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Abstract

The existence of trapped modes near obstacles in two-dimensional waveguides
is well established when the centre-line of the guide is a line of symmetry for the
geometry. In this paper we examine cases where no such line of symmetry exists.
The boundary condition on the obstacle is of Neumann type and both Neumann and
Dirichlet conditions on the guide walls are treated. A variety of techniques (varia-
tional methods, boundary integral equations, slender-body theory, modified residue
calculus theory) are used to investigate trapped mode phenomena in a number of
different frequency bands.

1 Introduction

Symmetry plays a key role in determining the existence or otherwise of trapped modes
(acoustic resonances) near obstacles in waveguides. Such modes represent oscillations
of finite energy, localized about the obstacle, and in the case of a sound-hard obstacle
situated in a sound-hard two-dimensional parallel-plate guide so that the resulting geom-
etry is symmetric about the centreline, the existence of trapped modes was proved by
Evans, Levitin, and Vassiliev (1994). The symmetry of the geometry makes it possible
to decompose the problem into two parts, one symmetric and the other antisymmetric
about the centreline. The antisymmetric problem exhibits a cut-off frequency, below
which waves cannot propagate down the guide (i.e. the continuous spectrum is bounded
away from zero) and a variational technique can be used to prove that trapped modes
(corresponding to eigenvectors of the differential operator) exist below the cut-off.

In the problem discussed above, the boundary condition for the potential on the guide
walls is that the normal derivative vanishes and thus the walls can equally well be thought
of as representing lines of symmetry. Hence the trapped modes also exist in the presence
of an infinite array of symmetric obstacles. For such an array we could look for modes
which are antisymmetric, rather than symmetric, about the lines mid-way between the
obstacles. Again we can use the symmetry of the geometry to decompose the problem
into two parts, one symmetric and the other antisymmetric about the centreline, and in
this case both problems exhibit cut-offs below which propagating modes cannot exist.
However, for the case of symmetry about the centreline trapped modes are known not
to exist below the cut-off frequency for a wide class of geometries (McIver and Linton
1995) and for the antisymmetric problem a variational argument can be used to show
that modes do exist provided the obstacle satisfies a simple geometric condition (Evans
and Porter 1998).

In this paper we investigate the situation where the geometry is not symmetric about
the centreline of the guide. Thus we consider a sound-hard obstacle placed within a
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Figure 1: Definition sketch.

parallel-plate waveguide and we treat both Neumann and Dirichlet boundary conditions
on the guide walls. Thus the problems under consideration can, by reflection, be extended
to problems involving infinite arrays of obstacles. A number of different techniques are
employed to shed light on the existence of trapped modes in various different situations;
the emphasis is on the results rather than the methods.

All the problems which are considered in this paper are of the form (see Figure 1)

(∇2 + k2)φ = 0 in Ω, (1.1)

∂φ

∂n
= 0 on ∂B, (1.2)

φ → 0 as |x| → ∞, (1.3)

together with either

φ = 0 on y = ±d (1.4)

or

∂φ

∂y
= 0 on y = ±d. (1.5)

The condition (1.3) is equivalent, in the context of this problem, to the assertion that φ
represents an oscillation of finite energy, i.e.

∫
Ω |∇φ|2 dΩ < ∞. The aim will be to find

values of the parameter k (related to the angular frequency of oscillations ω and the speed
of sound c through k = ω/c) for which the problem (1.1)–(1.3) with either (1.4) or (1.5)
possesses non-trivial solutions. These will be referred to as the Dirichlet and Neumann
problems respectively and any non-trivial potentials φ which satisfy these problems are
called trapped modes.

Separation of variables shows that solutions in an empty guide take the form

sin λn(y + d)e±γnx, n = 1, 2, . . . ,

for the Dirichlet problem and

cos λn(y + d)e±γnx, n = 0, 1, . . . ,
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for the Neumann problem, where

λn = nπ/2d and γn =
(
λ2

n − k2
)1/2

= −i
(
k2 − λ2

n

)1/2
. (1.6)

If γn is imaginary these correspond, in the context of the velocity potential

Φ(x, y, t) = Re
[
φ(x, y)e−iωt

]
, (1.7)

to propagating modes, whereas if γn is real we only consider modes which decay down
the guide. Hence the number of possible propagating modes in the guide depends on the
value of k. If λN < k < λN+1 there are N modes possible for the Dirichlet problem and
N + 1 possible modes for the Neumann problem.

