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Classical localization and percolation in random environments on trees

Paul C. Bressloft, Vincent M. Dwyer? and Michael J. Kearnéy
Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
°Department of Electronic and Electrical Engineering, Loughborough University,
Loughborough, Leicestershire LE11 3TU, United Kingdom
(Received 30 December 1996

We consider a simple model of transport on a regular tree, whereby species evolve according to the
drift-diffusion equation, and the drift velocity on each branch of the tree is a quenched random variable. The
inverse of the steady-state amplitude at the origin is expressed in terms of a random geometric series whose
convergence or otherwise determines whether the system is localized or delocalized. In a recdft. faper
Bressloffet al, Phys. Rev. Lett77, 5075(1996], exact criteria were presented that enable one to determine
the critical phase boundary for the transition, valid for any distribution of the drift velocities. In this paper we
present a detailed derivation of these criteria, consider a number of examples of interest, and establish a
connection with conventional percolation theory. The latter suggests a wider application of the results to other
models of statistical processes occurring on treelike structures. Generalizations to the case where the underly-
ing tree is irregular in nature are also considef&1.063-651X97)12306-9

PACS numbds): 64.60.Cn, 05.40kj, 05.60+w

[. INTRODUCTION ized. The proof is similar to that used to establish theorems
regarding the recurrent or transient nature of random walks
Statistical problems defined on treelike structures are ofn treelike structures. However, we have been able to go
interest for two reasons. First, there are a number of physicdtrther, and have also derived integral equations for various
processes for which the underlying topology is quite natudistributions of interest.
rally treelike in nature. Typical examples are diffusion- For particular families of velocity distributions (e.g.,
limited aggregation, electrodeposition, dielectric breakdownBernoulli, Gaussianl’, etc) characterized by some param-
colloidal aggregation, viscous fingering, and invasion perco€texs), it is possible for the system to be either localized or
lation (see, e.g., Ref$1,2]). Such processes can be modeleddelocalized, depending on the values of the parargtén
in terms of transport occurring in a quenched random enviother words, the system can undergo a phase transition as
ronment, leading to anomalous behavior, fractal scaling, angome parameter is systematically varied, a transition that
critical phenomena. The second reason why treelike topoldurns out to be generically first order in nature rather than
gies are of interest is that they simplify the analysis com-second order. We present a number of examples of this in-
pared to a study of the same process defined on a regulfinsically interesting phenomenon. The fact that the criteria
lattice. This permits investigations of generic features of in-We obtain are exact and quite general makes them of wider
terest that can also, in certain cases, be directly relevant t@pplicability than simply to the physical model used in their
the regular lattice problem in some appropriate limit. Forderivation. For example, we establish a close link with vari-
example, it is well known that Cayley trees and Bethe lat-0uUs percolation models, showing how the second-order na-
tices provide insight into the behavior of various processeéure of the geometric percolation transition fits in with the

on both infinite-dimensional lattices and finite-dimensionalfirst-order behavior of more generaliz¢tivo-component
lattices in the mean-field limit3,4]. percolation models. We also briefly discuss how certain re-

In this paper we consider, in detail, the continuum modeSults can be extended to the case of tree structures that are
of transport on a regular tree defined in RES). In this  irregular in nature; e.g., as defined by a genealogical Galton-
model, the evolution of some species of interest is governedVatson process with a mean branching number greater than
by the drift-diffusion equation, where the drift velocity on unity.
each branch of the tree is chosen at random from some speci-
fied Ve|0City probablllty densit)p(v). In other words, the II. DRIFT DIFFUSION ON A REGULAR TREE
transport takes place in a quenched random environment. An
initially localized concentration of species around some se- Consider an unbounded regular trEeradiating from a
lected origin will tend to diffuse away from that origin, but unique origin with branching numberand segment length
can be hindered in that process by the effects of the randota (Fig. 1. It is convenient to partition the branchesI" of
velocity field. If, in the steady state, the concentration re-the tree into successive generations. The first gener&jon
maining at the origin has not decayed to zero, we say theonsists of the branches connected to the origin, the second
system is localized. If, on the other hand, the concentration ggenerationS, consists of thez? subsequent branches con-
the origin does decay to zero, then we say the system igected to the first generation, and so on. Tiie generation
delocalized. By studying the steady-state solution we haveontainsz" branches. The set of branches in one generation
been able to derivexactcriteria governing whether, for an connected to a segmen&I" in the preceding generation is
arbitrary choice ofp(v), the system is localized or delocal- denoted byZ;. There is a one-to-one correspondence be-
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from the origin to be counteracted by the drift such that
beyond some critical point there is a nonzero steady state,
lim;_..®q(t)#0. The system is then said to be localized.
The critical point will depend on the coordination number
z since the delocalizing effect of diffusion grows with An
analogous problem was previously investigated within the
context of biased random walks on a Bethe lattice, both in
discrete time[6] and continuous tim¢7,8]. A preliminary
version of our analysis was presented in RBf. For conve-
nience, we shall sdd=L=1 throughout.

In steady state the current vanishes on each segrent,
=0, so that the solution is of the form

FIG. 1. Topologically biased regular tree with branching num- Ci(x)=Ae VX, (2.5
ber z=2 indicating successive generationS;={i,j}, S,
={i1,iz,j1,j2}, etc. AlsoZ;={i,,i,}, etc. Arrows indicate direc- The continuity conditiong2.2) imply that the amplitudes
tion of the drift velocityv; on each branch relative to the origin A, satisfy the iterative equations
0.

