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Abstract 

An in situ colorimetric method, based on the CIE (Commission Internationale de 

l'Eclairage) system of colorimetry, has been applied to the study of the electrochromic 

N,N´-bis(n-heptyl)-4,4´-bipyridylium (‘di-n-heptyl viologen’) system in aqueous solution 

on transmissive ITO/glass substrates. On electrochemical reduction of the di-n-heptyl 

viologen di-cation, the purple di-n-heptyl viologen radical cation salt deposits as a film and 

the changes in hue and saturation have been tracked using CIE 1931 xy chromaticity 

coordinates. The CIELAB 1976 colour space coordinates of the purple di-n-heptyl viologen 

radical cation salt were L* = 76, a* = 33 and b* = –20, with a complementary wavelength 

of 548 nm. A sharp decrease in luminance was found on formation of the di-n-heptyl 

viologen radical cation salt. Colour coordinates for the reverse (oxidation) direction plots 

show hysteresis, implying that specific choice of colour values depends on both the 

potential applied and from which direction the potential is changed. 
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1. Introduction 

Electrochromism is a change, evocation, or bleaching, of colour as effected either 

by an electron-transfer (redox) process or by a sufficient electric potential [1]. Visible 

electrochromism is only useful for display purposes if one of the colours is markedly 

different from the other, as for example when the absorption band of one redox state is in 

the visible region of the electromagnetic spectrum, while the other is in the UV. If the 

colours are sufficiently intense and different, then the material is said to be electrochromic 

and the species undergoing change is usefully termed an ‘electrochrome’ [1]. Many 

chemical species show electrochromic properties [1–3], including metal coordination 

complexes, both in solution and as polymer films, inorganic charge-transfer complexes, 

metal oxides (especially tungsten trioxide, WO3), viologens (4,4´-bipyridylium salts) and 

conjugated conducting polymers such as polypyrroles and polythiophenes. 

Colour [4, 5] is a subjective phenomenon, causing the description of colour 

difference or the comparison of two colours to be quite difficult. However, much effort has 

been given to the development of colorimetric analysis, which allows a quantitative 

description of colour and relative transmissivity as sensed by the human eye. Colorimetry 

provides a more precise way to define colour than spectrophotometry [6]. Rather than 

record absorption bands, in colorimetry the human eye’s sensitivity to light across the 

visible region is measured and a numerical description of colour is given. There are three 

attributes that are used to describe colour. The first identifies a colour by its location in the 

spectral sequence, i.e., what wavelength is associated with the colour. This is known as the 

hue, dominant wavelength, or chromatic colour, and is the wavelength where maximum 

contrast occurs. It is this aspect which is commonly, but mistakenly, referred to as colour. 

The second attribute, relating to the level of white and/or black, is known as saturation, 

chroma, tone, intensity, or purity. The third attribute is the brightness of the colour, also 
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referred to as value, lightness, or luminance. Luminance is very informative in considering 

the properties of electrochromes, because, with only one value, it provides information 

about the perceived transparency of a sample over the entire visible range. Since the 

introduction [7] of a simple in situ colorimetric analysis method for the precise control and 

measurement of colour in electrochromic systems, this approach has been successfully 

applied to the characterisation of ‘type-III’ [1] electrochromes, which remain as solid films 

under electrochromic operation. Thus, measurements have been made with numerous 

electrochromic conjugated polymer films and display devices prepared therefrom [8–13], 

and more recently to nickel oxide with various metal additives [14] and thin films of the 

intervalence charge-transfer complex Prussian blue (iron(III) hexacyanoferrate(II), PB) 

[15]. 

We here report the application of in situ colorimetric analysis to the study of the 

N,N´-bis(n-heptyl)-4,4´-bipyridylium (‘di-n-heptyl viologen’) system. The electrochromic 

properties of viologens have been intensively studied [1,16], and there is a long history of 

their use in prototype electrochromic display devices, since the first example reported in 

1973 [17]. Viologen di-cations are colourless when pure unless optical charge transfer with 

the counter anion occurs. Reductive electron transfer forms the radical cation (see 

SCHEME 1 for di-n-heptyl viologen), the stability of which is attributable to the 

delocalisation of the radical electron throughout the π-framework of the bipyridyl nucleus. 

