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Solitary waves with recirculation zones in
axisymmetric rotating flows
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In this paper, we describe a theoretical asymptotic model for large-amplitude travelling
solitary waves in an axially symmetric rotating flow of an inviscid incompressible fluid
confined in an infinitely long circular tube. By considering the special, but important,
case when the upstream flow is close to that of uniform axial flow and uniform
rotation, we are able to construct analytical solutions which describe solitary waves
with ‘bubbles’, that is, recirculation zones with reversed flow, located on the axis of the
tube. Such waves have amplitudes which slightly exceed the critical amplitude, where
there is incipient flow reversal. The effect of the recirculation zone is to introduce into
the governing amplitude equation an extra nonlinear term, which is proportional to
the square of the difference between the wave amplitude and the critical amplitude.
We consider in detail a special, but representative, class of upstream inflow conditions.
We find that although the structure of the recirculation zone is universal, the presence
of such solitary waves is quite sensitive to the actual upstream axial and rotational
velocity shear configurations. Our results are compared with previous theories and
observations, and related to the well-known phenomenon of vortex breakdown.

1. Introduction
In this paper we are concerned with the structure of steady travelling solitary waves

of large amplitude in the axially symmetric rotating flow of an inviscid, incompressible
fluid contained in an infinitely long circular tube. There have been numerous studies
of steady waves in such axisymmetric rotating flows, largely motivated by the possible
relationship between such waves and the phenomenon of vortex breakdown. Most
theoretical studies, and ours is no exception, are based on the Bragg–Hawthorne
(Bragg & Hawthorne 1950) equation, which is a single equation for the stream function
incorporating the preservation of the flow circulation and head along streamlines. It
was independently derived by Long (1953) (see also Squire 1956) and describes the
distribution of the azimuthal component of vorticity. It is usually derived on the
assumption that all streamlines originate upstream, so that there can be no ‘bubble’,
that is, a recirculation zone with reversed flow, and that far upstream there is no
wave component to the flow. For this situation, the Bragg–Hawthorne equation
can be used to establish the existence of solitary waves of permanent form, which
are maintained by a balance between nonlinearity and dispersion. However, the
Bragg–Hawthorne equation may also allow solutions with recirculation zones, but
additional assumptions are then required to determine the flow circulation and head
there.
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Originally the Bragg–Hawthorne equation was derived to relate inertial waves with
the breakdown of the basic vortex flow. Thus, Squire (1956) suggested that inertial
waves may propagate upstream, and cause a breakdown of the upstream vortex flow.
Later, Benjamin (1962, 1967) proposed that vortex breakdown is a transition between
two conjugate flow states, where it is assumed that the total circulation and head are
preserved across the transition. With this assumption, Benjamin (1967) showed that
in the absence of dissipation or transience, a force-free transition cannot be found.
Instead, it was shown that the total head increases at the downstream state, and this
extra head may generate unsteady waves there. Subsequently, Keller, Egli & Exley
(1985) and Keller (1995), amongst others, have shown that loss-free and force-free
transitions are possible if the downstream conjugate flow includes an infinitely long
‘bubble’, or recirculation zone. This disturbance is stationary for a specific upstream
swirl velocity determined by the upstream flow profile. The main approach used
here was to obtain the downstream flow from conservation laws, and then to find
numerically the transition zone connecting the upstream and downstream conjugate
flow states. We will show inter alia in this paper that, in fact, this infinitely long
recirculation zone is the limit of a class of solutions with recirculation zones of finite
length.

In general, we conclude from various numerical simulations and observational
studies that the recirculation zone found in axisymmetric vortex breakdown has finite
size in both the radial and axial directions. However, in experiments, the observed
finite size of the recirculation zone may be due to a combination of inertial effects
and viscous diffusion at low Reynolds numbers, or to complicated instabilities inside
and around the breakdown bubble at high Reynolds numbers. Theoretical models
of this phenomenon have been proposed by Leibovich and collaborators (see, for
instance, the review by Leibovich 1991). Thus, Leibovich & Kribus (1990) established
the existence of four types of solution: multiple columnar solutions corresponding to
the conjugate states of Benjamin (1962, 1967), solitary waves, periodic wavetrains and
solitary waves superimposed on the conjugate flow that emerges from the wavetrain.
They also claimed that weakly nonlinear solitary wave theory can be accurate even
in the case of quite large-amplitude waves, containing regions of flow reversal. The
crucial, and explicit, assumption of Leibovich & Kribus (1990) is that the functional
form of the Bragg–Hawthorne equation is identical inside and outside the recirculation
zone. As we discuss later in this paper, this assumption leads, in general, to unstable
solutions in the recirculation zone, even in the axisymmetric context. Further, we will
show that the assumption that the same functional form holds throughout the flow
regime, including any recirculation zones, leads to a prediction of vortex breakdown
in a supercritical flow for the case of a uniformly rotating fluid with uniform axial
velocity, contained in an infinitely long straight cylinder. Such a prediction is contrary
to the theoretical results of Fraenkel (1964) and Keller et al. (1985), and has not been
found in numerical simulations (see, for instance, Hanazaki 1996).

In this study, we construct solitary waves with recirculation zones, in which we
make the alternative assumption that the flow in the recirculation zone is stagnant, at
least to leading order with respect to the small parameter which defines the size of the
recirculation zone. Indeed, this is required by the Prandtl–Batchelor (Batchelor 1956)
condition for steady axially symmetric flow in the limit of vanishing viscosity. Our
assumption of a near-stagnant flow inside the recirculation zone is consistent with
the earlier studies by Keller et al. (1985) and Wang & Rusak (1997a), where the same
approach was used. Our asymptotic solution technique is valid for the important
special case when the upstream flow has nearly uniform axial velocity, and nearly
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uniform angular velocity. The crucial circumstance here is that in the limit when the
upstream flow is exactly uniform, the Bragg–Hawthorne equation is a linear equation
even for waves of finite amplitude. This result has been exploited by Grimshaw & Yi
(1993) who constructed an integro-differential equation to describe the slow evolution
of finite-amplitude waves up to the onset of incipient flow reversal. In this paper,
we consider steady waves, whose amplitudes exceed the critical amplitude where flow
reversal first occurs and which contain recirculation zones. Our asymptotic technique
is based on that used by Derzho & Grimshaw (1997) for the closely analogous
problem of large-amplitude waves in a stratified fluid (see also, Rottman, Broutman
& Grimshaw (1996) and Aigner, Broutman & Grimshaw (1999) for related numerical
simulations). Our main results are the construction of an asymptotic model for solitary
waves with recirculation zones, for a wide class of inflow conditions which are close
to the state of uniform axial flow and uniform angular velocity. The structure of
the recirculation zone is described in detail. The present asymptotic model is related
to other theories, and its implications for the phenomena of vortex breakdown are
discussed.

We must point out that our model is formulated to describe steady travelling
solitary wave disturbances in a tube of infinite length. Such a formulation does
not exactly correspond to the experimental set-ups described in Sarpkaya (1971),
Leibovich (1984) and Escudier (1988), or to the numerical simulations by Beran &
Culick (1992), Lopez (1994) and Hanazaki (1996). In all of these numerical studies,
breakdown of the approaching vortex was induced by a local contraction of the
tube, so that the separation zone was observed in the lee of that contraction. Also,
a local contraction was used by Beran & Culick (1992) to prevent the formation of
a recirculation eddy at the upstream boundary, which has often been noted since
the first numerical study of axisymmetric breakdown by Kopecky & Torrance (1973).
However, a local contraction is not the only way to initiate vortex breakdown;
Brown & Lopez (1990) observed a downstream widening of the vortex owing to
viscous dissipation that eventually induces vortex breakdown. Further, Darmofal
(1996) and Snyder & Spall (2000) claimed a reasonably good agreement with the
relevant experiments of Faler & Leibovich (1978) and Sarpkaya (1971). They did not
use a local contraction to induce the breakdown, but carefully modelled both the
flow field in the approaching vortex (Snyder & Spall started with the vortex shedding
from the vane generator). Snyder & Spall (2000) also performed calculations with
inlet conditions of zero radial velocity, and fixed swirl and axial velocity profiles that
were obtained from the solution of the problem with the exact modelling of the flow
past a set of turning vanes. No significant difference was observed between these two
calculations. This result may support the idea that there are no upstream advancing
disturbances in their calculations at least far upstream of the breakdown bubble,
and the conditions for the velocity field are fairly accurate. We point out that in all
these successful calculations the divergence of the tube (at least in the region where a
separation bubble was observed experimentally) was carefully modelled. In the case
of a confined geometry, where the boundary conditions are obvious, Lopez (1990)
has shown excellent agreement with the relevant experiments.

Thus, we infer that, to predict experiments successfully, we need to know the exact
inflow, outflow and tube boundary conditions. In part, these conditions are determined
by the flow field in the approaching vortex. The rest of the conditions depend on
how the approaching vortex is disturbed while propagating through the tube, whose
cross-section may vary in the axial direction. In order to understand how to manage
vortex breakdown, we can split the problem into three parts. First, it is important to
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identify the relevant flow profiles which enlarge or reduce the size of the separation
bubble, or which may allow multiple flow states, etc. The second set of problems is
how to create these profiles, or how to disturb the approaching vortex to reach the
desired result. In this paper, we do not deal with the second set of problems. The third
part is to identify those profiles which may lead to a stationary and stable vortex.
We have concentrated on the ideal boundary conditions of an infinite straight tube,
where a disturbance to the given approaching vortex is assumed to vanish upstream,
and examined what kind of disturbance of permanent form may propagate on the
given approaching flow, that is, which approaching flows allow disturbances with a
separation zone, multiple states, or for which cases stationary solitary wave solutions
do not exist.