Ai:(I)O for i ES]_,

tween vertices of the tred" (excluding the origin and (2.6
branches. Therefore, we shall also uge denote the vertex Aie Vi=A; for all jeZ;, iel.
whose preceding branchiisWe writei<j if the vertexi is
on the shortesthence everypath from the origin to vertex Thus the amplitudé; on a given segmerte S,,n>1 may
j, andi<j if i<j andi#j. Let |i|] be the number of be expressed in terms of the steady-state concentration at the
branches on the shortest path from the origin to verten  origin @, according to the relation
particular, forie S,, |i|=n.

We now describe the drift-diffusion equation on the tree A_:[H e
I'. The concentratiom;(x,t) at positionx and timet on the !
ith segment of the tree evolves according to the equation

D,. 2.7

j<i

Assuming that the initial concentration is normalized to

ac; 3¢ ac; i i i imoli
Ci_p —21+vi %50 0<x<L, 2.2) unity, conservation of particle number implies that
ot X oX )
with the end closer to the origin of the tree chosen to be at ;F o ci(x)dx=1. 2.9

x=0. Here the diffusion constam is taken to be the same

on every branch, and; is the drift velocity, which is taken Equation(2.5) then yields the following equation fab,:
to be positive if directed toward the origin, that is, in the

negativex direction. Equation(2.1) is supplemented by 1

boundary conditions expressing continuity of the concentra- Dyt= 2 (f(vi)+g(vi)_z f(v))

tion at a node ieS ez
ci(0O)=c;(01), i,je$S, 2.2 +g(vi)j21 g(vj)kEI flo)+--|, (2.9
. €1j € J

ci(L,t)y=c;(01), jeZj, iel,
where

and conservation of current through the node 1-e]
—e v
f(v)=—— glv)=e". (2.10
2, WOH=0, J(L.H=2 J(Oh, (23 v
keZ;

ke S,
Equation(2.9 expresse@al in terms of an infinite series. If
where this series is convergent theh, has a finite value, and the
_ steady state is localized. On the other hand, if the series
Jix0)==Daci/x=viCi(x.1). 24 diverges, therb,=0, and the steady state is delocalized.

In this paper, we are interested in the following classical 1he simplest case to analyze is when all drift velocities
localization problem: given initial data consisting of a unit &€ the samey;=v for all i. Then Eq.(2.9) reduces to the
impulse located at the origitor rooy of the tree at timgg ~ 9eOMetric series
=0, what is the asymptotic behaviour of the on-site ampli- ©
tude @ (t) at the origin? In the absence of drift, it is clear P-lof p+1 p

. - ' = z . 2.1
that the on-site amplitud®,(t) decays to zero as—~ due 0 (U)pgo 9(v) (219
to the effects of diffusion. In other words, the steady state is
delocalized. However, as one switches on a positive inwardgquation(2.11) leads to the following localization criterion:
drift velocity v, one expects the effects of diffusion away a nonzero steady state occurs, that is, linto(t) >0, if the
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infinite series on the right-hand side of H@.11) is conver-  (or (y)>0), then limy_...Y{N =R exists with probability 1
gent. This yields the critical velocity and the distribution of{\) converges to that oR indepen-
ve=Inz, 212  dently of Y("' [15]. Hence the steady state is localized pro-
vided that(v)>0; that is, the average drift velocity exceeds
and, forv>v., the critical velocity for localization in the case of uniform
one-dimensional drifisee Eq(2.12]. On the other hand, if
lim (1) = zf(v) (2.13 (v)<0, thenR is infinite, and the steady state is delocalized.
- 0 1-zg(v)’ ) In the language of phase transitions, there is a transition
from a localized to a delocalized state at the critical points
If v<v. then the asymptotic decay of the delocalized stat§v)=0. The critical points determine a phase boundary in

exhibits conventional behavior, whereas at the critical pointhe infinite-dimensional space of probability densitje®)
v=uv, there is anomalous behavior in the form of a critical that separates the localized and delocalized phases. A char-

slowing down[9]. acteristic feature of the phase transition is that{w@gs—0"

Now suppose that the drift velocities are quenched ran- in some prescribed fashion, the probability distributiorof
dom variables independently and identically distributed fromR in the localized phase develops a long tail for which all
a given probability densityp(v). Also assume thab; is  Moments are infinite. This is a consequence of the fact that,
finite with probability 1. The right-hand side of Eq2.9  When the first moment becomes infinite, the system can still
becomes a(generalizell random geometric series whose be localized. To see this, first note from EG-14 with z
convergence properties determine whether or not the steadyl that
state is localized. Naively averaging both sides of &9
with respect to thev;’s, and introducing the notation f FdF(r)= (f(v)) 33

(X(v))=Jp(v)X(v)dv for any measurable function of, S 1-(g(v))’
* z(f(v)) which becomes infinite whefg(v))= 1. Jensen’s inequality
<(I>5l>=z(f(v))n§=:0 Zn<9(0)>n:m- (214 (e ¥)=e @ then implies thatv)=0 when(g(v))=1. As-

suming the existence of a probability densityr) such that
dF(r)=P(r)dr, from Eq. (3.2 we obtain the following

Equation (2.14 sh hat®, <o with ility 1
quation (2.14 shows that®, "<e with probability 1, Dyson-Schmidt-type integral equation far:

when z(g(v))<1. However, the fact tha{®,')—x as
z{g(v))—1 does not necessarily imply thé,— 0 (that the = p(v) r—f(v)
steady state becomes delocalizdebr the random series, Eq. W(r)= f ( )dv.
(2.9 may converge to a random variable whose probability ~= 9(v) 9(v)
distribution has a long tail with infinite first and higher mo-

ments. In Sec. Ill we shall prove that there exists a shar
first-order phase transition between localized and delocalize
states, and determine the location of the transition point for w
an arbitrary density(v), assuming that eaah is finite with M(s)=J p(v)M(g(v)s)e sdy, (3.5
probability 1. The case of densitiggv) for which there is a -
nonzero probability thab; is infinite, and hence a nonzero

