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Abstract

The interaction of two lump solitons described by the Kadomtsev-Petviashvili I(KPI)
equation is analyzed using both exact and numerical methods. The numerical method
is based on a third order Runge-Kutta method, and a Crank- Nicholson scheme. The
main characteristic of a direct interaction when the two lumps are initially aligned along
the x-axis, is that they may separate in the y-direction, but then come back to the x-
axis after collision; the dependence of the maximum separation in the y-direction on
the relative velocity difference is described. Two lumps may also experience an abrupt
phase change in the case of an oblique interaction.

1 Introduction

The Kadomtsev-Petviashvili (KP) equation

∂

∂x

(
∂u

∂t
+ 6u · ∂u

∂x
+

∂3u

∂x3

)
+ 3σ2 ∂2u

∂y2
= 0, (1)

is one of the prototype equations with wide applications in the modern physics of nonlinear
waves[1, 3, 12]. In the case σ2 = −1, Eq. (1) is usually called the KPI equation, whereas
in the case σ2 = 1, the KPII equation. Both KPI and KPII are exactly integrable via
the Inverse Scattering Transformation (IST). The characteristic features of solutions of
the KP equation are essentially different for the choice of the sign of σ2. Plane solitons
(of the KdV equation) are stable with respect to a transverse disturbance for the KPII
equation, but, they are unstable to a transverse disturbance for the KPI equation. At
the same time, the KPI equation admits lump-type solitons, which are localized in all
directions, and decay algebraically. Lump solitons have been widely investigated since they
were first discovered[10, 14]. A striking property of the interaction of two lump solitons is
that not only does each soliton retain its shape and initial parameters (amplitude, velocity,
size) after collision, but its final phase shift also turns out to be zero (which is in marked
contrast to the collision of two solitons of the KdV equation). But this does not mean
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that the interaction of two (or more) such solitons is as trivial as the superposition of
their individual fields. Pelinovsky & Stepanyants [16], Gorshkov et al. [10] considered
multi-solitons and used asymptotic and exact methods to describe lump soliton dynamics.
For the case of a direct interaction, when the solitons are initially aligned along the same
x-direction, they may interact through a process of partial separation in the transverse y-
direction, before returning to the x-axis; in particular, they found that when the asymptotic
velocity difference (of two the solitons) vanishes, the nonlinear interaction leads to an infinite
phase shift of their trajectories; further, for some multi-solitons there may exist equilibrium
states corresponding to bound states of individual solitons. Ablowitz and Villarroel [2] also
constructed this class of lump solitons using IST in combination with perturbation methods,
and more properties of multi-solitons were found.

More recently, lump solitons have been found to exist in some other nonlinear equations
[3, 7, 9, 17]. However the dynamic behaviour of the interaction of multiple lump solitons so
far has not been fully understood; moreover, there are examples of inexact, or quasi-soliton
behaviour where no analytical results are available and thus numerical studies are essential
to develop the understanding of the phenomena. In fact, the lump soliton and bound-state
multi-lump-solitons were first observed numerically and then found theoretically [10].

The numerical analysis literature for the KP equation is relatively rare compared to
the KdV equation. Among these, some schemes are based on the finite difference method
[4, 5, 6, 13, 18], while others [3, 11, 15] are based on the pseudo-spectral method first
developed by Fornberg and Whitham [8]. In [5] and [6], the authors found that two lumps
with different amplitudes will separate in the y-direction with equal amplitudes in a direct
interaction (but note that the theory tells us they will eventually return to the x-axis, see
below). More recently, the oblique collision of two lumps of equal amplitude travelling from
the opposite y-direction to the horizontal (which corresponds to oblique collision 1 in this
study) and the generation of lump solitons by the bottom topography have been studied
in terms of a generalised Benney-Luke equation taking into account the effects of surface
tension and topographic forcing [3]. Nevertheless, the nonlinear interaction process of two
lump solitons is far from clear and understood.

In this paper, we study the interaction of lump solitons using primarily numerical meth-
ods, supported by some theoretical results. The remainder of the paper is organised as
follows: exact solutions for the interaction of multiple lump solitons are given in the next
section, and the numerical methods adopted here are described briefly in section 3; the
numerical experiments and comparison with theoretical results are in section 4; and finally
the conclusion is in section 5.

2 Exact solutions of multiple lump solitons

The exact multisoliton solutions of the KPI equation (Eq. 1) can be obtained in several
ways. Here we write them in the Hirota form:

u(x, y, t) = 2
∂2 lnφ

∂x2
, (2)

where φ is defined as

φ = det[(x− 2ki±y + 12k2
i±t + γi±) · δi,l − j · (1− δi,l)/(ki± − kl±)], (3)
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and δi,l is the Kronecker symbol. Here i, l = 1, 2, . . . , N ≡ 2M , and M specifies the number
of solitons. The parameters ki± = kiR± jkiI and γi± = γiR± jγiI determine the amplitude
(velocity) and the phase of each soliton. In particular, if M = 1, then

φ = (ξ − 2k1Rη)2 + 4k2
1Iη

2 +
1

4k2
1I

, (4)

and

u(x, y, t) = 16
−4(ξ − 2k1Rη)2 + 16k2

1Iη
2 + 1

k2
1I

[4(ξ − 2k1Rη)2 + 16k2
1Iη

2 + 1
k2
1I

]2
, (5)

where

ξ = x− 12(k2
1R + k2

1I)t + γ1R +
k1Rγ1I

k1I
, η = y − 12k1Rt +

γ1I

2k1I
.