We must point out that our formulation is different from the studies of Buntine
& Saffman (1995) (steady problem), and the studies by Wang & Rusak (1997a),
Rusak, Wang & Whiting (1998) (unsteady problem) where the major effects are due
to the constricted geometry of the tube. The inlet boundary conditions in Wang
& Rusak (1997a, b), Rusak et al. (1998) do not fix the radial velocity, but instead
fix the azimuthal vorticity. To this end they allow the radial velocity to be freely
adjusted to reflect the upstream influence which is allowed to reach the inlet in
their model. The model of Rusak et al. (1998), although for a straight tube, was
nevertheless claimed to be relevant to the studies of Beran & Culick (1992), Lopez
(1994) and Darmofal (1996), where the condition of zero radial velocity at the inlet
was used. However, the inlet conditions of Rusak et al. (1998) do not contain the
length scale of a local contraction (Beran & Culick 1992; Lopez 1994), or the length
scale associated with a divergence of the tube (Darmofal 1996). These effects due
to the tube profile are important in the problem studied by these authors, not only
because these tube profiles prevent the changes of the inlet conditions (which the
conditions of Rusak et al. (1998) also do), but also because the properties of the
generated wave are affected by the exact shape of the tube. Also, it can be seen
that to obtain successful unsteady numerical simulations of the experiments by Faler
& Leibovich (1978), the outlet conditions while being similar to those of Rusak
et al. (1998), (i.e. setting negligible axial gradients), were preceded by a convergent
section of the tube, thus re-accelerating the flow near the exit (Darmofal 1996). In
simulations attempted without this section, an iterative process of finding the solution
was found to be unstable (Darmofal 1996). Note, however, that Lopez (1994) did not
need to use a convergent section near the end. All these results probably indicate
that the outlet conditions should be chosen with care according to each particular
case.

Another recent set of successful numerical calculations (Snyder & Spall 2000) reveal
that the resulting flow was supercritical near the outlet boundary, thus minimizing
the upstream propagation of axisymmetric waves generated at the outlet. Hanazaki
(1996), also in a numerical study, used a transparent boundary condition at the outlet,
which together with the sufficiently long numerical domain minimizes the influence of
the outlet condition on the breakdown. In the numerical simulations of Rusak et al.
(1998), a separation bubble occurs at the outlet boundary. Wang & Rusak (1997a)
reported that their inviscid steady solutions are supercritical at the outlet, so that their
condition of ‘no axial gradient’ may be used in that case. However, such a condition
may cause artificial reflections if disturbances can propagate in both directions. This
could be the case for the temporal problem, in the interior of the recirculation ‘bubble’
where the motion is generally very complicated.

Despite these highlighted differences, the studies of Rusak et al. (1998) and Wang
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& Rusak (1997a) unite most of the recent numerical studies, and give an explanation
of the existence of two critical swirl values, as observed by Beran & Culick (1992),
Beran (1994) and Lopez (1994). The lower value corresponds to the special solution
of Keller et al. (1985), and the higher value corresponds to the critical swirl originally
identified by Benjamin (1962). Rusak et al. (1998) linked these critical values of swirl
with the stability characteristics of the flow in a constricted tube, and they describe
the vortex breakdown in high-Reynolds-number flows as a process of the evolution of
the initial columnar vortex to another relatively stable and lower-energy equilibrium
state around a large stagnant separation zone. Wang & Rusak (1996) describe such
evolution as a result of the interaction between upstream advancing disturbances and
the approaching flow, which leads to a loss of stability of the base columnar state
when the swirl is near or above the critical level.

Again, we remind the reader that our study is different from most of the studies
mentioned above, and is not directly relevant to the existing experimental set-ups,
as we are describing disturbances in an infinite tube, where there is a simple and
natural way to impose upstream boundary conditions. Our paper describes a novel
way of constructing an asymptotic solution for an inertial solitary wave with a
recirculation zone. It is also pertinent to note that this approach is capable of
allowing several different sets of upstream boundary axial and swirl velocity profiles.
In applying our results to the vortex breakdown phenomenon, our main purpose is
to identify, albeit in this ideal formulation, which profiles in the approaching vortex
may enhance breakdown and which may suppress it. Our theoretical model is capable
of predicting multiple-state solutions, the flow around the separation bubble, as well
as its shape, from a relatively simple ordinary differential equation, rather than from
a complicated numerical model. Finally, we point out that a systematic stability
analysis of these travelling solitary wave solutions is beyond the scope of the present
study.

In § 2, we formulate the steady equations of motion and identify all relevant small
parameters. In § 3, we describe the asymptotic construction of large-amplitude solitary
waves with recirculation zones. In § 4, we discuss our solutions in more detail, and for
several specific cases of upstream flow conditions. Then, in § 5, we present a concluding
discussion, and relate our results to the phenomenon of vortex breakdown.

2. Formulation
We consider the axisymmetric, steady flow of an inviscid, non-diffusive swirling

fluid of constant density, confined to a tube of circular cross-section. In standard
notation, in a frame of reference moving with a wave of speed c, the equations of
motion are,

ux +
1

r
(rv)r = 0, (2.1a)

(u− c)ux + vur + px = 0, (2.1b)

(u− c)vx + vvr − w2

r
+ pr = 0, (2.1c)

(u− c)wx + vwr +
vw

r
= 0. (2.1d)

Here, the coordinates are (x, r, θ) with x directed along the tube axis, (u, v, w) are
the corresponding velocity components, and p is the pressure (see figure 1). Next, we
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Figure 1. Coordinate scheme.

introduce the streamfunction ψ in the usual way,

u− c =
ψr

r
, v = −ψx

r
. (2.2)

Equation (2.1d ) shows that the circulation is constant along a streamline, so that

rw = C(ψ), (2.3)

where the functional form of C(ψ) is to be determined from the inflow distribution
of circulation for those streamlines which originate upstream. Inside the recirculation
zone, which is located on the tube axis, we will show later that the circulation is very
weak, and, in effect, C(ψ) = 0 there. Finally, it can be shown that the two momentum
equations (2.1b) and (2.1c) yield a single equation for the stream function,

ψxx + ψrr − ψr

r
+ C(ψ)C ′(ψ) = r2G(ψ), (2.4)

where G(ψ) is the derivative of the total head function, and is also to be determined
from the inflow conditions for those streamlines which originate upstream. Inside
the recirculation zone, we shall argue later that the flow is nearly stagnant, and so
G(ψ) ≈ 0 there. Equation (2.4) is the Bragg–Hawthorne equation for the azimuthal
vorticity used in numerous studies of rotating flows. The circular tube has radius a,
and the boundary condition at r = a is ψ = constant.

It is convenient to introduce dimensionless variables based on a typical axial
velocity U0 and the radius

ψ′ =
2ψ

U0a2
, r′ =

r

a
, x′ =

x

a
. (2.5)

Hereinafter, we will omit the primes. Further, we will assume that the inflow axial
velocity is nearly uniform, and the inflow rotation is likewise nearly uniform. Thus,
we suppose that the inflow conditions are, in dimensionless form,

u→ u∞ = 1 + κU(ξ) as x→ −∞, (2.6a)

w

r
→ w∞

r
= Ω0(1 + σΩ(ξ)) as x→ −∞, (2.6b)

where,

ξ = r2. (2.6c)

Here, κ, σ are small parameters, characterizing the small departures from uniform
axial flow and uniform rotation, respectively. It follows that

ψ = ξ(1− c) + κ

∫ ξ

0

U(ξ̂) dξ̂ as x→ −∞. (2.7)

For those streamlines which originate upstream, we can now determine the functions
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C(ψ) and G(ψ). We find that

C(ψ) =
Ω0

1− c
{
ψ + σψΩ(

ψ

1− c )− κ
∫ ψ/1−c

U(ξ̂) dξ̂ + · · ·
}
, (2.8a)

G(ψ) =
2Ω2

0

1− c
{

1− κU(ψ/1− c)
1− c + 2σΩ

( ψ

1− c
)

+
σψ

1− cΩ
′
( ψ

1− c
)}

+2κU ′
( ψ

1− c
)

+ · · · . (2.8b)

Here, the omitted terms are relatively of o (κ, σ). Using the expressions (2.8a) and
(2.8b), equation (2.4) can be rewritten in explicit form in terms of the perturbed
streamfunction φ where

ψ = ξ(1− c) + κ

∫ ξ

0

U(ξ̂) dξ̂ + φ. (2.9)

After some algebra, we find that

φxx + 4ξφξξ + λ2φ = F(φ), (2.10a)

where

λ =
2Ω0

|1− c| , (2.10b)

and

F(φ) = κλ2

{∫ ξ+φ/1−c

ξ

U(ξ̂) dξ̂ +
φ

1− cU
(
ξ +

φ

1− c
)}
− σλ2

{
2φΩ

(
ξ +

φ

1− c
)

+φ

(
ξ +

φ

1− c
)
Ω′
(
ξ +

φ

1− c
)}

+ 4κξ

{
U ′
(
ξ +

φ

1− c
)
−U ′(ξ)

}
+ · · · .
(2.10c)

Here, Ω0 is the swirl number, which is proportional to the ratio of the azimuthal
velocity at the radius of the bounding tube wall, to the axial velocity along the
centreline. The boundary conditions on the tube axis and wall are that

φ = 0 at ξ = 0, 1. (2.11)

The boundary condition at ξ = 0 derives from the requirement that the flow be
finite and regular there. The boundary condition at the tube wall ξ = 1 is to ensure
that there is no flow through the tube wall, and this is the only boundary condition
that can be imposed there in our present inviscid formulation. Note that we are at
liberty, if need be, to suppose that the tube wall is corotating with the fluid and has
angular velocity close to Ω, thus enabling us to make a comparison with experiments
such as those of Pritchard (1969). Further, our inviscid formulation can be effectively
compared with the numerical simulations, such as those of Hanazaki (1996), who use
free-slip conditions at the tube wall. Next, in the upstream and downstream directions
we require that

φ→ 0 as x→ ±∞. (2.12)

In the absence of any recirculating zone, (2.10), (2.11) and (2.12) provide a well-posed
formulation of the problem, since then it is assumed that all streamlines originate
upstream. Next, we note that if

1 +
φξ

1− c > 0 (2.13)
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everywhere, then, to leading order with respect to the small parameter κ, u−c > 0(< 0)
according as c < 1(> 1) and there is no flow reversal at any point in the flow.