(3.9

An alternative form of the integral equatid8.4) is obtained
y taking Laplace transforms

o . with
probability that there exist broken bonds on the tfde
percolation limi}, will be discussed in Sec. IV. w
M(s)=f e S"p(r)dr. (3.6
Ill. LOCALIZATION-DELOCALIZATION TRANSITION 0
A. One-dimensional casqz=1) _It is not generally possible to sc_)lve these equat_ions ana-
S lytically. However, one can determine the asymptotic behav-
Whenz=1, Eq.(2.9 simplifies to the form ior of ¥ whenr is large. For the moment assume that
o n-1 p(v) is nonarithmetic, that is, it cannot be written in the form
(@g)*=R=2, f(vo) I] g(vm), (3.9 -
p(v)= 2 Pro(v—A") (3.7

so that the steady-state concentration is expressed in terms of

a rgndom geometric seri€s .Similgr series have ar.isen in 2 for any\ and{p,} such tha”_ . p,=1. Also assume that
variety of studies of _o'ne—dlmensmnal problems in phyS|csv>>0, and that the first moment oF is infinite so that
[.2'10_13 and probability theory14-16. '_I'he random S€- (g(v))>1. It can then be prove[i6] that there exist posi-
ries R may .be generated from the following random differ- tive constants and o, with 0< o<1, such that
ence equation:
—o—1

YNZ g YN 4 f(vy), n=1..N-1, (3.2 v(r)~ar 39

_ i _ for larger, and hence
with each pair(f(v,),9(v,)) generated independently from
p(v) and YN fixed. It can be proven that, ifin[g(v)])<0 M(s)~1+bs” (3.9
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for small s. The larger behavior of ¥ ensures that, ifr
>0, then (o)

. 1
*Enmf dF(r)=0. (3.10
y*)O’J y

That is, the serieR of Eq. (3.1) is convergent with probabil-
ity 1.

Substitution of the asymptotic form foF (or M) into Eq.
(3.4) [or Eq.(3.5)] leads to the equation

FIG. 2. Plot of the functionB(¢) for a Gaussian distribution
_ o with various meang.=0, 0.2, and 0.5, and fixed variand&=1.
Blo)=(g(v)")=1 (3.19 As u—0, the nontrivial solutiorr— 0, whereB(o) =1, signaling a
localization-delocalization phase transition in the case of a one-

Useful information concerning the nature of the Iocal|zat|on—dimensionaI systemzi=1).

delocalization transition can be deduced from KE8.11)

[12,13. First note thai3(0)=1 andB(o) is a convex func-

tion for real o. If (v)>0 thenB’'(0)<0 and there are two

possibilities concerning nontrivial solutions of E§.11). B(0)=exp( — po+ a2A2/2). (3.19
(i) B(o)<1 for any positive reab.. Since

Substituting Eq(3.14) into Eq.(3.11) gives

For >0, B(o) has a single minimum_adr*=,u/A2 and
|IB(O_)|$J’ p(v)e—Rda)vdv:IB(Rqo_)), (312 ,8(0').: l for 0'22./.L/A'2. As ,LL—>O, O'(ILL)—>0, and a
localization-delocalization phase transition occurs.
) As an example of an arithmetic probability density satis-
B(a)#1 for all o; the densityW(r) decreases faster than fying Eq.(3.7), consider the Bernoulli distribution with den-
any power ofr (finite first moment o sity p(v)=pds(v—a)+(1-p)d(v—v) with a<0 and

(ii) There exists a single nontrivial real solutienof Eq. 3, Itis clear that the system is localized with probability
(3.11. Equation(3.12 implies that3(o) # 1 within the strip 1 since the percolation threshold in one dimensiomds
0<Re(p)<o, but there may exist complex roots of EQ. =1, Here one can find explicitly the densify(r) satisfying
(3.12 o=0;, say, with Re¢;)=o. For the special class of Eq. (3.4) using a similar analysis to Ref§12,13,
densities satisfying Eq3.7), there exist an infinite number
of complex roots with Ref)=c and the asymptotic behav- *
ior of ¥ is no longer a simple stable laee the example of P(r)=(1-p) E pra(r—r,), (3.16
a Bernoulli distribution below For all other densities n=0
p(v), all the complex roots satisfy Re(>o, and the non-
trivial real rooto dominates for large.

Equation(3.11) provides a useful perspective concerning
the approach to the transition point. Suppose pat) de-
pends smoothly on some parametesuch thato(\)>0 for
A<\ and lim _, o(\)=0. In the limit\—\., ¥ ceases

to exist (it is no longer normalizableand the probability step function. For largg, F(y) has the asymptotic form

* H H NI i * — * — i ) 7!
F* thatR is infinite jumps fromF* =0 to F* =1. Identify- E(y)~y~ “¢(£), whereo= — Inp/ing(a), and s a periodic

ing F* as an order parameter, we deduce that th : = B . : C
localization-delocalization phase transition is first order. Dif_?unctlon of ¢=[Iny—Inf(a)}ing(a) with unit period:

wherer,, satisfies the recursion,=g(a)r,_,+f(a) with
ro=0. Hence,r,=f(a)(g(a)"—1)/(g(a)—1). Since the
Bernoulli distribution is arithmetic, the asymptotic behavior
of ¥ is no longer a simple stable law. To show this, it is
more convenient to look at the asymptotic behavior of the
distribution F(y)=(1-p)Z,_op"6(r,—Yy), Where ¢ is a

ferentiating the equatioB(o(\),\)=1 with respect tox N o
gives Y(&)=F(a)7(1—p) Z eo(§-ming(a)
dp\(v) — — -
| 1)+ 7 O T g() ™l g0) ), o noME@-D ) 317
Ing(a)
=0. 313