In the following section we consider the case of the Dirichlet problem for k < λ1.
This is a situation where the frequency is below the cut-off for propagating modes and so
standard variational methods are applicable. The interesting thing about this situation
is that for a large class of obstacles trapped modes are known not to exist, but we show
that provided the obstacle is sufficiently far away from the centreline modes do exist.
This existence result is confirmed by numerical calculations for circular shapes and is
also consistent with results found using a slender-body theory based on that developed
in Evans and McIver (1991). For example, an obstacle geometry might be specified using
two parameters a and b that describe, respectively, the size and position within the guide
(there are then two non-dimensional parameters a/d and b/d). In general, obstacles
that support trapped modes are found within two-dimensional regions of the (a/d, b/d)
parameter space. For the special case of a thin plate aligned with the guide walls, it turns
out that modes are possible for all positions of the plate (except on the centreline), and
calculations for this geometry are given based on modified residue calculus theory.

In section 3 we examine the Neumann problem, again for k < λ1. In this case one
propagating mode is possible and the existence of trapped modes is much harder to
establish. Numerical calculations based on an integral equation formulation are presented
which provide strong numerical evidence for existence and which are consistent with the
results from slender-body theory. The existence of the possible propagating mode leads
to the need to satisfy a side condition which corresponds to forcing the amplitude of this
mode to be zero. In order to be able to do this, we need to introduce an extra geometrical
parameter into the definition of the obstacle. For example, an obstacle geometry might be
defined in terms of the parameters a/d and b/d as above, and a further non-dimensional
parameter δ describing the shape of the obstacle. In general, obstacles that support
trapped modes are found on two-dimensional surfaces in the (a/d, b/d, δ) parameter space.

One propagating mode is also possible for the Dirichlet problem if λ1 < k < λ2 and
this situation is considered in section 4. Slender-body theory suggests that trapped modes
can be found in this case also. The only known example of a trapped mode of this type is
that computed for a semicircle with a specific radius, attached to one of the walls, in Evans
and Porter (1998) and the numerical value for the radius predicted by the slender-body
theory is in good agreement with Evans and Porter’s result.

It is possible to increase k systematically through the cut-off values λn and for each
extra propagating mode that is introduced, an extra side condition needs to be satisfied.
Thus it is anticipated that in order to find trapped modes for higher frequencies one would
need to consider obstacles defined by more parameters. We have not followed this tack
here. Rather, in section 5, we consider a specific example of the Neumann problem for the
frequency range λ2 < k < λ3. The geometry is that of a thin plate aligned with the guide
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walls, for which atypical results are to be expected (see Evans, Linton, and Ursell (1993)
and section 2 below). The given frequency range allows for three propagating modes in
the guide and, provided the plate is not too far from the centreline, two modes in the
region between the plate and each wall. Residue calculus theory is used to show that
in this case trapped modes exist for a discrete set of points in the (a/d, b/d) parameter
space.

2 Dirichlet modes kd < π/2

In this section we consider the Dirichlet problem with k < λ1, a condition which prohibits
the existence of modes propagating down the guide since γn is real for all n ≥ 1. It is
known that for some shapes B trapped modes do not exist. For example, McIver and
Linton (1995) showed that if the normal (nx, ny) to the boundary ∂B, directed out of the
fluid region, satisfies

ny ≤ 0 if y ≥ 0,
ny ≥ 0 if y ≤ 0,

(2.1)

then no trapped modes exist for kd < π/2. Shapes which satisfy this condition include,
for example, rectangles which enclose the origin with sides parallel to the guide walls, or
any number of circles with centres on the guide centreline.

Variational principle

The existence of modes for some geometries can be proved using a standard variational
argument. Suppose that ∂B can be defined by the union of the two curves

y = y+(x), y = y−(x), x ∈ [−a, a],

y+(±a) = y−(±a), −d < y−(x) ≤ y+(x) < d.

The trial function

ψ =


cos(λ1y) if |x| < a,

cos(λ1y) exp(−ε(|x| − a)/a) if |x| > a,
(2.2)

where ε > 0, satisfies (1.3) and (1.4), is continuous across x = ±a, and has the property
that as ε → 0,∫

Ω(∇ψ)2 dΩ∫
Ω ψ2 dΩ

= λ2
1

(
1 +

2ε

πa

∫ a

−a
sin λ1(y+ − y−) cos λ1(y+ + y−) dx

)
+ O(ε2). (2.3)

It follows that the lowest point of the spectrum (the spectral parameter being k2) of the
negative Laplacian on Ω with Dirichlet conditions on the guide walls but a Neumann
condition on ∂B is less than λ2

1 = π2/4d2, provided∫ a

−a
sin λ1(y+ − y−) cos λ1(y+ + y−) dx < 0. (2.4)