Here, we are concerned with the case when the condition (2.13) is violated on the
tube axis. Then, the critical condition

1− c+ φξ = 0 at ξ = 0, (2.14)

defines a critical wave amplitude, and we shall show that for waves with amplitudes
greater than this critical amplitude, there is a zone of recirculating fluid located on
the tube axis. We shall suppose that the boundary of this vortex core is given by (see
figure 2)

r = η(x), (2.15)

where η(x) = 0 for |x| > x0. Outside this recirculation zone, the flow is determined by
(2.10), with the boundary conditions

φ+ η2(1− c) + κ

∫ η2

0

U(ξ̂) dξ̂ = 0 at ξ = η2, (2.16a)

and

φ = 0 at ξ = 1, (2.16b)

as well as the conditions (2.12) at infinity. Inside the recirculation zone, the governing
equation is again (2.4), but now the circulation function C(ψ) and the total head
derivative G(ψ) are yet to be determined. However, we shall show that in the recir-
culation zone both C(ψ) and G(ψ) are approximately zero. That is, the flow there is
approximately stagnant and without rotation. This is consistent with the observations
of Faler & Leibovich (1978), and Escudier (1988), and is similar to the hypothesis used
by Wang & Rusak (1997a). Note that simple analytic continuation of C(ψ) and G(ψ)
across the boundary of the recirculation zone does not generally lead to physically
meaningful solutions, and hence we can anticipate that both C(ψ) and G(ψ) must
be determined by other, physically relevant, considerations (cf. Keller 1995). Finally,
since the boundary of the recirculation zone, r = η(x), is to be determined as part of
the full solution, it is necessary to impose the dynamic condition that the pressure is
continuous across the recirculation zone boundary, as well as the kinematic condition
(2.16a). It can be shown that pressure continuity is equivalent to the continuity of ψξ ,

[ψξ] = 0 at ξ = η2. (2.17)

Henceforth, we shall refer to the region where r > η > 0 as the inner zone, i.e.
|x| < x0. The region where η ≡ 0 is then the outer zone, i.e. |x| > x0. Note that the
case when x0 = 0 is the particular case when there is no inner zone, and the outer
zone occupies the whole domain. This particular case corresponds to the existence of
inertial waves without any flow reversals.

3. Derivation of the amplitude equation
3.1. Solution in the outer zone

We shall seek solitary wave solutions whose width is much greater than the radius of
the tube. Hence, it is convenient to introduce the small parameter ε and let

X = εx (3.1)

be the new axial variable. Later, it will emerge that the small parameters κ and σ are
both O(ε2) to achieve an optimal balance, and so we put κ = κ̂ε2, σ = σ̂ε2. Then, we
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Figure 2. Sketch of the outer, inner and recirculation zones.

seek a solution in terms of the asymptotic expansions

φ = φ(0)(X, ξ) + ε2φ(1)(X, ξ) + · · · , (3.2a)

c = c(0) + ε2c(1) + · · · . (3.2b)

These expansions are substituted into (2.10a), and the boundary conditions (2.11). At
the lowest order we find that

φ(0) = A(X)W (ξ), (3.3a)

where

W (ξ) = rJ1(λ
(0)r), (3.3b)

and

J1(λ
(0)) = 0. (3.3c)

Here, J1(〈) is the Bessel function of order 1, and

λ(0) =

∣∣∣∣ 2Ω0

1− c(0)

∣∣∣∣ . (3.4)

For the lowest mode, λ(0) = 3.83, and we shall confine our attention to this mode
henceforth. The higher modes may be considered in a similar way, but, by analogy
with the corresponding stratified flow problem (Akylas & Grimshaw 1992), we expect
that these higher modes do not exist in a purely local form owing to the generation
of lower-mode radiation.

The amplitude A(X) is now determined at the next order in the expansion, and we
find that

4ξφ(1)
ξξ + λ(0)2

φ(1) = F (1), (3.5a)

where

F (1) = −AXXW +
F(φ(0))

ε2
+

2λ(0)2

c(1)

(c(0) − 1)
AW. (3.5b)

Here, F(φ(0)) is determined from (2.10c) and is O(ε2), since κ and σ are O(ε2). This is
to be solved with the boundary conditions

φ(1) = 0 at ξ = 0, 1. (3.6)
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A compatibility condition is required, and is here given by∫ 1

0

F (1)W
dξ

2ξ
= 0. (3.7)

Substitution of (3.5b) into (3.7) finally yields the amplitude equation

−AXX + ∆A+M(A) = 0, (3.8a)

where

∆ =
2λ(0)2

c(1)

(c(0) − 1)
, (3.8b)

M(A) = κ̂Mκ(A) + σ̂Mσ(A), (3.8c)

IMκ(A) = λ(0)2

∫ 1

0

Wdξ

2ξ

{∫ ξ+φ(0)/1−c(0)

ξ

U(ξ̂) dξ̂ +
φ(0)

(1− c(0))
U

(
ξ +

φ(0)

1− c(0)

)}

+

∫ 1

0

2W dξ

{
U ′
(
ξ +

φ(0)

1− c(0)

)
−U ′(ξ)

}
, (3.8d)

IMσ(A) = −λ(0)2

∫ 1

0

Wdξ

2ξ

{
2φ(0)Ω

(
ξ +

φ(0)

1− c(0)

)
+ φ(0)

(
ξ +

φ(0)

1− c(0)

)
Ω′
(
ξ +

φ(0)

1− c(0)

)}
, (3.8e)

and

I =

∫ 1

0

W 2 dξ

2ξ
=

∫ 1

0

rJ2
1 (λ(0)r) dr = 1

2
J0(λ

(0))2. (3.8f)

The nonlinear term M(A) depends on the amplitude A in a complicated manner
dependent on the form of the functions U(ξ) and Ω(ξ), where we recall that these
represent the small departures from uniform axial flow and uniform rotation, respec-
tively. We shall give some simple illustrative examples of the calculation of M(A)
below. The amplitude equation (3.8a) is a steady-state generalized Korteweg–de Vries
(KdV) equation, and is the steady-state version of the finite-amplitude long-wave
evolution equation derived by Grimshaw & Yi (1993).

The condition (2.13) which excludes flow reversals at any point in the flow is now
satisfied, to leading order in ε, provided that

2

λ(0)|J0(λ(0))| >
A

1− c(0)
> − 2

λ(0)
. (3.9)

Here, the upper limit corresponds to flow reversal at the tube wall (ξ = 1), whereas
the lower limit corresponds to flow reversal on the tube axis (ξ = 0). We are concerned
here with this latter case, and so the critical amplitude A∗ for wave breakdown and
flow reversal is given by

A∗ = −2(1− c(0))

λ(0)
= ±4|Ω0|

λ(0)2 . (3.10)

Here, the alternative signs are those corresponding to c(0) > 1 (< 1), and so conse-
quently A∗ > 0(< 0). Since W (ξ) > 0 for 0 < ξ < 1, it follows that wave breakdown
on the tube axis occurs for waves whose axial flux is positive (negative) when
c(0) > 1 (< 1). We also note here, for the present case of a straight tube, that since
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|J0(λ
(0))| ≈ 0.4(< 1), the critical amplitude for wave breakdown on the axis is always

less in absolute value than that for wave breakdown on the tube wall, although the
latter has the opposite sign. It is consistent with the results of numerical simulations
by Beran & Culick (1992), Lopez (1994), Hanazaki (1996) and Snyder & Spall (2000)
among others.

To conclude this subsection, we calculate the form of the nonlinear terms M(A)
when the perturbation inflow axial velocity U(ξ), and angular velocity Ω(ξ) are
quadratic polynomials in ξ, given by

U = a1(1− ξ) + a2(1− ξ2), (3.11a)

Ω = b1(1− ξ) + b2(1− ξ2). (3.11b)

Here, the coefficients are chosen to enforce U(1) = Ω(1) = 0. It is straightforward to
show that then

M(A) = α1A+ α2A
2 + α3A

3, (3.12)

where α1, α2 and α3 are each represented by certain linear (although complicated)
expressions in the coefficients a1, a2, b1 and b2 (see Appendix). Note that the coefficient
α1 can be absorbed into the detuning parameter ∆. When the nonlinear term is given
by (3.12), the amplitude equation (3.8a) reduces to the steady-state version of the
modified KdV equation, whose periodic and solitary-wave solutions are well-known.
For instance, the solitary-wave solution is

A =
A0

1 + B0 cosh{γ(X −X∗)} , (3.13a)

where

A0 = −3γ2

α2

, B2
0 = 1− 9α3γ

2

2α2
2

, ∆+ α1 = γ2, (3.13b)

where X∗ is an arbitrary phase, to be determined later from matching conditions
with the inner zone. The wave amplitude (peak value) is a0 = A0/(1 + B0), where the
polarity of the wave is defined by the sign of −α2(1 + B0) (since α2A0 < 0). When
α3 > 0, then 0 < B0 < 1 and for small wave amplitudes (B0 → 1), the solitary wave
(3.13a) resembles the familiar KdV solitary wave

A = a0 sech2

(√
− 1

6
α2a0 (X −X∗)

)
. (3.14)

On the other hand, as B0 → 0, the wave amplitude approaches a limiting critical value
−2α2/3α3, while the width increases to infinity, and the wave becomes the so-called
‘thick’ solitary wave. When α3 < 0, there are two families of solitary waves, both with
B2

0 > 1. The first has 1 < B0 < ∞, and has the opposite polarity to the KdV solitary
wave (3.14), whereas for large amplitudes (B0 → ∞) it approaches the solitary-wave
solution of the cubic KdV equation (i.e. α2 = 0) given here by

A = a0 sech

(√
− 1

2
α3a

2
0 (X −X∗)

)
. (3.15)

The other family has −∞ < B0 < −1; as B0 → −∞ it again resembles (3.15) but with
opposite polarity, but now as B0 → −1 the amplitude decreases to another critical
value, −4α2/3α3, and in this limit becomes an algebraic solitary wave,

A =
−12α2

9α3 − 2α2
2 (X −X∗)2

, ∆+ α1 = 0. (3.16)
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These results for this special case when M(A) is given by (3.12) can now be
combined with the criterion (3.9) for the exclusion of any flow reversals. First,
suppose that α3 > 0, and consider the case when A∗ > 0(< 0) (i.e. c(0) > 1(< 1)).
Then, solitary waves without flow reversals exist whenever −A∗/|J0(λ

(0))| < a0 < A∗,
(−A∗/|J0(λ

(0))| > a0 > A∗), where we note that |J0(λ
(0))| ≈ 0.4. Thus, since α2a0 < 0,

it follows that flow reversal will occur on the axis whenever α2A∗ < 0, and also
2|α2| > 3α3|A∗|. Next, let α3 < 0, and again consider the case when A∗ > 0 (< 0).
Now, the criterion for solitary waves without flow reversals to exist is the same as
that stated above for the case α3 > 0, but the allowed ranges for the wave amplitude
a0 differ. For the first family, which has opposite polarity to α2, it follows again that
flow reversal will occur on the axis whenever α2A∗ < 0. For the second family, which
has the same polarity as α2, flow reversal can occur on the axis whenever α2A∗ > 0
and also 4|α2| < 3|α3A∗|. The case α2 = 0 is obtained in an obvious way as a limiting
case for each family.