One can understand the origins of this periodic behavior by
Taking the limit A—\. in Eq. (3.13 leads to the result noting that the equatio@(o)=1 reduces to the simple re-
F()\C)<U>)\C:0. Since) . is a bifurcation point, it follows lation pg(a)?=1, which for a<0 has the infinite set of
thato”(\¢)>0 and hencgv), =0. A simple illustration of complex solutionso= —Inp/ing(a) +(2i/Ing(a))k, integer

these ideas is given in Fig. 2, whefio) is shown for : Eltl)tseoilﬁgct)?ﬁeh:l\)/gv??eiﬁ??sea{rzaleg?ir. extended to the case
p(v) chosen to be a Gaussian with meanand variance y

AZ: of a regular tree with branching number 1 and so-called
' intergenerationaldisorder[5]. Here all segments within a

1 (0— )2 generatiom have the same drift velocity,, but the sequence
p(v)= ex;{ _ U_’;) (3.14 {v,,n=1} is independently and identically distributed ac-

V2mA? 2A cording to a given density(v). The only modification is
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thatg(v) is replaced everywhere tag(v). In particular, Eq.  other hand, ifzB(¢s*)>1 thenz(g(v))>1, and Eq.(2.14
(3.1) becomes z?(g(v)?)=1, and the localization- implies that the first moment is infinite. The evident contra-
delocalization transition point now satisfiés)=Inz. The diction shows that izB(o™*)>1, then the only allowed so-
analysis differs considerably from the case 1, in which lution of the integral equationi3.21) for s>0 is M(s)=0
there is fullintragenerationaldisorder, as we shall now de- and the system is delocalized. This gives a heuristic proof of

scribe. part (ii) of the following theorem.
Theorem 1: Consider the drift-diffusion equation on a
B. Casez>1 regular treel” with the drift velocities identically and inde-

pendently distributed on each branch. Assume that the drift
velocities are finite with probability one. Lg(o*) be de-
fined according to Eq(3.23. (i) If zB(o*)<1, then the
steady state is localized with probability @i) If z8(o*)
>1 then the steady state is delocalized with probability 1.
Part(i) of this theorem can be established from the inte-
YV=2 gw)YN+f(v;), iely. (318  gral equation(3.2) in the special case that all drift velocities
jeg; are restricted to be positive. Sin@o) is then a monotoni-
cally decreasing function ofr, it follows that o* =1. If
zB(0*)<1, then all moments o¥ are finite[cf. Eq.(2.14)],
and the system is localized. It follows that for positive drift
D, l= E R, R=IlmyY™, (3.19 velocities the system becomes delocalized as soon as the first
TeS N—o moment of ¥ becomes infinite, and henck does not de-

) . . velop a long tail near the transition point.
Suppose thak; converges with probability 1 independently v shall now present a rigorous proof of theorem 1 that

of the boundary conditions. The symmetry of the tree theryqys for arbitrary distributionp(v). Our proof is based on
ensures that all variable®;, i e S,, are identically and in- 5 reformulation of the problem in terms of flows in random

dependently distributed with a probability distributidh  g|actrical or capacitative networks. This then allows us to use
The difference equatiori3.18 implies that the associated gome recent results due to Lyoft7] and Lyons and Pe-

probability density ¥ (assuming it exisfs satisfies the  mantle[18] concerning random walks in random environ-
Dyson-Schmidt-type integral equation ments. It is first necessary to introduce some new definitions.
For each brancheI’, set

jl;[i g(vj)

Consider a bounded treBy with branching number
>1 consisting ofN generations, and associate with each
segment a random variabler™ such that(for fixed Y{V,

k S SN)

Equation(2.9) may then be rewritten in the form

v)= [ T1 vopdy | )

Ci: f(Ui). (324)

X6

y—g(v)jzl yj—f(v))dv. (3.20

We refer to C; as the “conductance” or ‘“capacity” of
branchi. Next define aflow # on I" to be a set of non-
Laplace transforming Eq3.20 gives a corresponding inte- negative number§6; ,i e I'}, such that, for ali e I,

gral equation for the generating functid(s):

M(S)=f_mp(v)[l\/l(sg(v))]ze‘s“”)dv. (3.21 i<

Define acutsetll to be a finite set of vertices excluding the
Suppose that we expand the generating fundtii(s) for  origin such that every path from the origin to infinity inter-
smalls along similar lines to the one-dimensional case suctsectsIT and such that there is no paifj e IT with i<j. The
that M(s)~1+bs”. Substituting into Eq(3.2]) yields the shortest distance of a cutset from the origin is written as

equation [TT| = min{|i|,i eIT}. A special example of a cutset is th¢h
B generatiorS,, n=1. It follows from Eq.(3.25 that, for any
B(a)=(g(v)7)=z g (3.22 cutsetll,
When z>1, =0 is not an allowed root of Eq(3.22.
Therefore, in contrast to the one-dimensional case, the 0(0)= 2 0,= EH 0; . (3.26

localization-delocalization transition is no longer character- €S Ie
ized by the limitc— 0, whereo is a nontrivial solution of
Eq. (3.22. Introduce the index* [0,1] defined according
to the property

