γa0ga0 , γ
a1ga1 , . . . , γ

asgas} be a generating set in standard form for C =
id(S). If i < a0 then (C : γi) = {0}, otherwise (C : γi) = id(gaj

) where j is maximal with the
property aj ≤ i.

Proof. Let e ∈ (C : γi). There is a g ∈ (C : γi) such that g = e. Since γig ∈ id(S), we can
write γig =

∑s
k=0 hak

γakgak
for some polynomials hak

. If i < a0 then g ≡ ∑s
k=0 hak

γak−igak

(mod γν−i), hence e = g = 0 and we are done. Otherwise, let j be maximal such that aj ≤ i.
Since gaj |gaj−1 | . . . |ga0 , we can write γig = hgaj +

∑s
k=j+1 hak

γakgak
for some h ∈ R[X]. Now

both γig and
∑s

k=j+1 hak
γakgak

are divisible by γi and gaj is monic, so h must be divisible by γi

i.e. h = γit for some t ∈ R[X]. Hence e = g = tgaj
i.e. (C : γi) ⊆ id(gaj

). The other inclusion is
immediate. 2

For any f ∈ K[X] such that f |Xn − 1, Theorems 2.7 and 2.6 imply the existence and unicity of
a polynomial g ∈ R[X] such that g = f and g|Xn − 1, since Xn − 1 is square-free in K[X]. The
polynomial g will be called the Hensel lift of f .

Theorem 4.4 (cf. [CS95, Theorem 6] ) Any non-zero cyclic code C over R has a unique gen-
erating set in standard form.

Proof. We first prove the existence. From Lemma 4.2, (C : γν−1) 6= {0} and we can define
0 ≤ s < ν, 0 ≤ a0 < a1 < a2 < . . . < as < ν by requiring that the inclusions {0} ⊂ (C : γa0) ⊂
(C : γa1) ⊂ . . . ⊂ (C : γas) are strict and s is maximal.
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Since C is cyclic, the (C : γi)’s are cyclic codes over K. Choose faj ∈ R[X] monic such that
γaj faj

∈ C and faj
is the unique monic generator polynomial of (C : γaj ). Let gaj

be the Hensel
lift of faj

. It is easy to check that S = {γa0ga0 , γ
a1ga1 , . . . , γ

asgas} is a generating set in standard
form for D = id(S).

For proving D = C, we first prove that γaj gj ∈ C for j = 0, 1, . . . , s. (The technique is similar to
the one used in [CS95, Corollary of Theorem 6].) Since gaj

= faj
, there are polynomials haj ∈ R[X]

such that γhaj
:= faj

− gaj
. Let vaj

:= (Xn − 1)/gaj
. We have γaj faj

vaj
= γaj (gaj

+ γhaj
)vaj

=
γaj+1haj

vaj
in R[X]/(Xn − 1). Hence γaj+1haj

vaj
∈ C. Now vaj and faj

are coprime in K[X]
since vaj = (Xn−1)/gaj

and faj
= gaj

. Hence vaj and faj are also coprime in R[X] by Lemma 2.8
i.e. there are polynomials u and v such that vaj v+faj u = 1. Multiplying this relation by γaj+1haj

we obtain γaj+1haj
vaj

v + γaj+1haj
faj

u = γaj+1haj
. Since γaj+1haj

vaj
∈ C and γaj faj

∈ C, we
obtain γaj+1haj ∈ C and therefore γaj gaj = γaj faj − γaj+1haj ∈ C. Thus D ⊆ C. We chose faj

such that (C : γi) = id(faj
) = id(gaj

) for aj ≤ i < aj+1. On the other hand, by Lemma 4.3(i),
(D : γi) = id(gaj

) for aj ≤ i < aj+1. Therefore (C : γi) = (D : γi) for i = 0, . . . , ν − 1, which
implies ki(C) = ki(D) and, by Corollary 3.7, C = D.