As long as the possibility that y+(x) and y−(x) are identical is excluded, in which case
B would be an obstacle of zero thickness, we have

sin λ1(y+ − y−) > 0, (2.5)
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since 0 ≤ y+(x) − y−(x) ≤ 2d for all x ∈ [−a, a]. Thus a sufficient condition for the
existence of a trapped mode is

|y+ + y−| > d for all x ∈ [−a, a]. (2.6)

For the special case where y+(x) = b+f(x) and y−(x) = b−f(x), (f(x) ≥ 0, |b±f(x)| < d),
in which case we are dealing with an obstacle with a line of symmetry parallel to the guide
walls, the condition reduces to

|b|/d > 1/2. (2.7)

Numerical computations

The condition (2.7) is consistent with the numerical results for a circle with radius a/d =
0.2 and centre at y = b, presented in Figure 2 and computed using the integral equation
method described in McIver et al. (2001). However, the results show that (2.7) is not a
necessary condition for the existence of trapped modes. Further numerical results (not
shown) suggest that the largest circle for which this type of trapped mode exists has
a/d ≈ 0.525 and b/d ≈ 0.475. When b/d = 0.8, for the example given, the circle is
touching the guide wall, but the numerical calculations can be continued beyond this,
corresponding to the case where there is a protrusion into the guide. When this protrusion
becomes a semicircle (i.e. when b/d = 1) the situation is equivalent to a circle on the
centreline of a channel of width 4d with a Dirichlet condition imposed on the centreline
exterior to the circle. For this case Porter and Evans (1999) proved the existence of a
mode provided J1(πa/d) > 0 (i.e. a/d � 1.22) and Maniar and Newman (1997) computed
modes for a/d � 1.35.

0 0.2 0.4 0.6 0.8 1
b d

0.496

0.497

0.498

0.499

0.5

kd p

Figure 2: Trapped-mode wavenumbers kd/π plotted against b/d for a circle with when
a/d = 0.2.
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Slender shapes

Further insight can be gained by considering bodies which are slender. For convenience
we restrict attention to bodies symmetric in x and whose boundary in x ≥ 0 is described
by

x = εf(y), y ∈ (−d, d), where ε � 1. (2.8)

A normal vector to the body surface is (nx, ny) = (1,−εf ′(y)) and a slender body is
defined to be one for which

f ′(y) = O(1) as ε → 0, (2.9)

so that ny = O(ε). The method described in section 4 of McIver et al. (2001) and in
McIver (2001) shows that in the limit as ε → 0, trapped modes exist provided

γ1 =
επ

4d2

∫ d

−d
f ′(y) sin 2λ1y dy. (2.10)

Since γ1 is by definition positive for the range of values of k being considered, the right-
hand side must be positive for this equation to have any solutions for k.

Consider a shape defined by a function f(y) which is zero if y �∈ (b−c, b+c), (|b±c| < d),
and which satisfies

f ′(b − u) = −f ′(b + u), f ′(b + u) < 0, for 0 < u < c. (2.11)

Then the integral on the right-hand side of (2.10) reduces to

∫ c

0
f ′(b + u) cos 2λ1b sin 2λ1u du

and in order for this to be positive we must have b/d > 1/2, which is consistent with the
variational proof and the numerical results given above.

Thin plates

The slender body theory does not apply when B has finite extent in the x-direction but
zero thickness, and the particular test function used in the variational proof above yields
no information. However, the case of a thin plate aligned with the guide walls can be
analyzed using the so-called modified residue calculus theory. This was done for an off-
centre plate in a guide with Neumann conditions on the walls (and kd < π/2) in Evans,
Linton, and Ursell (1993), though in the problem under consideration here the situation
is somewhat simpler as the frequency is below the first cut-off for propagating modes. If
we consider a plate of length 2a situated at y = b, then (1.2) becomes

∂φ

∂y
= 0 on y = b, −a < x < a (2.12)

and the boundedness of φ at the ends of the plate leads to the edge conditions

∇φ = O(r
−1/2
± ) as r± ≡ {(x ∓ a)2 + (y − b)2}1/2 → 0. (2.13)
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The results of applying the modified residue calculus technique to this problem are as
follows. Without loss of generality we will assume that b > 0 and then define

νn =
(n − 1

2
)π

d − b
, µn =

(n + 1
2
)π

d + b
, (2.14)

αn = (ν2
n − k2)1/2, βn = (µ2

n − k2)1/2. (2.15)

It then follows that if
πd

d + b
< 2kd < π, (2.16)

then αn, βn, γn, n ≥ 1 are all real, whereas

β0 = −iβ′, where β′ = (k2 − µ2
0)