SCHEME 1 

Viologen radical cations are intensely coloured, with high molar absorption coefficients, 

owing to optical charge transfer between the (formally) +1 and zero valent nitrogens [1,16]. 

Suitable choice of nitrogen substituents in viologens to attain the appropriate molecular 

orbital energy levels allows colour choice of the radical cation, the di-n-heptyl viologen 

radical cation being purple. The intensity of the colour exhibited by di-reduced neutral 
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viologen species (SCHEME 1) is low since no optical charge transfer or internal transition 

corresponding to visible wavelengths is accessible. 

Di-n-heptyl viologen was chosen for study here owing to its property as a ‘type II’ 

electrochrome [1,16], its soluble to insoluble transition on electrochemical reduction from 

aqueous solutions making it especially amenable to study by in situ colorimetry. 

2. Experimental 

2.1. Materials 

Working electrode substrates were tin-doped indium oxide (ITO) on glass (7 x 50 x 

0.7 mm, 5-15 Ω/ , part no. CG-50IN-CUV) from Delta Technologies Ltd.. Before each 

electrochemical investigation, ITO/glass substrates were pre-treated, in order to remove any 

trace of adhesive/impurities on the surface, by sonication (5 minutes) in a 1 mol dm-3 

hydrochloric acid solution followed by rinsing with deionised water and air drying. N,N´-

bis(n-heptyl)-4,4´-bipyridylium (‘di-n-heptyl viologen’) dibromide (as supplied, 97%) was 

recrystallised from water to yield pale yellow crystals. Potassium bromide (KBr) was a 

Fisher Scientific certified ACS reagent, and used without further purification. 

2.2. Electrochemical measurements 

Electrochemical measurements were carried out in de-oxygenated solutions (purged 

with pure argon) using an EG&G Model PAR 273A potentiostat/galvanostat, under the 

control of Scribner and Associates Corrware II software. No iR compensation was 

employed. For all measurements, a standard 1 cm quartz cuvette was used as the 

electrochemical cell. A machined polytetrafluoroethylene lid allowed the ITO/glass 

working electrode to be mounted transverse to the optical faces of the cuvette. Additional 

holes in the lid allowed a coiled platinum wire counter electrode and a reference electrode 

to be positioned in the electrolyte solution. A silver/silver bromide wire reference electrode 

was used, which, with aqueous 0.2 mol dm-3 KBr as supporting electrolyte, maintained a 



 5

stable potential of -0.086 V vs. a commercial BAS silver/silver chloride/saturated 

potassium chloride (+0.197 V vs. SHE) reference electrode. For all measurements, the 

lower 40 mm of each ITO/glass substrate was immersed in solution, providing a submerged 

geometric electrode active area of 2.80 cm2. Adhesive copper tape at the top of each 

ITO/glass substrate provided the means for a uniform electrical contact. 

2.3. In situ colorimetry 

In situ colorimetric measurements, under potentiostatic control, were obtained using 

a Minolta CS-100 Chroma Meter and CIE (Commission Internationale de l’Eclairage) 

recommended normal/normal (0/0) illuminating/viewing geometry for transmittance 

measurements [18]. The calibration of the Chroma Meter was set to the preset mode. The 

standard illuminant was a D50 (5000 K) constant temperature daylight simulating light 

source in a light booth designed to exclude external light. Prior to each set of 

measurements, background colour coordinates (Y, x, and y values) were taken at open-

circuit, using the blank ITO/glass substrate in the standard quartz cuvette containing the 

electrolyte solution under study. For measurements involving sequences of applied 

potentials, to ensure readings had equilibrated, colour coordinates were recorded after each 

potential had been applied for 50 seconds and the current had decayed to background 

levels. Additional readings were taken at 60 seconds, to ensure the colour coordinates had 

stabilised. For the experiments reported in section 3.3, readings were taken as a function of 

time under kinetic control. For all measurements, the ITO/glass substrate was on the side of 

the cuvette closest to the light source, with the conductive side facing the Chroma Meter. 