If (0)=1 then#@ is called aunit flow. Finally, define the
energyof a flow for a tree with conductancé& to be

B(a*)= min B(o). (3.23 E(9)=EF o>c; . (3.27)

O=so=<1

Note thate™* only depends on the probability densjiyv). A useful result concerning flows is the maximum-flow
If zB(o*)>1, then any solution o£B(o)=1 must satisfy minimum-cut theorenj19]: given a non-negative sétv; ,i
o>1 implying that the first moment o¥ is finite. On the eI'} such that
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that the steady state is localizécf. the proof of Corollary
lim inf En w;>0, 4.2 in Ref.[17]). First note that the flow has finite energy.
IT|—ee Ie That is,

then there exists a nonzero flovsuch that, for alli eI, B

f<w, . E(0)=2, 6/C/ =2 2> 6,(6,C"
Proof of theorem 1. Rewrite the expression for the steady- Ie 1<

state amplitude at the origin, E.9), in the form

<2 an 0_0(0)2 Whp

n=1 jeSy
®o'=C= 2, flw)+ 2 9l )JE f(v)) <oo
€S 1 €S 1 eI i ’
where we have used E§3.26. The Cauchy-Schwartz in-
+ 2 9(v) 2 9(v) 2 f(v)+-+ equality shows that
ieS; jeT, kEIJ-
OERLP YL
_|§1C+2 Cit (]eSn jeS jeS
The finite energy ofé implies thathESnajoj‘lﬁo as
_gr Ci. (3.28 n—oo, Sinced(0) is nonzero, it follows from Eq(3.26 that
Hence, the steady state is localized if and only if the sum- lim 2 Cj=2,
mation over all conductances is finite. n—w i €Sy

(i) This follows along similar lines to the proof of theorem _ B
1(ii) in Ref. [18]. Define B(o*)=(f(v)”"). Suppose and hence&=co with probability 1. o
B(c*)<1/z. Then Remark 1_.'_I'heorem 1 esta_bllshes that there_ is a first-order
phase transition from a localized to a delocalized state at the
. . critical pointsa >0, wherezg(o)=1. This determines a
<E c/ >—2 <H g(v))’ >(f(vi)" ) phase boundary in the space of probability densities that
tel ey separates the localized and delocalized phases. An interesting
_ N question concerns what happens on the phase boundary it-
=8(o*) > [1 (9(v))™) self. That is, given a probability density(v) such that
ey z(e~""v)=1, is the steady state localized or delocalized? At
B . w1 present this remains an open problem.
:3(‘7 )nz |eE B(a™) Remark 20ne of the assumptions of theorem 1 is that the
5 drift velocitiesv; are finite with probability 1. If this restric-
tion is removed so that there is a nonzero probability that

_Blo*)

,3(0*) E 2"B(a™)" v; is infinite, then one has a bond percolation problem since
f(e0)=g()=0. That is, segments with infinite drift veloci-

ZB(J*) ties act as broken bonds. It turns out that theorem 1 still
:W holds provided that the statement “with probability 1” in

case(ii) is replaced by “with positive probability’[17]. Al-
<o ternatively, we can state that in ca$e there is some vertex
in I" at which the steady state is delocalized with probability
1. A more detailed discussion of the percolation limit is pre-

) _‘7*< . ™
It follows that =; .C{ <o with probability 1, and hence sented in Sec. IV,

thatC;<1 for all but finitely manyi e T'. SinceC{” <C; for Remark 3Theorem 1 can be generalized to the case of an
Ci<1, we deduce thak; rCij<> and the steady state is jregular unbounded treE by defining thebranching num-
localized with probability 1. ber of I' according to[17]

(i) SupposezB(o*)>1. Proceeding along similar lines
to the proof of theorem (1) in Ref.[18], one can show that i
zB(0*)>1 implies that, with probability 1, there exist posi- B(I")=inf} {>0; '”fIEZH (= 329
tive numbersw, such thatt - ;w,<c and 1

Here B(I") is a measure of the average number of branches
lim inf 2 w|;|C;>0. per vertex ofI'. For a fixed{, one first defines=(¢,11)
| i'c =3, .n¢ ) whereli| is the distance from the origin of a
given elementi of a given cutsefll. One then finds the
It then follows from the maximum-flow minimum-cut theo- smallest value of for which F(¢£,I1) attains its lower bound
rem that there exists a flow obeying 8;<w,C; for all i of zero for at least one cutset. It is easy to show Bdt)
e S, andn=1. We shall show that the existence of such a=z for a regular tree. Simply takH to be a given generation
flow implies that the total conductance is infinite, and hencen such that F({,IT)=2z"¢"", and use the fact that
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lim,_..z",""=0 if {<z. The result then follows since one Walk is said to betransient.Let fo(n) be the probability of
can also show that no other cutdétgives F(¢,I1)=0 for  first returning to the origin im steps and define theean
{>z. The branching number is less than or equal to theecurrence timeaccording touo==,_,nfo(n). A recurrent

so-called growth rate random walk is said to baull if wy=c andpositiveif wg
<. One then has the following result due to Lyons and
G(I')= liminfm " (330  Pemantlg17,18.
n—e Theorem 2: Consider a random walk on a tidéewith

quenched random transition probabilities as described above.
Assume thatX; is finite w.p.1. Let B(c)=(e %) and
B(o*)=ming<,<18(a). (i) If G(I')B(c*)<1, then the ran-

whereM,, is the number of branches in thé¢h generation. A
tree is said to be quasispherical3fI") = G(T"). For a regular