When M(A) contains nonlinear terms of higher-order than the cubic term in (3.12),
analogous solutions can be constructed, and have been discussed by Derzho (1992)
and Clarke & Grimshaw (1999).

3.2. Solution in the inner zone

This is the region |x| < x0, where r > η(x) > 0 (see (2.15) and figure 1). The
recirculation zone itself is the region where 0 6 r < η(x) and |x| < x0. We shall
suppose that the recirculation zone has a long length scale and a small radius, so that
we may put

η = δf(z), (3.17a)

where

z = βx. (3.17b)

Here, β and δ are both small parameters whose relationship to the governing small
parameter ε will be determined below. The boundaries of the recirculation zone
|x| = x0 can now be written as |X| = X0, or |z| = z0, where X0 = εx0, z0 = βx0 and
so X0 = εz0/β. The width of the inner zone, 2z0, is a parameter to be determined
as part of our asymptotic construction. It turns out that z0 is of order unity, and so
ε� β. Thus, the inner zone is wide compared to the tube radius, but is smaller than
the overall length scale of the wave.

Outside the recirculation zone, we again seek a solution of the form (3.2), but with
the slow variable X replaced by z (3.17b),

φ = φ(0)(z, ξ) + ε2φ(1)(z, ξ) + · · · , (3.18a)

where

φ(0) = A(z)W (ξ). (3.18b)

Further, we shall assume that in this inner zone the amplitude A(z) is close to the
critical amplitude A∗ (3.10), so that

A(z) = A∗ + µB(z) signA∗, (3.19)

where µ is another small parameter whose relationship to the governing small par-
ameter ε will be determined below. Note that A∗ > 0(< 0) according as c(0) > 0(< 0),
and correspondingly we can assume that B(z) > 0 with a maximum value for B(z)
of 1, so that the maximum wave amplitude is |A∗|+ µ. Further, it is pertinent to note
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here that since we shall require φ(0)
xx to be O(ε2), it follows that

µβ2 = ε2. (3.20)

Then, on substituting (3.18) into (2.10a), and using (3.19) we obtain at the next order

4ξφ(1)
ξξ + λ(0)2φ(1) = G(1), (3.21a)

where

G(1) = ∓BzzW + ∆A∗W +
F(A∗W )

ε2
, (3.21b)

and

φ(1) = 0 at ξ = 1. (3.21c)

Hereinafter the alternative signs refer to A∗ > 0(< 0). The boundary condition at
ξ = δ2f2(z) is determined by matching with the solution in the recirculation zone,
using the conditions (2.16a) and (2.17). This process will be described in the next
paragraph, but we note here that because δ � 1, the boundary at ξ = δ2f2(z) may
be asymptotically relocated to ξ = 0. Then, a compatibility condition similar to (3.7)
is imposed on (3.21a) with the result that

∓Bzz + ∆A∗ +M(A∗) =
φ(1)(z, 0)λ(0)

I
. (3.22)

We shall now turn to the boundary conditions (2.16a) and (2.17). First, consider
the kinematic boundary condition (2.16a). Using (3.17a), (3.18) and (3.19) we find
that, at the leading order

ε2φ(1)(z, 0)± 1
2
µδ2λ(0)f2B − 1

16
δ4A∗λ(0)3

f4 = 0. (3.23)

Clearly, this expression now requires the following balance of parameters

ε2 = µδ2 = δ4. (3.24)

Recalling (3.20), we can see now that

δ = ε1/2, µ = ε, β = ε1/2, (3.25)

and so all the small parameters are now determined in terms of the governing small
parameter ε. Next, we consider the dynamic boundary condition (2.17). Here, our key
physical assumption is that the flow is stagnant to leading order in the recirculation
zone. Our arguments which produce this conclusion are presented in § 3.3. Now, we
note that (2.17) implies that, to leading order,

B = ± 1
4
A∗λ(0)2 δ2

µ
f2. (3.26)

Note that although δ2 = µ, we retain this ratio, and also the ratio µ2/ε2 as a useful
measure of the supercriticality of the wave.

The two expressions (3.23) and (3.26) have now determined φ(1)(z, 0) in terms of B,
and so the result can be substituted into (3.22) to yield the final equation for B,

∓Bzz + ∆A∗ +M(A∗)± νB2 = 0, (3.27a)

where

ν =
1

I |A∗|
µ2

ε2
. (3.27b)
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Here, we recall that the upper (lower) signs correspond to A∗ > 0(< 0). Here, ν is the
supercriticality parameter, which is of order unity in general since µ = ε, and has the
same sign as A∗, and hence the same sign as B. Note that, although µ = ε, here we
find it useful to retain them explicitly in (3.27b) for later use reverting to dimensional
variables. The solutions of (3.27a) must be matched to those of (3.8a) in the outer
zone. The matching conditions are

A = A∗, so B = 0 at |z| = z0, (3.28a)

and

AX = ±µ1/2Bz at |z| = z0. (3.28b)

The first of these conditions defines |z| = z0 as the place where criticality is reached
in the outer solution, whereas the second condition expresses the continuity of φ to
leading order. Note that the continuity of both φ and φx ensures also the continuity
of the vorticity from (2.10a). The solution of the amplitude equations (3.8a) and
(3.27a) is described in the next section.

3.3. Solution inside the recirculation zone

Here, we must revert to the original Bragg–Hawthorne equation (2.4) but with different
functional forms for C(ψ) and G(ψ) denoted by Ci(ψ) and Gi(ψ), respectively (cf. Keller
1995). In the recirculation zone, r is O(δ) and ψ is O(δ2), whereas the circulation Ci
is readily seen to also be of O(δ2). Hence, we introduce the scaled variables

Ψ =
ψ

δ2
, s =

ξ

δ2
, Ĉ i(ψ) =

Ci(ψ)

δ2
. (3.29)

Then, the Bragg–Hawthorne equation (2.4) becomes

δ4Ψzz + 4sΨss = 2δ2sGi(δ̂Ψ )− 4δ4Ĉi(Ψ )Ĉiψ(Ψ ). (3.30)

This is to be solved with the boundary conditions that

Ψ = 0 on s = 0, s = f2(z). (3.31)

We now make the crucial assumption that Gi(0) = 0 so that Ψ is O(δ4), and so
ψ is O(δ6), or O(ε3), in the recirculation zone. That is, to leading order, the flow is
stagnant there. Note that ψξ = Ψs is then O(ε2) in the recirculation zone, whereas the
result (3.26) is derived at the O(ε) term from ψξ(z, δ

2f2). It is also pertinent to note
here that the Rayleigh stability criterion requires that C(ψ)C ′(ψ)(u − c) should be
positive. It is readily verified that this is satisfied in the region outside the recirculation
zone, but may not be satisfied inside the recirculation zone since u − c changes sign
there. Our assumption that Gi(0) = 0, implies that u − c is O(δ4), and so in effect
we are suppressing the applicability of the stability criterion to a higher order in the
asymptotic expansion. It should also be noted here that although Ci(ψ)C ′i (ψ) is O(δ2)
from (3.29), the choice Ci(ψ) ≡ 0 (Keller 1995) would ensure at least neutral stability
in the recirculation zone. Note that the assumption that the recirculation zone is
essentially stagnant is consistent with the numerical unsteady calculations by Lopez
(1994) and Rusak et al. (1998).

A commonly used alternative to this procedure is to assume that Gi(ψ) and
Ci(ψ) are determined by analytic continuation from G(ψ) and C(ψ). However, as
noted above, this would then lead to violation of the Rayleigh stability criterion
at the lowest order being considered. Also, as noted by Leibovich (1984), analytic
continuation of C(ψ) into the recirculation zone implies a change of sign of the swirl
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velocity, which seems very unlikely on physical grounds. To avoid this reversion of
the swirl inside the recirculation zone Leibovich (1984) proposed to define C → −C
there. However, even with this amendment, the Rayleigh criterion for stability is still
violated. Nevertheless, it is useful to record the outcome of this procedure. In this
case Gi(0) = G(0) = 2Ω2

0/(1 − c(0)) + O(ε2) (see (2.8b)), and it is readily found that
then φ(1)(z, 0) = O(ε). Consequently, the amplitude equation (3.22) is not determined
at O(ε2). Instead, in this case, it is necessary to go to higher order, and a different
balance to (3.25) holds. Instead, we find that µ = β = δ2 = ε2/3, and the amplitude
equation (3.27a) is replaced by

∓Bzz + ∆A∗ +M(A∗)∓ ν̂B3 = 0, (3.32a)

where

ν̂ =
8

3A2∗I
µ3

ε2
. (3.32b)

The solutions of this equation are readily found in an analogous manner to those
of (3.27a) discussed in the next section. However, for the reasons outlined above, we
shall not pursue this case further here in any detail.