The Yxy values of the standard illuminant were converted to Xn, Yn, Zn tristimulus values 

[6], which, in turn, were used with the calculated tristimulus values (X, Y, Z) of each colour 

state for conversion to CIELAB L*a*b* coordinates. The x and y coordinates were 

calculated from the XYZ tristimulus values using the formulae, x = X/(X + Y + Z) and y = 

Y/(X + Y + Z). 
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3. Results and discussion 

3.1. Cyclic voltammetric and in situ colorimetric measurements with 0.5 x 10-3 mol dm-3 di-

n-heptyl viologen in 0.2 mol dm-3 KBr solution 

Initial measurements were undertaken to study the di-n-heptyl viologen system 

across both redox waves (SCHEME 1) using a relatively dilute solution. Fig. 1 shows 

cyclic voltammograms at 10, 100 and 500 mV s-1 across the region of electrochemical 

activity. In Fig. 1 (a), the peaks are labelled following the scheme of Bruinink et al. [19] 

who carried out an electrochemical investigation at tin oxide/glass electrodes of 0.2 cm2 

surface area. Bruinink et al. found that the number of peaks depends on experimental 

conditions such as scan speed and the age of the radical cation salt film. The peaks obtained 

here, albeit using ITO/glass electrodes of 2.80 cm2 surface area, were consistent with the 

earlier studies. The main peaks a and a' are assigned to the formation of the purple radical 

cation salt on the ITO surface, followed by dissolution back to the di-cation. The main peak 

c is due to the second reduction step, which causes the formation of a yellow-brown 

deposit. Bruinink et al. [19], under their conditions, found the corresponding oxidation peak 

c' to only be present at > 100 mV s-1, owing to the comproportionation chemical reaction 

(SCHEME 2), where the di-reduced neutral viologen species reacts with local viologen 

radical cation to generate further viologen radical cation. 

SCHEME 2 

In the present study, peak c' is present at each of the scan rates studied. Shoulder peaks b, 

connected with the second reduction step, and d and b', corresponding to oxidation of the 

viologen radical cation salt film, are consistent with the earlier study. In the present study, 

at low scan rate (Fig. 1 (a)) at -0.400 V, a shoulder, corresponding to reduction of adsorbed 

radical cation salt is also observed. This feature was observed in the electrochemical study 

of Belinko [20] on tin oxide/glass, but not in that of Bruinink et al. [19]. 
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Table 1 shows in situ % colorimetric luminance (%L) and xy coordinates, as the 

potential is slowly stepped in sequence over the range 0.000 to –0.900 V, and then in 

reverse. Also shown at each applied potential are the calculated L*a*b* coordinates, a 

uniform colour space (CIELAB) defined by the CIE in 1976. The CIE L*a*b* space is a 

standard commonly used in the paint, plastic, and textile industries. L* is the lightness 

variable of the sample, while a* and b* correspond to the two antagonistic chromatic 

processes (red-green and yellow-blue). In the L*a*b* chromaticity diagram, + a* is the red 

direction, – a* is the green direction, + b* is the yellow direction, and – b* is the blue 

direction. The centre (0, 0) of the chromaticity diagram is achromatic; as the a* and b* 

values increase, the saturation of the colour increases. At the initial 0.000 V applied 

potential, the stable oxidation state is the colourless di-n-heptyl viologen di-cation, and the 

coordinates are coincident with those of the illumination source (the ‘white point’, where x 

= 0.357, y = 0.383, and %L = 100). At –0.500, –0.600 and –0.700 V in the reduction 

direction, the ITO/glass surface is visually pale purple, due to the deposition of the di-n-

heptyl viologen radical cation salt, in the region of potential expected from the cyclic 

voltammograms (Fig. 1). Measurement of the L*a*b* coordinates allow this change to be 

followed, with a decrease in L*, a positive change (towards red) in a* and a negative 

change (towards blue) in b*, quantifying the colour state (red + blue = purple). At –0.800 

and –0.900 V, the ITO/glass surface appears yellow/brown due to the formation of the di-

reduced di-n-heptyl viologen species. This potential range corresponds to that beyond peak 

c in the cyclic voltammograms (Fig. 1 (a)). Here, there is a small increase in the L* 

variable, with a decrease in a* and movement to a positive (towards yellow) value of b*. 