1/2, (2.17)

is imaginary. The condition for the existence of trapped modes symmetric about x = 0 is

β′(a + Θ) = χ + δ + (n + 1
2
)π, (2.18)

for some integer n, where

χ =
∞∑

n=1

(
tan−1 β′

αn

+ tan−1 β′

βn

− tan−1 β′

γn

)
, (2.19)

δ = arg

(
1 −

∞∑
n=1

[
An

αn + iβ′ +
Bn

βn + iβ′

])
, (2.20)

Θ =
1

π

(
(d + b) ln

2d

d + b
+ (d − b) ln

2d

d − b

)
. (2.21)

Here An and Bn are the solutions to the infinite system of coupled equations

Am + Cm

∞∑
n=1

(
An

αm + αn

+
Bn

αm + βn

)
= Cm, (2.22)

Bm + Dm

∞∑
n=1

(
An

βm + αn

+
Bn

βm + βn

)
= Dm, (2.23)

where m = 1, 2, . . . , and

Cm =
2αm(γm − αm)(βm + αm)

(γm + αm)(βm − αm)
e−2αm(a+Θ)

∞∏
n=1
n�=m

(1 + αm/αn)(1 + αm/βn)(1 − αm/γn)

(1 − αm/αn)(1 − αm/βn)(1 + αm/γn)
.

(2.24)

Dm =
2βm(γm − βm)(αm + βm)

(γm + βm)(αm − βm)
e−2βm(a+Θ)

∞∏
n=1
n�=m

(1 + βm/αn)(1 + βm/βn)(1 − βm/γn)

(1 − βm/αn)(1 − βm/βn)(1 + βm/γn)
.

(2.25)

Because of the presence of the exponentially decaying factors in (2.24) and (2.25), the sys-
tem of equations (2.22), (2.23) converges very rapidly and provides an extremely efficient
method for computing the unknowns Am and Bm.

For the case of antisymmetry about x = 0, the condition for the existence of trapped
modes is

β′(a + Θ) = χ + δ + nπ, (2.26)

7



for some integer n, where Θ, χ and δ are as before, but now Am and Bm are the solutions
to the system of equations

Am − Cm

∞∑
n=1

(
An

αm + αn

+
Bn

αm + βn

)
= −Cm, (2.27)

Bm − Dm

∞∑
n=1

(
An

βm + αn

+
Bn

βm + βn

)
= −Dm, (2.28)

with m = 1, 2, . . . .
In Figure 3 a typical set of trapped-mode wavenumbers, kd/π, is plotted against a/d

for b/d = 0.6. The solid lines correspond to modes symmetric about x = 0 and the dashed
lines correspond to modes antisymmetric about x = 0. As a/d increases the modes appear
alternately symmetric and antisymmetric from the cut-off kd = π/2 and decrease towards
kd = πd/2(d + b) = 0.3125π as a/d increases.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

a/d

kd/π

Figure 3: Trapped-mode wavenumbers kd/π for modes symmetric (—) and antisymmetric
(– –) about x = 0 plotted against a/d when b/d = 0.6.

The variation of trapped-mode wavenumbers with b/d when a/d = 6 is illustrated in
Figure 4. Again the solid lines represent modes symmetric about x = 0 and the dashed
lines correspond to modes antisymmetric about x = 0. The number of modes that exist
can be seen to increase as b/d increases from 0. Note that there are no modes when b = 0,
which follows from the remarks preceding (2.1). It is noteworthy, however, that modes
exist for all b > 0, although for shapes of non-zero area the variational proof above only
establishes existence for b/d > 1/2.

3 Neumann modes kd < π/2

In this section we consider the Neumann problem with k < λ1. With this condition one
mode can propagate down the guide, namely waves of the form exp(±γ0x) = exp(±ikx).
The case of a shape B which is symmetric about y = 0 is well understood and a general
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Figure 4: Trapped-mode wavenumbers kd/π for modes symmetric (—) and antisymmetric
(– –) about x = 0 plotted against b/d when a/d = 6.

existence result was established by Evans et al. (1994) using the symmetry of the geometry
to decompose the problem into its symmetric and antisymmetric parts. Another case
which has been treated is that of a thin plate aligned with the guide walls. Evans et al.
(1993) solved this problem using residue calculus theory and proved the existence of modes
for sufficiently long plates and it was subsequently shown that this was a special case of a
more general class of modes which exist in cylindrical guides in higher dimensions (Groves
1998, Linton and McIver 1998, Davies and Parnovski 1998). The property that the thin
plate has which makes it possible to consider it as a special case is that an incident wave
of the form φ = exp(±ikx) is not scattered by the plate.