4. Solutions of the amplitude equations
Let us turn next to finding solutions of the amplitude equations (3.8a) and (3.27a),

with the matching conditions (3.28a) and (3.28b). First, we integrate (3.8a) once to
obtain, in the outer zone, |X| > X0 = µ1/2z0,

−A2
X + ∆A2 + 2

∫ A

0

M(A′) dA′ = 0, (4.1)

where we have used the condition that A→ 0 as |X| → ∞. Next, we use the matching
conditions (3.28a) and (3.28b) to show that

−µB2
z (z0) + ∆A2

∗ + 2

∫ A∗

0

M(A′) dA′ = 0. (4.2)

With the omission of the O(µ) term, this expression determines ∆ in terms of A∗. It
is also pertinent here to recall the inequality (3.9), which holds in the outer zone, and
may be rewritten in the form

− 1

|J0(λ(0))| <
A

A∗
6 1 for |X| > µ1/2z0, (4.3)

where the upper equality is, of course, obtained at |X| = µ1/2z0.
In the inner zone, we suppose that the solutions are symmetric, so that we can

impose the condition that Bz = 0 at z = 0. Also, we recall that we normalized the
parameter µ by setting B = 1 at z = 0, so that Am = A∗ + µ signA∗ is the (maximum)
amplitude of the wave at z = 0. One integration of (3.27a) now yields

B2
z = R(A∗)(1− B)− 2

3
ν(1− B3), (4.4a)

where

R(A) =

{
4

A

∫ A

0

M(A′) dA′ − 2M(A)

}
signA∗. (4.4b)

The general solution of (4.4a) can be expressed in terms of elliptic functions, or
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implicitly in the form

|z| =
∫ 1

B

{R(A∗)(1− u)− 2
3
ν(1− u3)}−1/2 du, (4.5)

from which it follows that

z0 =

∫ 1

0

{R(A∗)(1− u)− 2
3
ν(1− u3)}−1/2 du. (4.6)

This relation determines the width 2z0 of the recirculation zone in terms of the
parameter ν. Before proceeding we note that in order for (4.3a) to have solutions in
the range 0 < B < 1, we must have

2ν < R(A∗). (4.7)

Recalling the definition of the parameter ν in (3.27b) we see that the relation (4.7)
places an upper bound on the maximum amplitude |Am| = |A∗| + µ of the wave.
Further, as this maximum amplitude of the recirculation zone is reached, z0 → ∞;
that is, the width of the recirculation zone tends to infinity. This result is consistent
with the ‘semi-infinite’ model of vortex breakdown developed by Keller et al. (1985),
and Keller (1995). However, our present results show that this ‘semi-infinite’ model
is only a special limiting case. Although, our travelling-wave solutions in an infinite
tube, and the min–max standing-wave solutions in a constricted tube discussed in
Wang & Rusak (1997a), both approach to the Keller et al. (1985) critical solution as
the amplitude increases, any stability analogy with the unstable min–max solutions
does not necessarily hold. They are different solutions, in particular as our upstream
boundary condition is different from the inlet boundary condition used in the study
of a constricted tube by Wang & Rusak (1996), which allows for some upstream
influence on the inlet radial velocity. Thus, different problems are being addressed,
and no conclusion can be made about the stability of the present waves by directly
using the results of Wang & Rusak (1996). Although a stability study is beyond the
scope of the present work, we comment in § 5 on stability issues.

With B(z) now determined from (4.4), we can determine the speed parameter ∆
from (4.2) so that

∆ = F(A∗) +
µ

A2∗
{R(A∗)− 2

3
ν}, (4.8a)

where

F(A) = − 2

A2

∫ A

0

M(A′) dA′. (4.8b)

Then, from (4.7) and (4.8a) we find that

∆− F(A∗) >
4νµ

3A2∗
> 0. (4.9)

Since F(A∗) is just the value of ∆ when µ = 0, we see that the presence of the
recirculation zone increases/decreases the speed of the wave according to c(0) > 1(< 1)
(A∗ > 0(< 0)), and so these waves are supercritical. Further, from (4.8a), we see that
as µ increases so does the speed of the wave. Next, we note that in the outer zone,
where |X| > X0 and |A| < |A∗|, a necessary condition for the existence of the solution
is that ∆− F(A) > 0, and, hence, on using (4.8a), we see that

F(A∗)− F(A) +
µ

A2∗
{R(A∗)− 2

3
ν} > 0 all |A| < |A∗|. (4.10)
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Note that since F ′(A) = R(A) signA∗/A2, the condition (4.7) ensures that (4.10) is
certainly satisfied for A ≈ A∗.

It is now of interest to compare this solution with the corresponding solutions
without recirculation zones. These can be obtained from (4.1), now supposed valid
for all X. Let us suppose that the maximum amplitude is Âm, achieved at X = 0, say.
Then it follows that

∆̂ = F(Âm) (4.11)

where we let the speed parameter for such waves be denoted by ∆̂ rather than ∆.
Then, for |Âm| 6 |A∗|, such waves are well-defined, and have no flow reversals (here

we naturally assume that Âm and A∗ have the same sign). Indeed, as Âm → A∗, our
asymptotic procedure defines a continuation of such waves to waves with recirculation
zones. Here, instead let us consider a continuation for |Âm| > |A∗|, but for waves
without recirculation zones. Such solutions, of course, contain flow reversals, but can
nevertheless be formally defined. Thus, let Âm = A∗ + µ̂ signA∗. Then, for 0 < µ̂� 1,
(4.11) shows that

∆̂ = F(A∗) +
µ̂

A2∗
R(A∗) + · · · . (4.12)

If we now formally identify µ̂ with µ, and hence analogously Âm with Am, we see that

∆̂− ∆ =
2µν

3A2∗
> 0. (4.13)

It follows that, for the same maximum amplitude, the waves with recirculation zones
travel faster/slower than waves of the same amplitude without recirculation zones,
according to c(0) > 1(< 1) (A∗ > 0(< 0)). Next, we note that a necessary condition for
the existence of waves without recirculation zones, is

F(Âm)− F(A) > 0 all |A| 6 |Âm|. (4.14)

This condition is the counterpart of (4.10) for waves with recirculation zones. Evalu-
ation of (4.14) in the limit A → Âm, for µ � 1, shows that a necessary condition for
the existence of waves without recirculation zones is that

R(A∗) > 0. (4.15)

Note that this condition is much less restrictive than its counterpart (4.7) for waves
with recirculation zones.

To make further progress, we must consider some special cases where the form of
the nonlinear term M(A) is specified. However, first let us note that the structure of
the recirculation zone is independent of the details of the outer zone solution, and
depends only on the parameter R(A∗). Now, let the nonlinear term M(A) be given by
the cubic expression (3.12), from which it follows that

F(A) = −α1 − 2
3
α2A− 1

2
α3A

2, (4.16a)

R(A) = − 2
3
α2|A|A− α3|A|3. (4.16b)

Recalling the definition of the parameter ν, (3.27b), we now see that the condition
(4.7) reduces here to

µ2

Iε2
< − 1

3
α2A

3
∗ − 1

2
α3A

4
∗. (4.17)

Next, the outer solution is given by (3.13a) and (3.13b), and combining these expres-
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sions with (4.8a) we find that

∆+ α1 = γ2 = − 2
3
α2A∗ − 1

2
α3A

2
∗ +

µ

A2∗

{
R(A∗)− 2

3
ν
}
, (4.18)

where γ2 is the defining parameter for the outer solution. However, since γ2 > 0,
the right-hand side of (4.18) must be positive, and it is pertinent to note that the
constraints on the sign of magnitude of A∗ imposed by (4.18) are not sufficient to
ensure the validity of (4.17). The implications of this are discussed below. We should
also note that the positivity of (4.18) follows directly from the general result (4.10) in
the limit A→ 0. Next, we note that the constant X∗ in (3.13a) is given by

(z0 − z∗)2 =
9

α2
2A

4∗B2
0

{R(A∗)− 2
3
ν}, (4.19)

where B0 is obtained from (3.13b), so that B0 = 1 + 3α3A∗/2α2, and X∗ = µ1/2z∗.
Let us next consider the corresponding waves without recirculation zones. In this

case, the waves are defined by (3.13a) and (3.13b) for all X. The relation (4.11)
combined with (3.13b) then shows that

∆̂+ α1 = γ̂2 = − 2
3
α2Âm − 1

2
α3Â

2
m, (4.20a)

= − 2
3
α2A∗ − 1

2
α3A

2
∗ +

µ̂

A2∗
R(A∗). (4.20b)

Here, we recall that Âm = A∗ + µ̂ signA∗, and (4.20b) holds when µ̂ � 1. Here, γ̂
is the defining parameter for these waves (the counterpart of γ for the waves with
recirculation zones), and since γ̂2 > 0, the right-hand sides of (4.20a) and (4.20b)
must be positive. Note that the positivity of (4.20) also follows directly from (4.14) in
the limit A→ 0. Further, the general condition (4.15) must also hold here. However,
as in the case of the waves with recirculation zones, the positivity of (4.20) does not
ensure the validity of (4.15).

It is now necessary to consider the cases α3 > 0(< 0) separately. Let us first suppose
that α3 > 0, where the domains of existence for solitary waves, both with and without
recirculation zones are depicted in figure 3. In figure 3, we plot the quantity ε2R(A∗)
as a function of µ, where we recall from (4.16b) that

R(A∗) = − 2
3
α2|A∗|A∗ − α3|A∗|3. (4.21)

Also, we recall from § 3 that we require α2A∗ < 0 in this case. Note that because α2

and α3 are linear expressions in a1, a2, b1 and b2 (see (3.11)), and κ̂ = κ/ε2, σ̂ = σ/ε2

(see (3.8)) are defined by the basic inflow conditions of uniform axial velocity, and
uniform rotation, respectively, it follows that ε2R is, in fact, independent of ε, and a
function only of the actual inflow conditions.

Formally, waves with amplitudes below the critical value are represented in figure 3
by µ < 0. Such waves have no recirculation zones, and exist provided that |Âm| <
|2α2/3α3|; since Âm = A∗ + µ signA∗, we obtain

R(A∗) > α3A
2
∗µ, (4.22)

where, when equality holds, the solitary wave becomes the so-called ‘thick’ solitary
wave, which has infinite width. Note that this condition also formally defines solitary
waves without recirculation zones whose amplitudes exceed |A∗| in absolute value,
and are defined by µ > 0. In contrast, the condition (4.17) for the existence of solitary
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Figure 3. Typical domains of existence for solitary waves with and without recirculation zones when
α3 > 0. (a) The inflow conditions (solid lines) for the actual values of α2 and α3 used (the dashed
lines show the case of uniform axial velocity and rotation, i.e. α2 = α3 = 0). (b) The corresponding
plot of ε2R(A∗) as a function of µ; the solid line in µ > 0 is for the wave with recirculation zone,
whereas the dashed line is for the wave without a recirculation zone. The shaded regions show
the domains of existence for waves without recirculation zones when µ < 0, and for waves with
recirculation zones when µ > 0.

waves with recirculation zones can be written as

ε2R(A∗) > 2µ2/I |A∗|. (4.23)

Thus, we see that the family of solitary waves whose amplitudes are below the critical
value (i.e. µ < 0) can be extended to µ > 0 as either a family of solitary waves with
recirculation zones, or without recirculation zones. The domains of existence for the
waves with, or without, recirculation zones do not coincide, and either kind can exist
in a region where the other does not. As noted previously, the condition (4.23) places
an upper bound on the maximum amplitude Am = |A∗|+ µ of the solitary waves with
recirculation zones. If we denote this upper bound by µmax, then we see that (4.23)
implies that 0 < µ < µmax, where

µ2
max = I |A∗|2ε2(− 1

3
α2A∗ − 1

2
α3A

2
∗). (4.24)

Note that the right-hand side is a function only of the inflow conditions. As µ→ µmax,
the recirculation zone becomes infinitely wide, and reaches a maximum radial extent
ηmax, where

η2
max =

4µmax

|A∗|λ(0)2 . (4.25)

The maximum radial extent of the recirculation zone is depicted in figure 4.
To complete this discussion of the case α3 > 0, we show in figure 5 plots of the

wave profiles for the upstream conditions of figure 3, for two representative values of
µ. The broadening of the recirculation zone as µ increases is quite marked. In figure 6,
we show more detail of the shape of the recirculation zone as µ increases.