. P T :
tree we again havg(I’) =z sinceM,=2z". Another interest- 45, ik s positive recurrent with probability 1ii) If

ing example is a genealogical tree generated by a simplg(r)'g(g*)>1 then the random walk is transient with
Galton-Watson branching process; starting from the roobrobability 1 '

each vertex hak branches with probabilitp, (Zp=1).
The average number of branches per vertanis= kp,. A
well-known result is that the branching process becomes ex-
tinct (the associated genealogical tree is finitéth probabil- We shall now consider the localization-delocalization
ity 1 if m=1 [20]. It can be shown that for a branching phase boundary for some particular choices of the velocity
process withm>1 and given that the process does not be-{robability densityp(v). In the case of the Bernoulli, Gauss-
come extinct, the associatdthfinite) genealogical tree is ian, andl distributions, we determine the phase boundary as
quasispherical and has branching numiewith probability ~ a curve in the(u,A) plane, whereu andA are the mean and
1[17]. standard deviations, respectively. This is achieved first by

Using definitiong3.29 and(3.30), theorem 1 can now be finding ¢* as defined in Eq(3.23 and then by solving the
applied to an irregular tree on replacindpy G(I') in part(i) ~ equation3(o™)=1/z. All three boundary curves meet at the
and by B(T') in part (ii). In the case of nonquasispherical critical point (u,A)=(Inz0) since this corresponds to the
trees, the theorem is not sufficient to determine the precisease of uniform drift; see Eq2.12. We then consider an
location of the localization-delocalization transition point. example of a probability density that does not possess any
However, we expect the transition point to be given byfinite moments. Nevertheless, one can still identify param-
gB(c*)=1 for someqe[B(I'),G(I')]. Also note that for eters characterizing the location and width of theimoda)
irregular trees it is no longer possible to construct a Dysondistribution, which play an analogous role to the mean and
Schmidt-type integral equation analogous to 8320, since  variance.
the existence of such an equation relied on the recursive Example 1—Bernoulli distributionConsider a Bernoulli
structure of a regular tree. distributionB(p,u, ,u_) with

Remark 4.The proof of theorem 1 exploits the fact that
the problem of localization or delocalization of the steadyP(v)=Pd(v+u-)+adv—u,), u-,u;=0, gq=1-p.
state of the drift-diffusion equation on a trdé can be (334
mapped onto an analogous problem concerning flows on the,q, Eq.(3.22,
tree. A similar connection exists between flows and random
walks onT [17,18. To see this, introduce the transition B(o)=pe’'-+qge U+, (3.39
probabilitiesP;; = Prolji — j | between nearest-neighbor ver- _ o
tices on the tree. Denote the first vertex on the shortest pathor this example there are three possibilities.

C. Examples

from i to the origin byi’, and seffor |i|=2) (i) If
Piri A 33
Xi——ln m, (331) pu_ ) ( : @
and X;=—InPy for all i € S;. Assume thaiX; are indepen- then "*, =0, B(0*)= 1.>1/Z' and the system is delocalized
dently and identically distributed. Introduce the conductanc@cc(i?)rdl;”g to theorem().
Ci= X, : u
i Jl;[. e (3.32 eu++u_<gut1 (3.37

Note that the transition probabilities can be recovered fromy o

Eq. (3.32 according to 1 and the phase boundary ip,(, ,u_)-space is

given implicitly by the equation

_ G _ Ci pe'-+qe Ur=z"1, (3.38
: : (i) If

Consider a random walk oh starting from the origin. The
random walk is said to beecurrentif the probability of 1<qi<eU++u7, (3.39
returning to the origin is equal to 1. Otherwise the random pu_



6772

(a) (b)

©

Inz i

BRESSLOFF, DWYER, AND KEARNEY 55

tion I'(\,b) with density

AP
— b—1,—\v
p(v)= T (0) v e, =0, (3.47
wherelI'(b) is the Gamma function
F(b)=f xP~le Xdx. (3.48
0

If b=1, thenv is exponentially distributed with parameter

FIG. 3. Phase diagram showing localization-delocalizationv. Also note that ifA =3 and b=n/2 for some integen,

phase boundaries for various distributions of drift velocitis:

thenv is said to have the chi-squared distributigf(n) with

Bernoulli, (b) T, (c) Gaussian. In each case the system is delocaln degrees of freedom. Since=0 we know thato* =1
ized in the region on the left of the phase boundary and localized i 3(¢) is a monotonically decreasing function @f. Thus the
the right-hand region. The detailed shape of the curves depends gshase boundary in thex(b) plane is given implicitly by

the value ofz; here we have set=2.

then 0<¢* <1 and the phase boundary is given implicitly

by the equation

ug /(up+u_)
=7

q(us+u-)
u_

pu_
qu.

-1 (3.40

The phase boundary in the special case =0,
u,=v>0 is characterized completely by E®.38, which
reduces to a curve in the(v) plane:

1-p
z l1-p/)

v_(p)=ln( (3.4)

It is useful to consider the corresponding curve in thed)
plane, wherew=qu is the mean anad = Jpqu is the stan-
dard deviation:

A(p)=x(p) = p?, (3.42

wherex(u) is the solution to the transcendental equation

(3.43

The trivial solution of Eq(3.43), x(u) =0, is excluded since

(1—-z YHx+ ule ¥r=y?

this would give a nonreal variance. There exists a unique

nonzero solution to E(3.43 with x(u)=u? andA(u) real
if and only if u=Inz. For u~Inz the solutionA(w) has the
approximate form

N ( ,LL—|nZ 1/2
A(/.L)~|I’]Z m) . (3.44)

The phase boundary in thg,A) plane is shown in Fig. @).