Here we will consider shapes which do not have either of the simplifying properties
mentioned above and we will refer to any modes that are found as embedded modes, in
view of the fact that we are unable to decompose the problem so that they correspond to
eigenvalues below the continuous spectrum of some differential operator.

Numerical computations

Numerical calculations, performed using the boundary integral equation method described
in McIver et al. (2001) (in which a homogeneous integral equation of the second kind is
solved subject to the satisfaction of a side condition) are presented below for a family of
shapes whose boundaries are described parametrically by

x = a(1 − 2δ) cos θ, y = b + a(1 + δ sgn θ) sin θ, θ ∈ [−π, π). (3.1)

The parameter a is a measure of the size of the obstacle, we call b the offset value, and δ
governs the shape, with δ = 0 corresponding to a circle, see Figure 5.

The results of the numerical calculations are shown by the solid curves in Figure 6,
in which the dashed curves represent the results from the slender-body theory presented
below. Results are given for three different values of a/d, namely 0.25, 0.5, and 0.75. For
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x

y−b

Figure 5: Shapes defined by (3.1) for various values of δ. Starting from the bottom, the
curves correspond to δ = −0.4, −0.2, 0, 0.2, and 0.4.

each value of a/d we find pairs of values (b/d, kd/π) at which embedded trapped modes
exist. The shapes defined by (3.1) become more slender as δ approaches 0.5, at which
point we would have a thin plate perpendicular to the guide walls, and the increased
accuracy of the slender-body theory in predicting both the offset and kd values in this
limit is clear.

For the case of a shape B which is symmetric about y = 0, Maniar and Newman (1997)
identified the existence of trapped modes with the occurrence of unusually large forces
on bottom-mounted vertical cylinders having cross-section ∂B, situated in the centre of
a large row of such cylinders and subject to an incident surface water-wave parallel to
the row. (For such problems the depth dependence can be factored out, resulting in
the two-dimensional Helmholtz equation.) Calculations, using the panel code WAMIT
developed at MIT, show that the same phenomenon occurs for the embedded modes
shown in Figure 6.

As an example, consider the shapes defined by (3.1) with a/d = 0.5 and δ = −0.2. For
such a shape, computations predict a trapped mode when b/d ≈ 0.111 and kd ≈ 1.265
(kd/π ≈ 0.403). An infinite array of such shapes can be constructed so that the lines
of symmetry of the array correspond to the guide walls as in Figure 1, with each shape
having the appropriate offset predicted by the trapped mode calculations. A section of
such an array (rotated through 90◦) is shown in Figure 7.

The scattering of an incident surface water wave by a finite array of bottom-mounted
vertical cylinders, whose cross-sections form part of the infinite array described above, can
then be considered. Specifically, we take 20 cylinders and assume that the incident wave is
parallel to the cylinder row (from the left, say, in Figure 7). After the depth dependence
has been factored out, the problem reduces to solving the Helmholtz equation in the
region outside the cylinders, with the wavenumber k being related to the frequency ω
through the dispersion relation k tanh kh = ω2/g, where h is the water depth and g is the
acceleration due to gravity.

The solid curve in Figure 8 shows the magnitude of the wave load (non-dimensionalized
with respect to ρgAah; ρ being the water density and A the incident wave amplitude) on
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Figure 6: Offset values and trapped-mode wavenumbers for shapes defined by (3.1). Solid
curves correspond to numerical computations and dashed curves to the slender-body ap-
proximation. a) a/d = 0.25, b) a/d = 0.5, c) a/d = 0.75.
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d+b d−b

Figure 7: Shapes defined by (3.1), with a/d = 0.5, b/d = 0.111, and δ = −0.2, arranged
so as to form part of an infinite array. The dashed lines represent lines of symmetry.
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kd p
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Figure 8: Wave loads on a vertical cylinder whose cross-section is defined by (3.1), with
a/d = 0.5, plotted against kd/π. The solid line is for a cylinder in the middle of a row of
20, as described in the text, with the wave direction parallel to the row, and the dashed
line is for a cylinder in isolation.

one of the two central cylinders in the array. For comparison, the dashed line shows the
load that the cylinder would experience if it were in isolation, and it is clear that near
the predicted trapped-mode wavenumber there is a sharp peak, resulting in wave loads
about 12 times the open-sea values. Convergence tests suggest that over the bulk of the
wavenumber range shown, the results are accurate to well within 1%, but near the sharp
resonance peak there may be errors of a few percent.