Next, we suppose that α3 < 0, and the corresponding plots are shown in figures 7
and 8. In this case, there are two families of solitary waves, one with α2A∗ < 0, and
the other with α2A∗ > 0. If α2A∗ < 0, then waves without a recirculation zone exist
provided only that (4.20) holds, that is,

R(A∗) > − 1
2
α3|A∗|2(|A∗| − µ). (4.26)

However, if instead α2A∗ > 0, then the analogous condition for the existence of
waves without a recirculation zone is again (4.26) together with the condition that
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Figure 4. The maximum radial extent of the recirculation zone when α3 > 0,
as a function of ε2R(A∗).
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Figure 5. Streamline patterns for waves with recirculation zones, when α3 > 0 and for the inflow
conditions of figure 3(a). (a) µ = 0.014 = 0.088µmax; (b) µ = 0.159 = 0.999µmax.

|Âm| > |4α2/3α3|, or

R(A∗) > − 1
2
α3|A∗|3 − 2

3
α2µA∗. (4.27)

However, it can be shown that the conditions (4.26) and (4.27) are equivalent (at least
to O(µ)), and hence it is sufficient here to use only (4.26).

In contrast, the conditions (4.17) and γ2 > 0 (4.18), for the existence of solitary
waves with recirculation zones, together give (4.23), and

ε2R(A∗) > −ε2 α3

2
|A∗|2(|A∗| − µ) + 2

3
µ

µ2

I |A∗|2 . (4.28)

These expressions hold for both families α2A∗ < 0(> 0). Here, of course, µ > 0, and
we see that, after comparing the expression (4.28) with (4.26) (for µ 6 0), solitary
waves with recirculation zones emerge continuously from the solitary waves without
recirculation zones as µ passes through zero, and R(A∗) passes through− 1

2
α3|A∗|3 = R∗,

say. Again we note that for µ > 0, the domains of existence for waves with, or without,
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Figure 6. The recirculation zone for the case α3 > 0 and the inflow conditions of figure 3(a).
(i) µ = 0.1µmax, (ii) 0.5µmax, (iii) 0.9µmax, (iv) 0.9999µmax. There is extreme sensitivity as µ → µmax,
and hence this last value is readily distinguished from µmax.
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Figure 7. Typical domains of existence for solitary waves with and without recirculation zones
when α3 < 0. Otherwise, as for figure 3.

recirculation zones, do not coincide. The criterion (4.28) holds for 0 < µ < µc, where
µc is defined by the intersection of the boundaries specified by (4.23) and (4.28), so
that

µc = ( 1
2
ε2R∗I |A∗|)1/2 − 1

6
ε2R∗I + · · · . (4.29)
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Figure 8. The maximum radial extent of the recirculation zone when α3 < 0, as a function of
ε2R(A∗), for two cases of inflow conditions; on case (i) the angular velocity is uniform, while in case
(ii) there is some shear present. The inflow conditions are shown in (a), and note that case (i) is
also the inflow condition shown in figure 7(a). The maximum radial extent of the recirculation zone
is shown in (b), where the solid line is the boundary defined by (4.23), and the dotted and dashed
lines are those defined by (4.28) for the case of profiles (i) and (ii), respectively.

For µ > µc, the criterion is (4.23). The intersection point µ = µc defines a value of
R(A∗) = Rc, where

Rc = R∗
(

1− 2

3

µc

|A∗| + · · ·
)
. (4.30)

Here, we recall that R∗ = − 1
2
α3|A∗|3, and we note that Rc < R∗. For 0 < µ < µc,

equality in the criterion (4.28) determines a limiting wave in which the outer zone
solution has infinite width (i.e. γ → 0, in which limit the exponential decay at infinity
is replaced by algebraic decay). If we denote the corresponding value of µ by µmin,
then µmin is determined as the smallest real, positive root of the cubic equation

2
3
µ3
min − ε2R∗|A∗|Iµmin + ε2I |A∗|2(R∗ − R(A∗)) = 0. (4.31)

Note that here the corresponding value of R(A∗) lies in the range R∗ > R(A∗) > Rc.
However, for µ > µc, it is equality in (4.23) which determines the limiting wave where
now it is the recirculation zone which has infinite width. The limiting value µmax is now
given by (4.24), where of course we now require that µmax > µc and correspondingly
R(A∗) > Rc. In the range R∗ > R(A∗) > Rc, we see that µmin < µ < µmax, and is an
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Figure 9. Streamline patterns for waves with recirculation zones, when α3 < 0 for the inflow
conditions of figure 7(a). (a) µ = 0.014 ≈ µmin; (b) µ = 0.0385 = 0.999µmax.

example of a jump bifurcation; there is no continuation here from waves without
a recirculation zone. As µ → µmin, the recirculation zone reaches a minimum radial
extent ηmin, where

η2
min = 4µmin/|A∗|λ(0)2

. (4.32)

In this range R∗ > R(A∗) > Rc, it follows that the radial extent of the recirculation
zone varies in the range ηmin < η < ηmax. The plot of the variation of the radial
extent of the recirculation zone is shown in figure 8. For R(A∗) < Rc, there are no
steady solitary waves, either with, or without recirculation zones. However, in figure 8,
solitary waves with recirculation zones exist to the right-hand side of the dotted lines
in the case of inflow profile (i) and the dashed lines in profile (ii). Note that such
solitary waves for inflow profile (i) can exist in a region where there are none for the
case of inflow profile (ii).

In figure 9, we show plots of the wave profiles for the upstream conditions of
figure 7, for two representative values of µ; in figure 9(a), we show a case when
µ is close to µmin, where the wave in the outer zone has a very large width (with
approximately algebraic decay) whereas in figure 9(b), we show a case when µ is close
to µmax, so that it is now the recirculation zone which has the large width. In figure 10,
we show more detail of the shape of the recirculation zone as µ varies. In figure 11,
we compare the wave profiles of two waves with the same speed, but with opposite
polarity. The wave of elevation has a recirculation zone as calculated by our present
asymptotic model, whereas the wave of depression has no flow reversals and a much
lower amplitude (in absolute value). This illustrates the existence of multiple solutions
for α3 < 0, and indicates the possibility of a sudden transition from a large-amplitude
wave to a small-amplitude wave of large width. In figure 12, we show the profiles
of the wave amplitude A(X) for waves with recirculation zones, as predicted by our
present asymptotic model and, for comparison, as predicted by the modified KdV
solution (3.13a). Note that for µ ≈ µmin the difference is barely discernible, but for
µ ≈ µmax it is clearly seen.

We note that the flow inside the separation bubble is assumed to be stagnant in
our model. The modified KdV solution (3.13), which can be formally extended to
amplitudes allowing recirculation, leads to the incorrect results when µ ≈ µmax as
it implicitly assumes the analytic continuation of the governing equations into the
separation zone. This result agrees with the findings of Goldshtik & Hussain (1997).
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Figure 10. The recirculation zone for the case α3 < 0 and the inflow conditions of figure 7(a). (i)
µ = 0.371µmax ≈ µmin, (ii) 0.5µmax, (iii) 0.9µmax, (iv) 0.9999µmax.
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Figure 11. Comparison of (a) the amplitude profile A(X) and (b) the streamline patterns for waves
with and without recirculation zones (solid and dashed lines, respectively). These respective solitary
waves have the same phase speed. The maximum amplitudes are 0.5604 for a wave of elevation
(with reversal) and 0.0252 for a wave of depression, respectively.

The stagnant flow in the separation zone was also observed in numerical calculations
by Rusak et al. (1998).

Finally, in this section, we consider the special case when α3 = 0, so that M(A)
(equation (3.12)) contains only quadratic nonlinearity; note that this requires that
a2 = b2 = 0 in the expression (3.11) for U and Ω. In this case, the solution (3.13a) in
the outer zone reduces to the familiar KdV solitary wave (3.14). The continuation to
waves with recirculation zones now requires that α2A∗ < 0, and occurs continuously
as µ passes through zero. Here R(A∗) = − 2

3
α2|A∗|A∗, and the domain of existence for

solitary waves with recirculation zones is (4.23) with α3 = 0, that is

− 1
3
ε2α2A

3
∗I > µ2. (4.33)

In contrast, the only requirement for the existence of solitary waves without recircu-
lation zones is that α2A∗ < 0, for both µ > 0 and µ < 0.

It is also of interest to consider the special case when R(A) ≡ 0, so that M(A) is a
linear function of A, and can be absorbed into the detuning parameter ∆. This case
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Figure 12. Comparison of the wave amplitude profile A(X) for waves with a recirculation zone,
as predicted from our model (3.8), (3.27), (3.28) and that predicted by (3.13a) (solid and dashed
lines, respectively) when α3 < 0 with the inflow conditions of figure 7(a). Here, case (i) is for
µ = 0.364µmax = 0.014 where the difference between these predictions is barely visible, whereas case
(ii) is for µ = 0.999µmax = 0.0385 where the difference is clearly visible.

corresponds, of course, to the situation when the inflow conditions are just those of
uniform axial velocity and uniform angular velocity. Then it is well-known (Fraenkel
1964) that there are no solitary waves without recirculation zones, and our analysis
shows also, from (4.7), that there can be no solitary waves with recirculation zones.