Next we prove the unicity of the generating set in standard form for C. Let {γb0hb0 , γ
b1hb1 , . . . , γ

bthbt
}

be another generating set in standard form for C. By Lemma 4.3 and since hbj+1 is a strict divisor
of hbj , the inclusions {0} ⊂ (C : γb0) ⊂ (C : γb1) ⊂ . . . ⊂ (C : γbt) are strict and t is maximal.
Hence t = s and bj = aj for j = 0, . . . , s. Also, (C : γaj ) = id(gaj

) = id(haj ), so gaj
= haj as they

are both monic divisors of Xn − 1. Finally gaj and haj are equal as they are the Hensel lift of
gaj

= haj . 2

Henceforth all cyclic codes will be non-zero. Next we relate generating sets in standard form to
generator matrices.

Theorem 4.5 Let S = {γa0ga0 , γ
a1ga1 , . . . , γ

asgas} be a generating set in standard form for the
code C = id(S). Then:

(i) If T =
s⋃

i=0

{γaigaiX
di−1−di−1, . . . , γaigaiX, γaigai} where di = deg(gai) for i = 0, . . . , s and by

convention d−1 = n, ds+1 = 0, then T defines a generator matrix for C.

(ii) Any c ∈ C can be uniquely written as c =
∑s

j=0 hjgaj γ
aj with hj ∈ (R/Rγν−ai)[X] ∼=

(Rγai)[X] and deg(hj) < dj−1 − dj.

(iii) ki(C) = dj−1−dj if i = aj for some j, ki(C) = 0 otherwise, and |C| = |K|
Ps

j=0(ν−aj)(dj−1−dj).

Proof. (i) As in the case of cyclic codes over a finite field, C = rowspan(U), where

U =
s⋃

j=0

{γaj gaj X
n−dj−1, . . . , γaj gaj X, γaj gaj}.

Some of these polynomials can be removed from U because they are linear combinations of the
others. For example, since ga1 |ga0 , we can put ga0/ga1 = Xd0−d1 + h with deg(h) < d0 − d1.
Then Xn−1−d1ga1 = Xn−1−d0ga0 + Xn−1−d0hga1 , hence Xn−1−d1ga1 can be removed from U .
Similarly we can remove Xn−2−d1ga1 , . . ., Xd0−d1ga1 . Using then the fact that ga2 |ga1 we remove
Xn−1−d2ga2 , . . . , X

d1−d2ga2 , and so on. Finally, only the elements of T remain in U . Since the
polynomials in T have distinct leading terms, none of them can be written as a linear combination
of the others, and hence T defines a generator matrix for C.

(ii) By (i), any c ∈ C can be written as a linear combination of the elements of T i.e. for
j = 0, . . . , s there are hj ∈ R[X] such that deg(hj) < dj−1 − dj and c =

∑s
j=0 hjγ

aj gaj =∑s
j=0(hj mod γν−aj )γaj gaj .
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(iii) By Lemma 4.3(i), dim((C : γi)) = 0 if i < a0, otherwise dim((C : γi)) = n − dj where
j is maximal such that aj ≤ i. Then ki(C) are computed using Definition 3.6 and |C| using
Theorem 3.5(iii). 2

Corollary 4.6 (cf. [CS95, Corollary to Theorem 6] ) The ring Rn is principal.

Proof. Let C be an ideal of Rn. As in the proof of [CS95, Corollary to Theorem 6], one shows that
if {γa0ga0 , γ

a1ga1 , . . ., γasgas} is a generating set in standard form for C then C = id(
∑s

j=0 γaj gaj ).
2

Remark 4.7 In the proof of Theorem 4.4 and Corollary 4.6 we used the technique of [CS95,
Corollary to Theorem 6] for proving that Zpa [X]/(Xn − 1) is principal. In [KL97] it is claimed
that the proof of [CS95, loc. cit.] is incorrect, without indicating where the logical mistake is.
Instead, [KL97, Example 3.1] is given, for which it is claimed that the single generator constructed
by [CS95, loc. cit.] fails to generate a certain element of the ideal. We show below that this
generator does in fact generate that particular element, so the counterexample is incorrect.