Example 2—Gaussian distributioGonsider the Gaussian

distribution N(x«,A) with density(3.14). The functiongB(o)
is given by Eq.(3.15. Here one finds that™ = w/A? if u
<A? ando* =1 if u=A2. This leads to the following ex-
plicit expressions for the phase boundary:

A(pn)=+2(u—1Inz) for pwellnz,2 Inz], (3.495
A(p)=ul/y21Inz for u>2Inz. (3.49

The resulting phase boundary is shown in Fi()3

AP .
m=z . (349)

Using the fact that the meam=Db/\ and the variance\?
=b/\?, Eq.(3.49 can be rewritten as

2
1+ A = 720%IK?,
M

(3.50

As in the previous examples, E@.50 only has a nontrivial
solutionA(u) if w=Inz In the limit A—0, u—Inz and Eq.
(3.50 reduces to

A(pu)~+2(u—Inz) for u=~Inz.

The phase boundary is shown in FighB

The similarity in the behavior of thE distribution to the
Gaussian distribution close to the critical pointZB) can be
understood in terms of a cumulant expansiorpa#) under
the assumption that all the moments of the deng{ty) are
finite. That is, write

(3.5)

Bla)=e"", (3.52
with
wo)= 3 oot (3.5
such that
Wo=0, wi=pu, W,=-—A2
Wa=(v3)—3uA2—u3,... | (3.54)

Assume thatu>0 and the fluctuations are small such that

w>AZ?. Further, assume that?>w, for all k>2, which is
true for unimodal distributions such as thedistribution.(In
the case of a Gaussian,=0 for all k>2). Neglecting third
and higher moments in the cumulant expangi@dm3 then
leads to the approximation
ﬁ(o_)mefo',uﬂr(rzAZ/Z.

(3.59

Sinceu> A2, it follows thato* =1 and the equation for the
phase boundangB(o™*)=1/z, reduces to Eq(3.5J).
Example 4 As our final example we consider a probabil-

Example 3—F distribution Consider the Gamma distribu- ity density whose moments are all infinite:



p(v):Lefazmuﬁb) v>—b. b>0.
2\7(v+b)3 ’ ’
(3.56
From Eq.(3.22,
B(o)=er 2, (3.57)

If a>2b, then 6*=1, and the phase boundary in the

(a,b) plane is given by
(3.58

On the other hand, ik<2b, then o* =a?/4b?, and the
phase boundary is given by

b(a)=a—Inz.

b(a)=a%/4 Inz. (3.59

Comparing Eqs(3.45 and(3.46 with Egs.(3.58 and(3.59
then shows that the densit{3.56 has a phase boundary
curve identical to that of a Gaussiat{a, \2b).
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parametep; and has an associated capaédyconductance
f(v)I;9(v;) [EQ.(3.24]. The localization criterion of theo-
rem 1,z(e"?"?)<1 (localized or z(e"?"?)>1 (delocal-
ized), is equivalent to whether the total capadity conduc-
tance on the tree is finite or infinite (related to
normalizability. To make the connection with geometric
bond percolation, consider a Bernoulli distribution with den-
sity

p(v)=ps(v)+(1-p)é(v—v). (4.)
Any branch withv =0 that is connected to the origin by
other branches with =0 will act as a bond of unit capacity
[since f(0)=g(0)=1]. On the other hand, in the limit
v—o, each branch witlv =v will act as a broken bond of
zero capacitysincef(e) =0], and will set the capacity of all
subsequent branches equal to Zaiaceg(«)=0]. Thus, in
terms of whether the origin belongs to a cluster of finite or
infinite capacity, we have an identical model to that of geo-
metric bond percolation. Since the allowed velocities in Eq.

It is interesting to consider from the above examples how(4-1 are non-negativey* = {Uand the threshold for the tran-
one can recover the critical phase boundary in one dimensicftion is determined by(e™")=1 (see remark 2 in Sec.

(z=1). The relevant criterion igv)=0 (see Sec. Il A,
which corresponds to the vertical lipe=0. The correct pro-
cedure is to defing=1+ ¢, and analytically continue such

II B). It follows immediately thap.z=1 or p.=1/z. When
p.<1/z the system is localizedhas finite capacity with
probability 1, and=* =0 [see Eq(3.10]. Whenp.>1/z the

thate— 0. To show that the phase boundaries derived for thYStem may either be localizetdinite capacity or delocal-

examples above tend toward the linpe=0 ase— 0, consider

a fixed value ofu= 6> ¢, and ask what happens to the stan-

dard deviatiomA ase—0. It is easy to show thak diverges
as 1A/e. Since this holds for any, it is clear that all the
boundary curves collapse to the lipe=0. It also follows

ized (infinite capacity and O<F* <1 (see again remark 2 in
Sec. |l B), which corresponds to the transition being second
order with F* identified as an order parameter. From the
integral equation3.21) we obtainM(s)=pM(s)?e 3+ (1
—p) [noting thatM (0)=1], from which one can derive the

that the region of validity of the expansions around the point/alue of the order parametér* =1—lims_oM(s). For in-

wm=Inz becomes progressively smaller as>0. The math-

ematical details concerning this particular issue will be dis-

cussed more fully elsewhefg1].

IV. PERCOLATION ON A TREE

stance, wherz=2 one obtains the well-known result that
F*=0 for p<3 andF*=(2p—1)/2p for p>3 [1].