On the reverse sequence, at –0.800 V the surface film switches from yellow-brown to pale 

purple, and then remains as pale pink at –0.700, –0.600, –0.500, –0.400 and –0.300 V. 

Calculation of the L*a*b* coordinates allow quantification of each colour state (Table 1). 

The enhanced purple coloration on the reverse sequence (Table 1) is attributed to the 
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comproportionation reaction [21], where additional di-n-heptyl viologen radical cation salt 

is generated by reaction of the di-n-heptyl viologen di-cation and the di-reduced neutral di-

n-heptyl viologen species (see SCHEME 2). Following 60 s at 0.000 V, the ITO/glass 

surface still remains purple, a further 240 s passing before the colour coordinates show full 

‘bleaching’. The persistence of the purple colour, following cycling to the di-reduced 

neutral viologen species is well known. 

3.2. Cyclic voltammetric and in situ colorimetric measurements with 2 x 10-3 mol dm-3 di-n-

heptyl viologen in 0.2 mol dm-3 KBr solution 

Measurements were next taken using a higher concentration of di-n-heptyl viologen, 

in order to enhance changes in colour coordinates. Furthermore, the potential region was 

now restricted to the formation of the di-n-heptyl viologen radical cation, in order to avoid 

the complexities associated with the second reduction and the comproportionation reaction. 

Fig. 2 (a) shows the cyclic voltammogram of the system at 10 mV s-1, a scan rate at which 

the features b' and f are resolved, in addition to the main peaks a and a'. Following 

colorimetric measurements (vide infra), minor changes in the cyclic voltammogram (Fig. 2 

(b)) are found, due to the well-known aging of the surface film of di-n-heptyl viologen 

radical cation salt [19]. Peak f corresponds to oxidation of the aged, re-orientated, radical 

cation salt film, and was also seen, as a shoulder, in figs. 1 (b) and (c). At higher scan rates, 

where the radical cation salt film has less time to age, the cyclic voltammograms (Fig. 3) 

have a shape akin to that for a typical metal deposition/stripping electrochemical process. 

Analysis of potentiostatic current-time transients has been confirmed as a nice case of 

organic nucleation and subsequent crystal growth at SnO2-coated electrode surfaces [22]. In 

the present work with ITO/glass substrates, rising current-time transients, diagnostic of 

nucleation and subsequent crystal growth, were likewise found for potentials between the 

Tafel and limiting current regions. 
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Table 2 shows in situ % colorimetric luminance (%L), xy and L*a*b* coordinates, 

as the potential is slowly stepped in sequence over the range 0.000 to –0.600 V, and then in 

reverse. Preliminary measurements had established the appropriate intervals between 

applied potentials, as given in Table 2. Fig. 4 shows the in situ % colorimetric luminance 

(%L) data in graphical form. A sharp decrease in luminance is found on application of –

0.425 V, a potential on the cyclic voltammogram (Fig. 3) between the Tafel and limiting 

current regions, on formation of the radical cation salt on the ITO/glass electrode surface. 

At –0.425 V, careful observation of the electrode by eye through the eye-piece of the 

colorimeter (with the benefit of illumination from the light source) reveals the colour of the 

electrodeposited film to start off as a uniform pale pink/purple. On maintaining the 

potential at –0.425 V, islands of deeper pink/purple are seen to form, which then slowly 

spread, until the film becomes fully uniform after 120 s. (For this specific potential, on the 

forward sequence, this additional time was allowed for stabilisation of the colour 

coordinates.) This observation represents visual confirmation of a mechanism that involves 

the growth of three-dimensional nuclei into a hemispherical diffusion zone [22]. Following 

the negative direction potential excursion, the % luminance was monitored in the positive 

potential direction (Fig. 4). Significant hysteresis was found, the stripping of the radical 

cation salt taking place ~0.1 to 0.2 V more positive of the original electrodeposition. This 

result is consistent with the voltammetric waveshape (Fig. 3). 