5. Discussion
In the preceding sections we have described an asymptotic construction of solitary

waves with recirculation zones located on the tube axis, for the situation when the
inflow conditions upstream are close to, but slightly different from uniform axial
flow and uniform rotation. Although our procedure can, in principle, be applied to
quite general, albeit small, departures from this state of uniform inflow conditions,
our analysis shows that the presence of such solitary waves is sensitive to the actual
upstream axial and rotational shear configurations. However, the structure of the inner
and recirculation zones is universal, and depends on the inflow conditions through
the single constant R(A∗) (see (4.3b)). In particular, in all cases, the recirculation
zone has a maximum amplitude, given by (4.6), and as this maximum amplitude is
approached, the recirculation zone increases in width. From a detailed analysis of the
special case, when these shear profiles are described by (3.11), we can infer that there
are two possible scenarios. In the first, deduced from the case α3 > 0 in § 3, there
is a continuous transition as the solitary-wave amplitude is increased through the
critical amplitude to a wave with a recirculation zone. In the second, deduced from
the case α3 < 0 in § 3, although there may again be a continuous transition, there
also exists a range of parameters characterizing the inflow conditions where there is
a jump bifurcation; that is, solitary waves with recirculation zones can exist in such
a parameter range without any continuation from the low-amplitude solitary waves.
Note that although our asymptotic procedure can be readily extended to higher order,
thus alleviating to some extent the present restriction to inflow conditions which are
only a small departure from the uniform state, we contend that the dominant effects
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Figure 13. (a) Jetlike profiles of the inflow axial velocity, while the angular rotation is uniform.
(b) The recirculation zone. µ = 0.035, ηmax = 0.1855, ηmin = 0 corresponds to profile (i), ηmax = 0.136,
ηmin = 0.112 corresponds to profile (ii). There is no solution with a recirculation zone for the case
of profile (iii).

of variable inflow profiles are captured in the present model. Even in the framework
of the present formulation, we can consider more complicated velocity profiles by
using polynomial approximations of these profiles. A polynomial description of the
upstream axial and swirl velocity profiles of the Nth order in r2 will lead to a
polynomial nonlinearity of (N + 1)th order in the resulting equation for the wave
amplitude.

Here, we will use the illustrative models discussed in § 4 to demonstrate explicitly
how variations of the axial and azimuthal velocities in the approaching vortex affect
the properties of the solitary waves with recirculation zones. Figure 13 shows that
for a given uniform swirl and a jet-like axial velocity, as the magnitude of the axial
velocity increases, the region of existence of the solitary wave with a recirculation
zone shrinks. Note that, in figures 13 and 14, we have set rather large deviations
(0.2–0.3) from the uniform flow. In our experience, asymptotic models may provide
good results even when the small parameter is not so small. Figures 13 and 14
illustrate what kind of approaching vortex might produce a separation ‘bubble’ of
about 0.2–0.3 of the radius of the tube, a size which is typical in experiments. Namely,
for a small jet magnitude (especially with some deficit near the axis) there is a
unique solitary wave with recirculation. As we increase the magnitude of the axial
velocity, there exist multiple wave solutions and the flow may jump between them;
also, there is a minimum size of the recirculation zone. When we further increase
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Figure 14. (a) Wakelike profiles of the inflow axial velocity, while the angular rotation is uniform.
(b) The recirculation zone. µ = 0.035; (i) ηmax = 0.1743, (ii) 0.2065, (iii) 0.1569, and ηmin = 0 for all
cases.

the axial velocity, there is no solitary wave solution with a recirculation zone. For
a wakelike axial velocity (figure 14) in the approaching vortex, the transition from
a wave without a recirculation zone to the wave containing a recirculation zone is
continuous. For smaller deficits and wider profiles of the axial wakelike velocities, the
recirculation zone becomes wider with the same radial extent and the value of the
maximum extent becomes smaller. We note that for the jetlike axial profile the effect
is opposite, i.e. for stronger and narrower profiles of the axial velocity, the maximum
extent of the recirculation zone becomes smaller. This result appears to contradict
that obtained by Keller, Egli & Althaus (1988) for the particular case of a semi-infinite
recirculation zone; however, the method of construction used by Keller et al. (1988)
for the recirculation zone requires the swirl magnitude to decrease as the strength of
the axial jet is increased. In fact, as we demonstrate in the next paragraph, the size
of the recirculation zone can be expected to increase with the swirl magnitude, and
we suggest that it is this effect which determined the result obtained by Keller et al.
(1988).

In figures 15 and 16 we show how different profiles of the swirl velocity affect
the properties of the solitary wave with a recirculation zone. It is clearly seen that
for a sufficiently wide jetlike, constant or wakelike profile of the axial velocity ηmax
increases monotonically as the magnitude of the swirl increases. In turn, for narrow
jetlike profiles of the axial velocity, the solitary waves with a recirculation zone exist
only for sufficiently large swirls (to the right of curve (ii), figure 15). This is a typical
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Figure 15. The maximum radial size of the recirculation zone, ηmax, as a function of the maximum
swirl Ωmax (i.e. the maximum value of w∞/r in (2.6b)). Curve (i) corresponds to uniform axial
velocity u∞ = 1, and curve (ii) is for the jetlike profile u∞ = 1 + 0.25(1− r2).
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Figure 16. (a) Inflow profiles of the swirl, while the axial velocity is uniform, u∞ = 1. (b) The
recirculation zone. µ = 0.035, and ηmax = 0.1626, 0.2219 for the profiles (i) and (ii), respectively.

case for the experiments of Leibovich (1991) where the ‘bubble’ type of breakdown
was not observed for small swirls. In figure 16, we show that wider profiles of the
swirl results in a smaller maximum amplitude of the recirculation zone. If the radial
extent of the recirculation zone is the same, the flow with a wider profile of swirl, for
a given profile of the axial velocity, produces a wider recirculation zone.
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It is pertinent to compare our results with those of others, such as Leibovich
and collaborators (see, for instance, Leibovich 1970, 1991; Leibovich & Randall
1973; Leibovich & Kribus 1990), who have used long-wave theories to study vortex
breakdown. We note here two crucial differences. First, weakly nonlinear theories,
which are appropriate when the inflow conditions contain substantial axial and/or
rotational shear, usually lead to the KdV equation, or occasionally, the modified KdV
equation. Although such theories can provide useful information on vortex breakdown
in some circumstances, they cannot be used beyond their range of validity of small
amplitudes, and, in particular, cannot be used to describe incipient flow reversal. The
exceptional case is precisely that studied here, namely, when the inflow conditions are
only weakly sheared and close to uniform axial velocity and uniform rotation; as we
have shown, in this special case, a theory can be developed for finite-amplitude long
waves. Secondly, as we have already noted, the commonly used practice of determining
the circulation and vorticity in the recirculation zone by analytic continuation, does
not lead to physically meaningful solutions (see, for instance, Keller et al. 1985;
Keller 1995). In § 3.3, we described briefly the implementation of this hypothesis, and
the outcome is (3.32), in place of (3.27). However, although analogous solutions to
those described in § 4 can be readily constructed, they are very likely to be unstable
by Rayleigh’s criterion, as we have already noted in § 3.3. Further, we note that
the nonlinear term in (3.32a) has the opposite polarity to that in (3.27a). This has
the consequence that the necessary condition (4.6) for the existence of solutions in
the inner zone is now replaced with R(A∗) + 2ν > 0. This is a very mild constraint,
and, in particular, can be satisfied when R(A∗) = 0, which is the case when the inflow
conditions are uniform axial velocity and uniform rotation. Thus, the use of (3.32a)
leads to the incorrect result that uniform inflow conditions can allow for a solitary
wave with a recirculation zone, in marked contrast to numerous theoretical and
numerical studies (see, for instance, Fraenkel 1964; Keller et al. 1985; Hanazaki 1996),
and the numerical experiments of Kopecky & Torrance (1973). Note that although
Hanazaki (1996), in numerical simulations of the full Navier–Stokes equations for
the case of uniform inflow conditions, reported the formation of recirculation zones
on the axis of the tube, the recirculation zones were found in a train of waves
downstream of a local contraction in the tube wall.

A systematic stability analysis of the stationary solutions obtained by us is beyond
the scope of this study. However, we would like to present some speculations that
our solitary-wave solutions may be stable in an axisymmetric framework. Numerical
simulations of the unsteady Euler equations for a similar problem for internal waves in
a stratified fluid have shown that solitary waves containing a separation zone are stable
(Aigner et al. 1999). Further, such waves are often observed in the atmosphere and
oceans that also support the assumption of their stability (see Derzho & Grimshaw
1997 for the relevant references). We expect that the situation in the rotating fluid
may be similar, owing to the close similarity of the governing equations. Indeed,
some preliminary simulations by Aigner (2001) indicate that these inertial solitary
waves with recirculation zones found here are very robust. Nevertheless, some other
numerical simulations of solitary-like disturbances in rotating fluids do indicate that
these disturbances can be unstable, even in an axisymmetric formulation (Lopez 1994;
Wang & Rusak 1997a; Rusak et al. 1998). In Lopez (1994), the breakdown of the
initial vortex was induced by a local contraction of the tube; thus, at high Reynolds
number, two stable branches of solutions are part of one branch with a fold, with the
part of the branch in the fold being unstable. The two stable solutions correspond
to the slightly disturbed (by the contraction) initial flow, and to a nonlinear lee
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train, accordingly. Unstable solutions consist of accelerating (flow over contraction)
and retarding parts (Beran & Culick 1992). In the ideal case, these parts integrally
compensate each other and create a zero-mass solution that is consistent with the
boundary conditions at the inlet. Our formulation for an infinite tube does not
allow such solutions and therefore any stability analogy with our solutions is not
relevant. Further, we note that Brown & Lopez (1990) examined vortex breakdown
in a straight tube caused by viscous dissipation; however, this case is beyond the
scope of the present study. Wang & Rusak (1997) and Rusak et al. (1998) described
another kind of unstable solitary-like disturbance (their ‘min–max’ solutions) for the
case of a constricted tube. However, since the inflow boundary conditions of Rusak
et al. (1998) do not coincide with our boundary conditions at far upstream for any
finite length of the tube, their stability analysis for their ‘min–max’ solutions does not
apply to our solutions.