The above derivation puts the nature of the phase transi-
tion of geometric bond percolation into context. For almost
all parametrized velocity distributiong.e., those which do
not allow v to be infinite with any finite probabilily the

The results presented above have a number of importafitansition governing whether the total capacity is finite or
implications for percolation theory. Although, in essence, al-infinite is strictly first order, the order parametet jumping
ready covered in the detailed mathematical work of Lyonsrom zero to unity as some parameter is varied. The second-
[17], it is nevertheless instructive to point out these connecorder nature of the geometric bond percolation problem is

tions and to discuss their physical interpretation.

thus a unique feature of the fact that allowing infinite veloci-

The classic problem of bond percolation on an infinite,ties effectively destroys the connectivity of the underlying

regular Cayley tree with branching numbers well under-
stood. Branches are randomly occupiedit capacity with
probability p or left unoccupiedzero capacity with prob-

tree. One can, in fact, cast the geometric problem in such a
way that it too exhibits a first-order rather than second-order
transition, by noting that the probability that an infinite clus-

ability 1—p. One is interested in establishing whether or notter exists somewhere on the tree for p. is 1 (although the
a connection from the origin to infinity is made, i.e., whetherorigin may not, of course, belong to it if the tree is suitably
or not the origin is linked to a connected cluster of infinite disconnected

capacity. Arguments based on generating functises, e.g.,
Ref.[1]) show that the critical concentratign, for the for-
mation of an infinite cluster is given bp.=1/z. For p

<p. an infinite cluster is never formed; far>p, there is a

We now have the basis for analyzing more general mod-
els of percolation on tree structures. Consider once again the
above Bernoulli distribution, but this time chooseto be

finite. Definee=e~". The transition criteriorz(e " ?)=1

nonzero probability that the origin will belong to an infinite yields a critical transition probability of

cluster, and this probability becomes unity when 1. Thus

if the probability of the origin belonging to an infinite cluster
is viewed as an order parameter, then geometric bond perco-

lation exhibits a second-order phase transition.

4.2

In the present paper we also considered infinite, regulafhe physical interpretation of this two-component model of

trees, whereby each branchs characterized by a velocity

percolation is as follows. One has an infinite, regular tree
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along the branches of which some flow process is taking:omesm<e—v*v>:1. Thus in the case of the above two-
place. Some branches are relatively op&hose with  component model defined on a genealogical tree of a Galton-
v=0); others are very constrictivéhose withv=v). The  \Watson process, we would have
constrictive links affect other links downstream from the ori-
gin; this is taken into account through the multiplicative na-
ture of the model. Ip<p. then flow between the origin and Pe=—.
infinity is impossible. On the other hand, gf>p., then m(1—e)
finite flow will occur with probability 1. Note the emphasis,
“will occur” rather than “might occur,” since the transition
is now strictly first order rather than second order. This in-
terpretation in terms of flows is quite natural, given the deri- |n this paper we have examined drift diffusion on a regu-
vation of some of our results in terms of flow theory onjar tree with quenched, random drift velocities on its
networks and an obvious natural connection to random resigranches, and derived criteria for whether the system is lo-
tive or capacitive networks. From the above model we notealized or delocalized, given an arbitrary distribution for the
that ase—0 (v—), so p.—1/z (the geometric limi,  drift velocities. We have also presented examples of how the
while for e=1/z (v=<In2) no transition is possibléhe sys-  system can undergo a phase transition from a localized to a
tem is always percolatingMany alternative models of per- delocalized state as some parameter defining a family of ve-
colating processes can be studied by choosing different veecity distributions is varied. Such transitions are generically
locity densitiesp(v), and details of the behavior on the first order rather than second order. A formal link with con-
nonpercolatinglocalized side of the transition point may be ventional percolation theory has been made, and we have
obtained from the integral equatio®.21). Exploring the indicated how somébut not al) of the results can be ex-
consequences of this connection with percolation theory detended to the case of irregular trees.
serves further study. Once one has established that, for a given velocity density
Finally, the theorems derived by Lyons have implicationsp(v), the system is localized, it is natural to ask questions
for percolation on trees with random branching numbers aibout the nature of the localized state. For example, what is
each branching site. First, one creates the underlying trege distribution of the residual amplitude at the origin, given
structure upon which percolation is to take place. Supposan initial unit impulse? Or, can one define a suitably aver-
we have a local branching probability, with =,p,=1. aged localization length? Or, to what extent is self-averaging
From the theory of genealogical trees associated withelevant in the system? We have not attempted to answer
Galton-Watson branching proces$@€], we know that the these questions in this paper, although the integral equations
tree will always be finite in exter{extinction will occur with we have presented provide a natural starting point as regards
probability 1) if m=X,kp,=<1. Clearly such situations are the first of them. Direct numerical simulation is an obvious
not particularly interesting as regards percolationmi>1  approach, but this is not straightforward, especially for sys-
then the probability for generating an infinifalthough ir-  tems that are “only just localizedit is extremely difficult
regulap tree is nonzerdthe probability of nonextinction is to establish whether a system is localized or delocalized near
greater than zejpwhich is reminiscent of the second-order the phase boundary by numerical methoddis is one rea-
transition discussed above. Let us imagine that we lmave son why having exact mathematical criteria for the transition
>1 and that we have generated an infinite, irregular tree. Fqpoints is so valuable.
pure geometric percolation, one now occupies the branches Finally, the results presented relate to the convergence or
with probability p or leaves them unoccupied with probabil- otherwise of quite general random, multiplicative sequences
ity 1—p. The percolation threshold governing whether thewith an underlying treelike structure. As such, we feel that
origin belongs to an infinite cluster is then given py  they are likely to be applicable to many other physical prob-
=1/m [17]. More generally, the full transition criterion be- lems besides the one considered here.

1—me
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