Fig. 5 (a) shows the hue and saturation track in the xy chromaticity diagram for the 

di-n-heptyl viologen dication/radical cation transition, as the potential is slowly stepped 

between 0.000 and –0.600 V. In this figure and Fig. 5(b), only selected values from Table 2 

are shown. The xy data (Table 2) for the –0.450 to –0.575 V forward sequence and the –

0.575 to –0.400 V reverse sequence are excluded, due to the variable and small changes in 

this region. Although the xy chromaticity diagram is not a uniform colour space, abrupt 

changes in colour are found to correspond with significant changes in the xy coordinates. 
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The changes in xy coordinates in Fig. 5 occur as the colourless di-cationic viologen solution 

(at 0.000 V the xy coordinates are coincident with the ‘white point’) is reduced to yield the 

purple viologen radical cation salt on the ITO/glass. As noted for the luminance track, there 

is hysteresis in the xy coordinates. For the step-by-step reduction sequence, the main 

change there is a step change between –0.400 and –0.425 V. On the oxidation sequence the 

purple colour coordinates are maintained until beyond –0.400 V and then steady changes 

are observed in following each 0.025 V step to –0.300 V. In Fig. 5 (b), the xy data from Fig. 

5 (a) are overlaid onto the CIE 1931 colour space template, showing the track of the xy 

coordinates between the white (transparent) and purple colour states. In this representation, 

the line surrounding the horse-shoe shaped area is called the spectral locus, giving the 

visible light wavelengths. The most saturated colours lie along the spectral locus. The line 

connecting the longest and shortest wavelength contains the non-spectral purples and is 

known as the purple line (Fig. 5 (b)). Surrounded by the spectral locus and the purple line is 

the region known as the colour locus, which contains every colour that can exist. The 

location of any point in the xy diagram gives the hue and saturation of the colour. For a 

given sample, the hue is determined by drawing a straight line through the point 

representing ‘white’ and the point of interest to the spectral locus, thus obtaining the 

dominant wavelength of the colour. For placing a wavelength dependence on a colour state 

such as that at –0.600 V (x = 0.378, y = 0.317) which is found along the purple line, a 

complementary wavelength (λc) can be expressed by drawing a straight line from the 

sample coordinate through the white point to the spectral locus. The construction shown in 

Fig. 5 (b) allows an estimated value of 548 nm, in excellent agreement with the wavelength 

(545 nm) of maximum absorbance in the visible region spectrum of the di-n-heptyl radical 

cation salt [23]. 
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3.3. Dynamic in situ colorimetric measurements with 2 x 10-3 mol dm-3 di-n-heptyl viologen 

in 0.2 mol dm-3 KBr solution 

To date, the study and interpretation of the in situ colorimetric analysis of 

electrochromic systems has only been carried out at applied potentials, following the 

attainment of equilibrium. The di-n-heptyl viologen system under study here, with the 

stated experimental conditions of solution concentrations, ITO/glass electrode area and cell 

geometry, had not been optimised in terms of maximising the switching speeds. 

Preliminary measurements established that the system switched colour sufficiently slowly 

to allow the demonstration of in situ colorimetry taking the manually obtained 

measurements in a dynamic fashion. 

Following the study in 3.1 and 3.2 above, potentials of 0.000 and –0.425 V 

respectively, were chosen, corresponding to a value where the colourless di-n-heptyl 

viologen di-cation is the stable form and that where the electrodeposition of the radical 

cation salt can be steadily observed through changes in the colour coordinates. Fig. 6 (a) 

shows the steady track of the xy coordinates as the radical cation salt grows on the 

ITO/glass surface following a potential step from 0.000 to –0.425 V for 300 s. Fig. 6 (b) 

shows the steady decrease in relative luminance over the 300 s corresponding to the 

increase of light absorbed. Following switching to open-circuit at 300 s, the colour 

coordinates revert to those of the colourless radical cation after a further 100 s (Fig. 6 (b) 

for the luminance data). Although, as noted, all solutions were purged with argon prior to 

measurements, the bleaching observed at open-circuit is interpreted as the regeneration of 

the di-n-heptyl viologen di-cation form by chemical reaction of the radical cation salt with 

extraneous trace ambient oxygen. Fig. 6 (c) shows the relative luminance data following a 

square-wave potential step from 0.000 to –0.425 V (300 s) and then to 0.000 V (100 s). The 

rapid bleaching observed visually, and through the measurements of the colour coordinates, 
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is consistent with the relatively sharp ‘stripping’ peak observed in the cyclic 

voltammograms.  