In Z8[X], X7−1 = g1g2g3 where g1 = X−1, g2 = X3+6X2+5X +7 and g3 = X3+3X2+2X +7.
Let C = id(f0, 2f1, 22f2) where f0 = g2, f1 = f2 = 1. By [CS95, loc. cit.], g = f0 + 2f1 + 22f2 =
g2 + 6 generates C. Now, it is stated in [KL97, Example 3.1], that g does not generate C since
f 6∈ id(g) where f = g2 + 2g1g3 ∈ C. We will explicitly construct a polynomial h such that
f = hg. Indeed, division gives f = g(2X + 1) + 4(X2 + 1). As in the proof of [CS95, loc.
cit.], we show that 4 ∈ id(g). We have 3g1g3g = 3g1g3(g2 + 6) = 2g1g3 (mod X7 − 1) and
4g = 4g2. Since g2 and g1g3 are coprime, there are u, v ∈ R[X] such that g2u + g1g3v = 1,
by Lemma 2.8. Hence 4 = 4g2u + 4g1g3v = 4gu + 6g1g3gv = g(4u + 6g1g3v) and consequently
f = g(2X + 1 + (4u + 6g1g3v)(X2 + 1)) ∈ id(g).

4.2 The dual code

Proposition 4.8 The dual of a cyclic code over R is cyclic.

Proof. Let C be cyclic and π : Rn → Rn be the shift operator. If u ∈ C⊥ then for any c ∈ C,
π(u) · c = π(u) · π(π−1(c)) = u · π−1(c) = 0. So C⊥ is cyclic. 2

In particular, the dual of a cyclic code has a unique generating set in standard form, which
we now construct. First recall that the reciprocal of a non-zero polynomial f(X) is f∗(X) =
Xdeg(f)f(1/X). For a polynomial f ∈ R[X] whose constant term is a unit, we define f# to be
equal to f∗ divided by the leading coefficient of f∗. In particular, the constant term of any divisor
of Xn − 1 is a unit.

Theorem 4.9 Let C be a cyclic code over R with {γa0ga0 , γ
a1ga1 , . . . , γ

asgas} a generating set
in standard form. Put as+1 = ν and for j = −1, gaj = Xn − 1. For j = 0, . . . , s + 1, let bj =
ν − as+1−j and hbj = ((Xn − 1)/gas−j )

#. Then {γb0hb0 , γ
b1hb1 , . . . , γ

bs+1hbs+1} is the generating
set in standard form for C⊥.

Proof. Let S = {γb0hb0 , γ
b1hb1 , . . . , γ

bs+1hbs+1} and let D = id(S). It is straightforward to check
that S is a generating set in standard form and that D ⊆ C⊥. We show that ki(D) = kν−i(C),
which implies that D = C⊥ by Corollary 3.7 and Theorem 3.10(ii). From Theorem 4.5(iii) we have
ki(D) = deg(hbj−1)− deg(hbj ) if i = bj for some j and ki(D) = 0 otherwise, which the reader may
check is kν−i(C). 2
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4.3 The Hensel lift of a cyclic code

A natural way of constructing a cyclic code over R is by lifting the generator polynomial of a cyclic
code over K, as in [CS95]. See also [Sha79].

Definition 4.10 (Hensel lift of a cyclic code) Let f ∈ K[X] be monic such that f |Xn − 1.
The cyclic code id(g) where g is the Hensel lift of f is called the Hensel lift of the cyclic code id(f).

If C is the Hensel lift of E then C = E, but C is not the only cyclic code whose projection is E.

Proposition 4.11 Let C be a code over R. The following properties are equivalent:

(i) C is the Hensel lift of a cyclic code.

(ii) C is cyclic and free.

(iii) There is a g ∈ R[X] such that C = id(g) and g|Xn − 1.

(iv) There is a monic g ∈ R[X] such that {g} is the generating set in standard form for C.

(v) C⊥ is the Hensel lift of a cyclic code.