This is the lump soliton.
In this paper we are mainly concerned with the interaction of two lump solitons with

different velocities and also different phases. Let M = 2 we get

φ = det


X1 − jY1 − 1

2k1I
− j

kR+jkI1
− j

kR+jkI2
1

2k1I
X1 + jY1 − j

kR−jkI2
− j

kR−jkI1
j

kR+jkI1

j
kR−jkI2

X2 − jY2 − 1
2k2I

j
kR+jkI2

j
kR−jkI1

1
2k2I

X2 + jY2

 (6)

where

X1 = x− 2k1Ry + 12(k2
1R − k2

1I)t + γ1R, Y1 = 2k1I(y − 12k1Rt− γ1I
2k1I

),

X2 = x− 2k2Ry + 12(k2
2R − k2

2I)t + γ2R, Y2 = 2k2I(y − 12k2Rt− γ2I
2k2I

),
kR = k1R − k2R, kI1 = k1I − k2I , kI2 = k1I + k2I ,

It can be shown that the leading term of the polynomials φ is a product of the polynomials
φi, i = 1, 2 corresponding to individual solitons. In fact the solution (6) describes the
interaction of two lump solitons of different velocities V1, V2, which are initially located at
(x01,y01) and (x02,y02) respectively, where we have the components

V1x = 12(k2
1R + k2

1I), V1y = 12k1R, x01 = γ1R + k1R
k1I

γ1I , y01 = γ1I
2k1I

,

V2x = 12(k2
2R + k2

2I), V2y = 12k2R, x02 = γ2R + k2R
k2I

γ2I , y02 = γ2I
2k2I

From our numerical experiments and this exact solution, the interaction of two lump solitons
can be classified into three types, i.e. the direct interaction in which the solitons are initially
aligned along the x-axis (i.e. V1y = V2y = 0), and two oblique interactions which are
determined by the relative signs of V1y and V2y.
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3 Numerical methods of KPI equation

Compared with the pseudo-spectral method, the finite difference method possesses some
advantages such as simplicity, and being adjustable to non-regular computational domains.
Many numerical experiments have shown that the finite difference method can often obtain
the same accuracy as spectral methods. When we consider the numerical solution of KP
equation, as pointed out by Katis and Akylas [13], it is convenient to integrate the equation
once with respect to x, then Eq. (1) reads:

∂u

∂t
+ 6u · ∂u

∂x
+

∂3u

∂x3
− 3

∫ x

−∞

∂2u

∂y2
dx = 0, (7)

which can be written in the general form:

∂u

∂t
= N(u) + L(u), (8)

where

N(u) = −6u · ∂u

∂x
+ 3

∫ x

−∞

∂2u

∂y2
dx L(u) = −∂3u

∂x3

When choosing schemes to discretise a partial differential equation, one has to compro-
mise between the time accuracy and the storage requirements. An efficient algorithm for the
time integration for a partial differential equation is a low storage third-order Runge-Kutta
explicit scheme. On the other hand, an implicit treatment for linear term L(u) doesn’t
require any particular effort, and it has been widely acknowledged that the Crank-Nicolson
implicit scheme is one of the most effective. By evaluating the linear term L(u) at the time
level n + 1/2 it follows

1
2
(L′(un) + L′(un+1)) (9)

where the difference operator L′ is defined as follows

L′ = −ui+2 − 2ui+1 + 2ui−1 − ui−2

24 x3
, (10)

and 4x denotes the spatial step in the x-direction and the subscript j is omitted for brief-
ness. Finally, we can get the scheme

un+ 1
3 = un + γ1 4 tN(un) + α1 4 t

L(un+ 1
3 ) + L(un)
2

,

un+ 2
3 = un+ 1

3 + γ2 4 tN(un+ 1
3 ) + ρ1 4 tN(un) + α2 4 t

L(un+ 2
3 ) + L(un+ 1

3 )
2

,

un+1 = un+ 2
3 + γ3 4 tN(un+ 2

3 ) + ρ2 4 tN(un) + α3 4 t
L(un+1) + L(un+ 2

3 )
2

, (11)

where the coefficients are given by

α1 =
8
15

, α2 = 2
15 , α3 =

1
3
,

γ1 =
8
15

, γ2 = 5
12 , γ3 =

3
4
,

ρ1 = −17
60

, ρ2 = − 5
12 ,
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Evidently, at each time substep we should invert a banded matrix with the computation
being carried on in the y-direction line by line, and the integral in N(u) is evaluated at the
beginning of each substep. A sponge is set to reduce the reflection at the boundaries in x-
direction. Finally, we present the numerical boundary conditions as follows

uxx = 0 at x = 0, rx,

uy|y=−ry = uy|y=+ry ,

where [0, rx]× [−ry, ry] is the computational domain.