Conclusion 

An in situ colorimetric method, based on the CIE (Commission Internationale de 

l'Eclairage) system of colorimetry, has been successfully applied to the study of the 

electrochromic N,N´-bis(n-heptyl)-4,4´-bipyridylium (‘di-n-heptyl viologen’) system. The 

technique is a convenient method for the precise measurement of the hue, saturation and 

luminance of colour states and allows the changes in these properties to be carefully 

monitored on redox switching between electrochromic colour states. Significant hysteresis 

was found for the di-n-heptyl viologen system. For this ‘type II’ electrochrome system, the 

precise colour exhibited at a specific potential depends on the polarity direction of the 

sequence of applied potentials. The di-n-heptyl viologen di-cation/radical cation salt 

electrodeposition/stripping process was sufficiently slow, to allow, for the first time, the 

demonstration of in situ colorimetry measurements in a kinetic mode. 
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Figure legends 

Fig. 1 

Cyclic voltammograms at 10 (Fig. 1 (a)), 100 (Fig. 1 (b)) and 500 (Fig. 1 (c)) mV s-1 scan 

rate for an ITO/glass electrode in aqueous 0.5 x 10-3 mol dm-3 di-n-heptyl viologen 

dibromide/0.2 mol dm-3 KBr. Initial potential, 0.000 V vs. Ag/AgBr. Return potential –

0.900 V vs. Ag/AgBr. Arrows indicate direction of potential scan. 

Fig. 2 

Cyclic voltammogram at 10 mV s-1 scan rate for an ITO/glass electrode in aqueous 2 x 10-3 

mol dm-3 di-n-heptyl viologen dibromide/0.2 mol dm-3 KBr. Initial potential, 0.000 V vs. 

Ag/AgBr. Return potential –0.600 V vs. Ag/AgBr. Arrows indicate direction of potential 

scan. Fig. 2 (a) is for a fresh ITO/glass electrode and Fig. 2 (b) is for the same ITO/glass 

electrode, following a set of in situ colorimetry measurements. 

Fig. 3 

Cyclic voltammogram at 50, 100 and 200 mV s-1 scan rate for an ITO/glass electrode in 

aqueous 2 x 10-3 mol dm-3 di-n-heptyl viologen dibromide/0.2 mol dm-3 KBr. Initial 

potential, 0.000 V vs. Ag/AgBr. Return potential –0.600 V vs. Ag/AgBr. Arrows indicate 

direction of potential scan. 

Fig. 4 

Relative luminance (%), vs. applied potential (E/V vs. Ag/AgBr) for reduction/oxidation of 

the di-n-heptyl viologen system from 2 x 10-3 mol dm-3 di-n-heptyl viologen dibromide/0.2 

mol dm-3 KBr at an ITO/glass substrate. The initial potential was 0.000 V and the potential 

was stepped to the values indicated in Table 2. The arrows indicate the direction of the 

changes with potential. 

Fig. 5 

CIE 1931 xy chromaticity diagrams for reduction/oxidation of the di-n-heptyl viologen 

system from 2 x 10-3 mol dm-3 di-n-heptyl viologen dibromide/0.2 mol dm-3 KBr at an 



 17

ITO/glass substrate. The initial potential was 0.000 V and the potential was stepped to the 

values indicated in Table 2. The arrows indicate the direction of the changes with potential. 

In Fig. 5 (b), the xy coordinates are plotted onto a diagram that shows the locus coordinates, 

with labelled hue wavelengths, and the evaluation of the complementary wavelength (λc) of 

the film of di-n-heptyl viologen radical cation salt at –0.600 V. 