Remark 4.12 All the results on cyclic codes proved so far in this section also hold, with similar
proofs, with Xn − 1 replaced by any polynomial f of degree n such that f is square-free in K[X].
We are then working with codes which are ideals in R[X]/(f). For the particular case f = Xn + 1
we obtain negacyclic codes and for f = Xn − c, with c ∈ R, c 6= 0 we obtain constacyclic codes
(see [Ber68, p. 303]).

4.4 Cyclic codes defined by roots of unity

For the case when R is a Galois ring we give an alternative definition of cyclic codes in terms of
the zeros of their codewords in a suitable extension ring.

Let R = GR(pa, l) and let m ∈ N be such that l|m and n|pm−1. The ring GR(pa, m) is an extension
of R in which Xn − 1 has n roots. By [McD74, Lemma XV.1], we can lift uniquely a primitive
root of Xn− 1 from GF (pm) to a root ξ of Xn− 1 in GR(pa,m). By [NS00b, Theorem 2.9], ξ will
also be primitive. For 0 ≤ i ≤ n− 1 denote by mi ∈ K[X] the unique monic minimal polynomial
of ξ

i
. Let U be a set of representatives for the conjugacy classes of ξ, i.e. a maximal subset of

{0, . . . , n− 1} such that mi 6= mj for all i, j ∈ U , i 6= j. It is well known that Xn − 1 =
∏

i∈U mi.
Denote by Mi the Hensel lift of mi, for i = 0, . . . , n− 1. By Theorem 2.7, the Mi are monic basic
irreducible polynomials. We will need the following properties of the Mi.

Lemma 4.13

(i) For i = 0, . . . , n− 1, {j ∈ {0, . . . , n− 1} | Mi(ξj) = 0} = {j ∈ {0, . . . , n− 1} | mi(ξ
j
) = 0}

(ii) For i = 0, . . . , n− 1, Mi is the minimal polynomial of ξi.

(iii) U is a set of representatives for the conjugacy classes of ξ.

(iv) Let f ∈ R[X] and let {i1, . . . , iv} ⊆ U . If f(ξij ) = 0 for j = 1, . . . , v then
∏v

j=1 Mij |f .

(v) Let f ∈ R[X] so that f |Xn − 1 and let L ⊆ U . Then f =
∏

i∈L Mi iff L = {i ∈ U |f(ξi) = 0}.
(vi) For k = 1, . . . , a− 1, Mi mod pk ∈ (R/pkR)[X] ∼= GR(pk, l)[X], is the minimal polynomial of
ξi mod pk.

Proof. (i) All the roots of mi are powers of ξ and all the roots of Mi are powers of ξ. If Mi(ξj) = 0
then of course Mi(ξj) = mi(ξ

j
) = 0. Conversely, let ξ

j
be a root of mi. Since mi has no multiple
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roots, by [McD74], the root ξj of mi can be uniquely lifted to a root of Mi, say ξk such that
ξk = ξ

j
. Since ξ has order n, it follows that k = j.

(ii) and (iii) are immediate consequences of (i).

(iv) We use induction on v. First consider v = 1 and assume that f is not divisible by Mi1 .
So dividing f by Mi1 we obtain f = qMi1 + pkr with q, r ∈ R[X], r 6= 0, deg(r) < deg(Mi1),
0 ≤ k ≤ a − 1 and p 6 |r. Since pkr(ξi1) = 0, we obtain r(ξ

i1) = 0 (applying Lemma 2.3 if
k > 0). This means that r is divisible by mi1 , the minimal polynomial of ξ

i1 , which is impossible
as deg(r) ≤ deg(r) < deg(Mi1) = deg(mi1) since Mi1 is monic.

Next, assume v ≥ 2. As above, there is some g ∈ R[X] such that f = Miv
g. From the definition

of U follows that for j = 1, . . . , v − 1, Miv (ξij ) = miv (ξ
ij ) 6= 0, hence Miv (ξij ) is a unit. So, for

j = 1, . . . , v − 1, f(ξij ) = 0 implies g(ξij ) = 0. Applying the induction hypothesis,
∏v−1

j=1 Mij |g.

(v) Use (iv) and the fact that any root of f is a power of ξ.