Slender shapes

The equation corresponding to (2.10) for the Neumann case is

γ1 = − επ

4d2

∫ d

−d
f ′(y) sin 2λ1y dy, (3.2)
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but now the possible existence of waves of the form exp(ikx) leads to the need to satisfy
the side condition ∫ d

−d
f ′(y) cos λ1y dy = 0, (3.3)

which ensures that the amplitude of any waves is zero. If the obstacle is symmetric about
y = 0 then (3.3) is satisfied identically and (3.2) reduces to equation (4.5) in Evans and
McIver (1991).

Consider a shape which is symmetric about y = b and is defined by a function f(y)
which is zero if y �∈ (b− c, b+ c), (|b± c| < d). Suppose further that f ′(y) is one signed for
y ∈ (b, b+c); an off-centre ellipse is an example of such an obstacle. For such obstacles the
existence condition (3.3) can be satisfied only if b = 0 so that the problem reduces to the
symmetric (about y = 0) case investigated by Evans et al. (1994) and others. Hence, for
this class of symmetric obstacles there would appear to be no embedded trapped modes
for kd ∈ (0, π/2).

If the obstacle does not have a line of symmetry parallel to the x-axis the existence
condition can be satisfied, and hence an embedded trapped mode found, for many shape
functions. For shapes given by (3.1), the existence condition reduces to

∫ π/2

−π/2
sin θ cos [λ1(b + a(1 + δ sgn θ) sin θ)] dθ = 0, (3.4)

solutions to which can easily be found numerically, and then the trapped-mode wavenum-
ber can be found from

γ1 =
πa

4d2
(1 − 2δ)

∫ π/2

−π/2
sin θ sin [λ1(b + a(1 + δ sgn θ) sin θ)] dθ. (3.5)

For a given value of a/d, the slender-body theory predicts the existence of modes for
pairs (b/d, kd/π), just as the numerical computations do. For δ > 0, which corresponds
to shapes whose extension in the y-direction is greater than in the x-direction, the results
from slender-body theory are quite accurate, whereas as δ decreases from zero the accuracy
of the results also decreases. Because a circle corresponding to δ = 0 is symmetric about
y = b, the slender-body approximation predicts the correct offset (b = 0) for that case.

Another example, for which the integrals can be evaluated explicitly, is a triangular
obstacle described by

x = εf(y) ≡ a

c
(y − b − c)[H(y − b − c) − H(y − b)], y ∈ [−d, d], (3.6)

where H denotes the Heaviside step function, the base of the triangle is at y = b, and c
is the height of the triangle. In this case, the existence condition reduces to

tan λ1b =
λ1c − sin λ1c

cos λ1c − 1
(3.7)

and for a sufficiently small c/d > 0 there is one solution for b ∈ (−d, 0) so that the obstacle
straddles y = 0 (if c/d is chosen to be too large the obstacle extends outside the guide).
As c/d → 0, b ∼ −c/3 and the trapped mode frequency satisfies

γ1 ∼ π2ac/8d3. (3.8)
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4 Dirichlet modes π/2 < kd < π

In this section we consider the Dirichlet problem with λ1 < k < λ2 for slender shapes. As
in the previous section this condition allows for one propagating mode down the guide,
in this case corresponding to waves of the form

sin λ1(y + 2d)e±γ1x.

The equation for the trapped mode frequencies is now

γ2 = − επ

2d2

∫ d

−d
f ′(y) sin 2λ2y dy (4.1)

and the side condition which needs to be satisfied is∫ d

−d
f ′(y) cos λ1y cos λ2y dy = 0. (4.2)

An obstacle that is symmetric about y = 0 with a solution that is antisymmetric
about y = 0, corresponds to an asymmetric structure within a Dirichlet guide of width d.
Equation (4.2) is then satisfied identically and (4.1) becomes

γ2 = −πε

d2

∫ d

0
f ′(y) sin 2λ2y dy (4.3)

which, after adjustment of the guide width and origin of coordinates, may be seen to be
exactly equivalent to (2.10).

For the triangle given by (3.6) the existence condition (4.2) has real solutions such
that as c/d → 0 then b ∼ −c/3. It then follows from (4.1) that

γ2 ∼ π2ac/2d3. (4.4)

For a semicircle of radius a with its flat edge on y = d the existence condition (4.2) is
satisfied for a/d ≈ 0.59. This situation is equivalent to one studied by Evans and Porter
(1998) for which a value of a/d ≈ 0.53 was obtained using a multipole method.