Fig. 6 

CIE 1931 xy coordinates (Fig. 6 (a)) and relative luminance (%) data as a function of time, 

following the application of a potential step from 0.000 to -0.425 V vs. Ag/AgBr in 2 x 10-3 

mol dm-3 di-n-heptyl viologen dibromide/0.2 mol dm-3 KBr at an ITO/glass substrate. 

Additional relative luminance (%) data are plotted following the switch at 300 s to open-

circuit (Fig. 6 (b)) and 0.000 V (Fig. 6 (c)) respectively. 
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Table 1 

Colorimetry coordinates for reduction/oxidation of the di-n-heptyl viologen system from 

0.5 x 10-3 mol dm-3 di-n-heptyl viologen dibromide/0.2 mol dm-3 KBr at an ITO/glass 

substrate 

 

E/V vs. Ag/AgBr 
 %L x y L* a* b* 

 0.000 100.0 0.357 0.383 100 0 0 

–0.300 99.1 0.358 0.384 100 0 1 

–0.400 97.2 0.358 0.384 99 0 1 

–0.500 77.7 0.356 0.362 91 8 -9 

–0.600 79.7 0.357 0.362 92 9 -8 

–0.700 70.4 0.357 0.357 87 11 -10 

–0.800 85.0 0.368 0.39 94 2 6 

–0.900 83.6 0.368 0.384 93 4 3 

–0.800 77.0 0.368 0.378 90 7 1 

–0.700 63.0 0.365 0.357 83 13 -8 

–0.600 56.4 0.362 0.338 80 20 -15 

–0.500 56.8 0.361 0.338 80 19 -16 

–0.400 62.2 0.36 0.344 83 17 -14 

–0.300 70.2 0.358 0.356 87 11 -10 

 0.000 95.3 0.358 0.383 98 0 0 
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Table 2 

Colorimetry coordinates for reduction/oxidation of the di-n-heptyl viologen system from 2 

x 10-3 mol dm-3 di-n-heptyl viologen dibromide/0.2 mol dm-3 KBr at an ITO/glass substrate. 

The xy coordinates in bold are plotted in figure 5. 

 

 
E/V vs. Ag/AgBr 

 
%L x y L* a* b* 

 0.000 96.3 0.360 0.386 99 –1 2 

–0.350 96.3 0.360 0.386 99 –1 2 

–0.375 95.6 0.360 0.386 98 –1 2 

–0.400 93.3 0.361 0.384 97 0 1 

–0.425 49.9 0.378 0.316 76 34 –20 

–0.450 50.6 0.377 0.317 76 33 –20 

–0.475 50.7 0.378 0.317 77 33 –20 

–0.500 54.9 0.375 0.324 79 30 –19 

–0.525 53.3 0.376 0.321 78 31 –19 

–0.550 52.3 0.376 0.319 77 32 –20 

–0.575 51.4 0.377 0.318 77 33 –20 

–0.600 50.8 0.378 0.317 77 33 –20 

–0.575 50.4 0.378 0.316 76 34 –20 

–0.550 50.3 0.378 0.316 76 34 –20 

–0.525 50.1 0.378 0.316 76 34 –20 

–0.500 50.0 0.379 0.316 76 34 –20 

–0.475 49.8 0.379 0.316 76 34 –20 

–0.450 49.7 0.379 0.316 76 34 –20 

–0.425 49.7 0.379 0.316 76 34 –20 

–0.400 49.7 0.378 0.316 76 34 –20 

–0.375 50.2 0.377 0.318 76 32 –20 

–0.350 56.4 0.371 0.332 80 25 –16 

–0.325 77.8 0.362 0.369 91 7 –5 

–0.300 88.9 0.360 0.383 96 0 0 

 0.000 92.6 0.360 0.386 97 –1 2 
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Fig. 1 (a), (b) and (c) 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 (a), (b) and (c) 
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SCHEME 1 

N NC7H15 C7H15 N NC7H15 C7H15 N NC7H15 C7H15

e

-e

e

-e
di-cation: colourless radical cation: purple neutral species  

 

SCHEME 2 

N NC7H15 C7H15 N NC7H15 C7H15 N NC7H15 C7H15

di-cation: colourless radical cation: purpleneutral species

2+

 

 