(vi) Apply (ii) in the ring GR(pk, l)[X], as Mi mod pk is obtained by Hensel lifting mi to GR(pk, l)[X].
2

Any set of roots {ξi1 , . . . , ξik} defines a cyclic code {c ∈ Rn| c(ξij ) = 0, j = 1, . . . , k}. The
generator polynomial of this code is the product of the distinct elements in the set {Mi1 , . . . , Mik

}
and a parity check matrix is

H =




1 ξi1 ξ2i1 . . . ξ(n−1)i1

...
...

...
...

1 ξik ξ2ik . . . ξ(n−1)ik




This construction is described in [Sha79]. The more general case of codes with several generator
polynomials appears implicitly in [HKC+94] and [CMKH96] for codes over Z4. We generalise their
construction and relate it to generating sets in standard form.

Proposition 4.14 Let s ≥ 0, 0 ≤ a0 < a1 < . . . < as < as+1 = a and let Laj for j = 0, . . . , s + 1
be a partition of U . Then C = {c ∈ Rn| pa−aj c(ξij ) = 0, ij ∈ Laj , j = 0, . . . , s + 1} is a cyclic code
with parity check matrix

H =




Has+1

pa−asHas

...
pa−a0Ha0


 where Haj =




1 ξlj,1 . . . ξ(n−1)lj,1

...
...

...
1 ξlj,mj . . . ξ(n−1)lj,mj




and Laj = {lj,1, . . . , lj,mj}.

Theorem 4.15 (i) If C is a cyclic code having {pa0ga0 , p
a1ga1 , . . . , p

asgas} as generating set in
standard form, then C = {c ∈ Rn| pa−aj c(ξij ) = 0, ij ∈ Laj , j = 0, . . . , s + 1}, where Laj = {i ∈
U |taj (ξ

i) = 0}, taj = gaj−1/gaj with the conventions as+1 = a, gas+1 = 1 and gaj = Xn − 1 for
j = −1.

(ii) Conversely, if C = {c ∈ Rn| pa−aj+1c(ξij ) = 0, ij ∈ Laj , j = 0, . . . , s + 1} is a cyclic code as in
Proposition 4.14, then C has the generator set in standard form {pa0ta1ta2 · · · tas+1 , p

a1ta2 · · · tas+1 , . . . , p
astas+1}

where taj =
∏

ij∈Laj
Mij .

Proof. (i) Since taj |Xn−1, for j = 0, . . . , s+1, by Lemma 4.13(v) we have that taj =
∏

ij∈Laj
Mij .

The taj are pairwise coprime and
∏s+1

j=0 taj = Xn−1, so the Laj are a partition of U . Put D = {c ∈
Rn| pa−aj c(ξij ) = 0, ij ∈ Laj , j = 0, . . . , s+1}. It is easy to check from the definitions that C ⊆ D.
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Now let c ∈ D. Since c(ξis+1) = 0 for all is+1 ∈ Las+1 , by Lemma 4.13(iv) we deduce that tas+1 |c
i.e. c = tas+1cas+1 for some cas+1 ∈ R[X]. Further, pa−astas+1(ξ

is)cas+1(ξ
is) = 0 for all is ∈ Las

.

Since tas+1(ξ
is) 6= 0, we deduce tas+1(ξ

is) 6= 0 by Lemma 4.13(i), so tas+1(ξ
is) is a unit. Thus

pa−ascas+1(ξ
is) = 0 for all is ∈ Las which implies cas+1(ξ

is) mod pas = 0 as in Lemma 2.3. Hence
(tas

mod pas) divides (cas+1 mod pas) by Lemma 4.13(iv) and (vi), i.e. cas+1 = tas
cas

+ pashas

for some cas , has ∈ R[X] and therefore c = gas−1cas + pasgashas . Continuing this way we obtain
c = ga0ta0ca0 +

∑s
j=0 paj gaj

haj
for some haj

∈ R[X]. As ga0ta0 = 0 mod (Xn − 1), it follows that
c =

∑s
j=0 paj gaj

haj
∈ C.

The proof of part (ii) is similar. 2
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