5 Neumann modes π < kd < 3π/2

The existence of trapped modes in the cases considered in §§3–4 involve the satisfaction
of a side condition which corresponds to ensuring that the amplitude of any propagating
mode is zero. In each case there is one propagating mode and so one side condition.
Here we will examine a situation where two side conditions are involved. Specifically we
will look at a plate aligned with the guide walls (i.e. B is {(x, y) : y = b, x ∈ [−a, a])
on which Neumann conditions are applied and restrict attention to the frequency range
λ2 < k < λ3. In this range three types of propagating mode are possible in the main body
of the guide:

e±ikx, e±iγ1x cos λ1(y + d) and e±iγ2x cos λ2(y + d).

For the modes above and below the plate we define

νn = nπ/(d − b), αn =
(
ν2

n − k2
)1/2

= −i
(
k2 − ν2

n

)1/2
, (5.1)

µn = nπ/(d + b), βn =
(
µ2

n − k2
)1/2

= −i
(
k2 − µ2

n

)1/2
, (5.2)
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and provided
πd

d − b
< kd <

3π

2
, (5.3)

for which we require b/d < 1/3, it follows that α0 = β0 = −ik, α1 = −iα and β1 = −iβ,
where α and β are real and positive, all the other α’s and β’s being real. In other words,
provided (5.3) is satisfied, two modes are possible in the regions above and below the
plate:

e±ikx and e±iαx cos ν1(d − y) in b < y < d,

e±ikx and e±iβx cos µ1(d + y) in − d < y < b.

This turns out to be precisely the right number of propagating modes which enables us
to construct solutions which decay as |x| → ∞.

The method that we use to construct trapped modes is the modified residue calculus
theory which was used for the Neumann problem and the same geometry (with kd < π/2)
by Evans et al. (1993). The procedure follows closely that given in their paper and only
brief details illustrating the main differences will be given here. If we seek trapped modes
which are symmetric about x = 0, then matching eigenfunction expansions in the regions
above and below the plate with an expansion valid for x > a leads to the systems of
equations

∞∑
n=3

Un

{
1

γn − αm

+
e−2αma

γn + αm

}
= 0, m = 0, 1, 2, . . ., (5.4)

∞∑
n=3

Un

{
1

γn − βm

+
e−2βma

γn + βm

}
= 0, m = 0, 1, 2, . . ., (5.5)

for some unknown coefficients Un, equations which are identical to those in Evans et al.
(1993) except that in their paper the summations start from one. In the present situation
the summations start from three because we require the three possible modes as x → ∞
to have zero amplitude, corresponding to U0 = U1 = U2 = 0.

Information about the solution to these equations can be obtained by consideration
of the function

f(z) = g(z)h(z), (5.6)

where

g(z) = ezΘ(1 − z/α2)(1 − z/β2)
∞∏

n=3

(1 − z/αn)(1 − z/βn)

(1 − z/γn)
, (5.7)

h(z) = 1 +
∞∑

n=2

(
An

z − αn

+
Bn

z − βn

)
, (5.8)

in which Θ is defined in (2.21) and An and Bn are undetermined. The function g(z)
contains a factor for each of the numbers αn, βn and γn that are real and it can be shown
that f(z) = O(z−1/2) as z → ∞ avoiding certain real positive values. This result is crucial
to the success of the residue calculus method.

The solution to (5.4) and (5.5) is given by

Un = R(f : γn), (5.9)
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where R(f : z0) is the residue of f(z) at z = z0, provided we also satisfy the conditions

f(αm) + e−2αmaf(−αm) = 0, m = 0, 1, 2, . . ., (5.10)

f(βm) + e−2βmaf(−βm) = 0, m = 0, 1, 2, . . .. (5.11)

For m ≥ 2 these conditions lead to an exponentially convergent infinite system of real
equations for the unknowns An and Bn, similar in form to (2.22) and (2.23), while for
m = 0 and 1 we obtain

f(−ik) + e2ikaf(ik) = 0, (5.12)

f(−iα) + e2iαaf(iα) = 0, (5.13)

f(−iβ) + e2iβaf(iβ) = 0. (5.14)

If we define

χ(x) = tan−1 x

α2

+ tan−1 x

β2

+
∞∑

n=3

(
tan−1 x

αn

+ tan−1 x

βn

− tan−1 x

γn

)
(5.15)

and

δ(x) = arg

(
1 −

∞∑
n=2

[
An

αn + ix
+

Bn

βn + ix

])
, (5.16)

then (5.12)–(5.14) reduce to

k(a + Θ) =
(
l + 1

2

)
π + χ(k) + δ(k), (5.17)

α(a + Θ) =
(
m + 1

2

)
π + χ(α) + δ(α), (5.18)

β(a + Θ) =
(
n + 1

2

)
π + χ(β) + δ(β), (5.19)

for some integers l, m, n.
The first observation to make about these conditions is that as a/d → ∞, δ(x) tends

rapidly to zero. As we will show below, trapped modes only exist for values of a/d > 1
and all of the values computed are such that the δ terms in (5.17)–(5.19) are numerically
insignificant. Hence we will ignore them from now on. This is the great advantage of the
modified residue calculus method; for all but the smallest values of a/d, the solution can
be determined from explicit formulas, rather than requiring the inversion of a system of
equations.