Rusak and collaborators (see for instance, Rusak et al. 1998) have also proposed a
model for a near-critical swirling flow, but again for the case of a constricted tube.
They studied the effects associated with small-inlet azimuthal vorticity perturbations
in a straight tube (Rusak 1998), or with small pipe divergence, or due to slight
viscosity (see the references in Rusak et al. 1998). It was shown that a regular
asymptotic expansion, in terms of a small departure from the initial flow due to these
perturbations, is singular around the critical swirl. Thus, relatively large disturbances
(of the order of the square root of the perturbation) may be induced by small
perturbations when the approaching flow is near-critical. The same result is obtained
in our study. Rusak (1998) deals with a relatively general profile of axial and swirling
flows. However, the perturbation due to the induced disturbance in the model of Rusak
(1998) should still be small compared with the flow field in the incoming columnar
vortex. Thus, this model is not set up to give a description of disturbances, which are
large in comparison with the incoming flow. Nevertheless, Wang & Rusak (1997b)
accounted for the effect of weak viscosity, and then obtained a good agreement of
their asymptotic model with the numerical simulations of Beran & Culick (1992)
for the dependence of the minimum axial velocity (on the axis) as a function of
swirl, although comparisons of the wave profiles were not presented. On the other
hand, our model is constructed to describe such large disturbances, which may lead
to the formation of a separation ‘bubble’, although the form of the incoming flow
in our study is more restricted. We also note that if small-amplitude models, such
as those of Wang & Rusak (1997b) and Rusak (1998), are nevertheless applied to
describe large disturbances containing separation zones, there is an inevitable, implicit
assumption of the analytic continuation of the solution from outside to the inside
of the separation zone. On the other hand, the numerical simulations, such as those of
Wang & Rusak (1997a), show that a stagnation zone naturally appears as a result of
unsteady evolution.

Next, we observe that although our emphasis in this paper is on solitary waves
with recirculation zones, our asymptotic model can be readily adapted to describe
conjugate columnar states and periodic wavetrains as well. Consider first the issue of
columnar states, where we turn to (3.8a) for the wave amplitude in the outer zone.
Putting AXX = 0 we see that the resulting nonlinear equation, ∆A + M(A) = 0, has,
in general, a multiple set of solutions for the constant amplitude A. Thus, if M(A)
is a polynomial of the Nth order, there may be up to N such conjugate states, one
of these being A = 0. For instance, the cubic form (3.12) for M(A) will yield three
conjugate states if α2

2 > 4α3(∆ + α1), and only one otherwise. When α3 = 0 there are
always two real conjugate states.
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Periodic wavetrain solutions can now be superimposed on each conjugate state.
In the outer zone, such periodic wavetrains still satisfy (3.8a) in the outer zone,
whereas here we confine our attention to one spatial period of the wave, and with
this constraint, figure 2 again defines the problem configuration. Now, one integration
of (3.8a) will yield (4.1) again, but with an arbitrary constant on the right-hand
side in place of zero. In the inner zone, the governing equation is again (3.27), and
one integration will yield an equation identical in form to (4.3a), but with a different
definition of R(A∗). For a periodic wave, we suppose that the amplitude varies between
Am = A∗ + µ sign A∗ and A0 (for a solitary wave A0 = 0), and then the arbitrary
constant described above is readily determined in terms of A0. We then find that, in
place of (4.3b), for a periodic wavetrain

R(A) =

{
A
∫ A
A0
M(A′) dA′

A2 − A2
0

− 2M(A)

}
sign(A∗). (5.1)

With this new definition of R(A∗), (4.3a) determines B(z) as before, and in particular
(4.5) and (4.6) continue to hold. The speed parameter ∆ is now given by

∆ = F(A∗) +
µ

A2∗ − A2
0

R(A∗)− 2
3
ν, (5.2a)

where

F(A) = − 2

A2 − A2
0

∫ A

A0

M(A′) dA′, (5.2b)

which replace the expressions (4.8a) and (4.8b), respectively. Note that F ′(A)(A2 −
A2

0) = R(A) signA∗. The necessary condition (4.6) for the existence of solitary waves
with a recirculation zone holds here too for periodic waves. It thus follows from
(5.2a) that, for the usual case when |A∗| > |A0|, these periodic waves, like their
solitary wave limit, are supercritical, and as µ increases, so does the speed. The
counterpart of (4.10) is the necessary condition for the existence of these periodic
waves, (A2 − A2

0)(∆− F(A)) > 0, or using (5.2a)

(A2 − A2
0)

{
F(A∗)− F(A) +

µ

A2∗ − A2
0

R(A∗)− 2
3
ν

}
> 0. (5.3)

which should hold for all A between A0 and A∗. As for the solitary wave case, this is
certainly satisfied when A ≈ A∗, but does provide a possible constraint when A ≈ A0.
Note also that while solitary waves with recirculation zones depend on the single
parameter µ (or Am) for given inflow conditions, these periodic wavetrains depend on
two parameters µ and A0; in particular, the wavelength is then determined. Clearly,
as A0 → 0, the wavelength tends to infinity and we recover the solitary wave. Further,
note that if instead |A0| > |A∗|, then (5.2a) predicts the existence of subcritical periodic
wavetrains with recirculation zones.

It is pertinent to note here that, although our discussion in the preceding paragraph
demonstrates the existence of periodic wavetrains with recirculation zones, technically
our derivation of the outer zone amplitude equation (3.8a) requires that we can specify
the inflow conditions at infinity. Clearly, this is not possible for a periodic wavetrain,
and indeed, this is a well-known feature of steady nonlinear wave equations, such as
that considered here. Instead, we can interpret the present construction of a periodic
wavetrain in one of two ways. Either, we can say that it is a modulated periodic
wavetrain which is locally valid as an asymptotic approximation in some region of X-
space, but must be matched to the correct conditions at infinity by other appropriate
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solutions, or, we can say that it represents a valid (asymptotic) periodic solution
to the steady-state equations, whose mean-value after spatial averaging consists of
a nearly uniform axial velocity and angular velocity, together with a superimposed
mean state 〈A〉W (ξ), where 〈A〉 is the mean-value of A. In this latter case, it is not
possible to make a simple identification of the shear components U and Ω, in (2.7)
and (2.8), respectively, with this mean state, which in any case, is not a solution of the
governing equation in general. We shall not pursue this topic of periodic wavetrains
any further here, as we intend to discuss them in more detail elsewhere.

Although our primary purpose in this paper is to demonstrate the construction of
solitary waves with recirculation zones, it is relevant to make some remarks about
the relationship of these present results to the phenomenon of vortex breakdown. It
is widely accepted that the ‘bubble’ appearing at the axisymmetric stage of vortex
breakdown is the manifestation of the incipient breaking of a large-amplitude inertial
wave (see, for instance, Keller et al. 1985; Keller 1995; Leibovich 1984; Leibovich &
Kribus 1990). The mechanisms which may lead to such wave-breaking are usually
associated with flow divergence, or perturbations in the inflow azimuthal vorticity.
These transient processes are beyond the scope of this present work, where we have
examined the steady-state structure of such recirculation zones, or ‘bubbles’. We
note that many experimental observations show that the development of a ‘bubble’
is associated with the formation of a stagnation point (Sarpkaya 1971), an initial
expansion of the recirculation zone, followed by a contraction, with the occurrence
of a second stagnation point. This tendency towards a steady-state structure is quite
consistent with the results obtained here. The precise nature of the transient processes
which lead to the contraction of the ‘bubble’ to a steady state would seem to be unclear
at the present time. One possibility is effectively dissipative (from the point-of-view
of the axisymmetric system), involving the transfer of energy from the axisymmetric
wave to non-axisymmetric disturbances owing to a three-dimensional instability as
proposed by Leibovich (1984) (see also Leibovich & Randall 1973; Leibovich 1991).
Escudier (1988), and Keller et al. (1985) argued that the ‘bubble’ formation consists of
a two-stage transition. The first (upstream) is a loss-free and force-free transition from
the approaching vortex and leads to a semi-infinite columnar flow with stagnation
zone near the centreline. The second transition is similar to an internal hydraulic
jump and is essentially dissipative. Those two transitions may combine to a single
dissipative transition if their propagation speeds are close and therefore create a
‘bubble’ -like structure. Another possibility is that the ‘bubble’ formation is essentially
inertial and non-dissipative. This point-of-view is supported by our results in-so-far
as we have demonstrated that the presence of the ‘bubble’ zone in an infinite tube is
related to the global structure of the inertial wave, and its existence is sensitive to the
inflow conditions. On the other hand, it must be conceded that our results also show
that the structure of the ‘bubble’ zone is universal, and this could be interpreted as
being due to a redetermination of the circulation and vorticity inside the ‘bubble’ by
dissipative processes.

The effects due to instabilities and dissipation are also very important near the
downstream stagnation point, where their combination may lead to the formation
of three-dimensional spiral structures and turbulence. It is not our intention here
to discuss the mechanisms leading to these various kinds of breakdown. However,
we note that our model can explain the observation (see Leibovich 1991) that for
a jetlike profile of axial velocity, the ‘bubble’ type of breakdown occurs only for
sufficiently large inflow swirls. The margin between swirls such that the ‘bubble’
does or does not exist is quite sharp. This may explain why the ‘bubble’ type of
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breakdown may suddenly appear and then disappear (replaced with a spiral-type of
breakdown) even when the inflow varies only slightly. Finally, we again recall that
our formulation is not directly related to the existing experimental and numerical
studies of vortex breakdown as we formulate our problem in an infinite straight tube.
Our main result is a construction of the asymptotic procedure for the description of
large-amplitude inertial solitary waves with recirculation zones. This result is a first
step to more realistic formulations. Our procedure can be applied to the more realistic
case of slightly uneven constricted tube with fixed zero radial velocity at the inlet as
considered by Lopez (1994) and Beran & Culick (1992), or to the case of fixed-inlet
azimuthal vorticity considered by Rusak et al. (1998). These studies are in progress.

This research was supported by ARC grant 89927007, and RFBR grants 96-01-
01949 and 97-01-00773, associated with Oleg Derzho affiliation with Inst. Thermo-
physics, Novosibirsk, Russian Academy of Science.

Appendix
The exact form of the coefficients in (3.12) for the velocity and swirl profiles given

by (3.11) and Ω0 = 1
2
λ(0) is the following:

α1 = 0.333[−κ̂(8a2 + 2λ(0)2

a1) + 3λ(0)2

σ̂b1]− 0.291λ(0)2

(κ̂a2 − 2σ̂b2)

+2λ(0)2

κ̂(a1 + a2)− 2λ(0)2

σ̂(b1 + b2)

α2 = 0.394λ(0)2

(−κ̂a1 + 2σ̂b1) + 0.277λ(0)2

(−κ̂a2 + 8
3
σ̂b2),

α3 = 0.295λ(0)2

(−κ̂a2/3 + σ̂b2).
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