A very crude, but as it turns out quite accurate, approximation to the solution to
our problem can be found by simply assuming that the potential in the region x > a is
identically zero. Then in the regions 0 < x < a, b < y < d and 0 < x < a, 0 < y < b we
can assume that φ takes the form

A cos(2l + 1)
πx

2a
+ B cos(2m + 1)

πx

2a
cos

π(d − y)

d − b

and

A cos(2l + 1)
πx

2a
+ B cos(2n + 1)

πx

2a
cos

π(d + y)

d + b
,

respectively, where l, m, n are non-negative integers. (Of course, for such a solution φx

is not continuous across x = a.) For each term in the above expressions to satisfy the
Helmholtz equation for the same value of k we would require

k2 =
(
l + 1

2

)2 π2

a2
=

(
m + 1

2

)2 π2

a2
+

π2

(d − b)2
=

(
n + 1

2

)2 π2

a2
+

π2

(d + b)2
. (5.20)
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Equivalently
ka =

(
l + 1

2

)
π, αa =

(
m + 1

2

)
π, βa =

(
n + 1

2

)
π, (5.21)

which is just (5.17)–(5.19) without Θ, χ or δ. Eliminating k and a from (5.20), we find
that

(2l + 1)2 − (2m + 1)2

(2l + 1)2 − (2n + 1)2
=

(
d + b

d − b

)2

> 1, (5.22)

from which it follows that a necessary condition that 0 < b/d < 1/3 is

l > n ≥ m ≥ 0. (5.23)

Thus, for any given triple of integers satisfying (5.23), we can calculate b/d from
(5.22) and, if b/d < 1/3, kd and a/d follow easily from (5.20). We might therefore hope
that solutions to (5.17)–(5.19), in which the terms Θ, χ and δ are all ignored, are good
approximations to the full problem. That this is the case is illustrated in Figure 9 in
which the dots have been calculated by solving (5.21), whereas the crosses are solutions
to (5.17)–(5.19) with Θ and χ included. It is also possible to construct an approximate
solution which satisfies continuity of φx at x = a, but not continuity of φ. This leads to
a condition of the form (5.22) but with 2l + 1, 2m + 1, 2n + 1 replaced by 2l, 2m, and
2n respectively. The resulting numerical approximations to the triples (a/d, b/d, kd) at
which trapped modes exist are not as good as those shown in the figure.

Equation (5.17) shows that, since we are only considering values of kd in the range
(π, 3π/2), the maximum possible value of a/d is governed by the magnitude of the integer
l. In the results shown in Figure 9, all integer triples satisfying (5.23) with l ≤ 14 were
used (for which b/d < 1/3 and kd ∈ (π, 3π/2)) and this ensures that all eigenvalues with
a/d < 10 have been found. Thus the two uppermost panels in the figure are complete,
whereas there are more eigenvalues that would appear in the lowest panel corresponding
to larger values of l.

6 Conclusion

The question of the existence of trapped modes near obstacles in two-dimensional waveg-
uides has been considered for cases where there is no symmetry about the centre-line of the
guide. The boundary condition on the obstacle is of Neumann type and both Neumann
and Dirichlet conditions on the guide walls have been examined.

For the Dirichlet problem below the cut-off for propagating modes we have shown that
trapped modes do exist for a class of obstacles, although it is known that for other classes
they do not. In general, the closer a body is to the centreline, the less likely it is for a
trapped mode to exist. An exception to this is a thin plate aligned with the guide walls,
for which modes exist for any offset greater than zero.

For the Dirichlet problem between the first and second cut-offs and for the Neumann
problem below the first cut-off (situations in which one propagating mode is possible in the
guide) trapped modes are also possible, though in these cases we need to consider families
of geometries defined by two parameters. The modes then exist if these parameters are
related in a certain way.

Finally for the Neumann problem between the second and third cut-offs, so that three
propagating modes are possible in the guide, we have solved the problem for a specific
geometry (a thin plate aligned with the guide walls) and shown that modes exist for
discrete pairs of the two parameters which define the geometry.
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Figure 9: Triples (a/d, b/d, kd) corresponding to embedded trapped modes for an off-
centre plate. The dots are the solutions to (5.21) while the crosses are found from (5.17)–
(5.19)
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