4 Numerical experiments and comparisons with exact solu-
tions

To illustrate the effectiveness of our numerical schemes for the KPI equation, the evolution
of one lump soliton travelling in the x-direction is first investigated.

4.1 Propagation of one lump soliton

We computed solutions of the KPI equation subject to the following initial conditions

u(x, y, 0) = 16
−4(x− x0)2 + 16k2

I (y − y0)2 + 1/k2
I

[4(x− x0)2 + 16k2
I (y − y0)2 + 1/k2

I ]2
, (12)

with kI =
√

6/4, x0 = 15.0, y0 = 0. This means the lump soliton (the maximum of
the lump is initially located at x=15.0) will move to the positive x-direction with velocity
Vx = 12k2

I = 4.5. Our computation was carried out in a rectangle [0, 50] × [−20, 20] with
spatial step [4x,4y] = [0.1, 0.1] and time step 4t = 0.0002. Fig. 1 shows the numerical
solution from t = 0 to t = 3, respectively. Stable propagation of the soliton without
any deformation is clearly seen. The conserved quantities of the KPI equation are also
computed, and verified.

4.2 Direct Interaction of two lump solitons

In this section, the direct collision of two lump solitons with different velocities and phase
were examined numerically and theorectically. We adopt the following initial conditions:

u(x, y, 0) = 16
−4(x− x01)2 + 16k2

1I(y − y01)2 + 1/k2
1I

[4(x− x01)2 + 16k2
1I(y − y01)2 + 1/k2

1I ]2
+

16
−4(x− x02)2 + 16k2

2I(y − y02)2 + 1/k2
2I

[4(x− x02)2 + 16k2
2I(y − y02)2 + 1/k2

2I ]2
,

where y01 = y02 = 0, which implies two lump solitons moving along the same line. Feng &
Mitusi [6] and later Cao, Djidjeli and Price et al. [5] reported that two such lump solitons
undergo an ’inelastic collision’, i.e., they interact with each other and separate in the y-
direction after the collision, forming two lumps of equal amplitude. However, as pointed
out by Gorshkov et al. [10], these two separated solitons will undergo a striking process,
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i.e. they will come back together due to the nonlinear interaction, and then propagate
in the x-direction, becoming again two lump solitons moving in the same x-direction. To
illustrate this interesting phenomena and study the maximum separation in the y-direction,
many calculations with different parameters have been carried out. Typical phenomena in
the direct interaction of two lump solitons are illustrated in Fig. 2, 3 and 4, where Fig. 2
shows the initial condition with parameters x01 = 15, x01 = 31, k1I =

√
6/4, k2I =

√
6/8,

and Fig. 3 shows the profiles of two solitons from t = 2.5 to t = 7.5 with increment of 1.0.
Figure 4 shows contours of two solitons from time t = 1 to t = 12 with interval 4t = 1.
The present numerical results confirm the results of Gorshkov et al [10], and from them
it is seen that when the tall one approaches the small one, the amplitude and velocity
of the tall one increase while those of the small one decrease, and at the same time, the
small one separates in y-direction, As time increases, they evolve into two lumps of equal
amplitude moving in opposite y-directions; after reaching their maximum separation in the
y- direction they come back to the x-axis, and then evolve to two lump solitons moving in
the x-direction again. Now the tall one is in front of the small one, and as time goes on,
these two solitons will recover to their initial states (which is easily proven from the exact
solution by symbolic computation).

The exact solution in this case is shown in Fig. 5, and it is obviously seen that our
numerical results compare well with the exact one. Fig. 6 shows the trajectory of two
lumps before and after separation. Among them Fig. 6a shows the path of each lump
soliton where the solid line means the path of each soliton when ignoring the existence of
the other one (then the speed is constant) and Fig. 6b is the corresponding trajectory in the
X-Y plane. From these figures it is clearly shown that the tall (small) lump moves faster
(slower) than its own velocity (the velocity when totally ignoring the existence of the other
one) before collision, whilst the tall (small) one moves slower (faster) after collision. This
means two solitons attract each other before collision and repel after collision. From Fig.
7, which shows the contours of two solitons from the exact solution (6) with parameters
k1R = k2R = γ1I = γ2I = 0, γ01 = 15, γ02 = 31, k1I =

√
6/4, k2I =

√
6/12 at t = 1 to t = 10

with interval 4t = 1, we can see clearly that two solitons don’t repel in the y-direction.
Our numerical results determine that whether there is separation or not, and the maximum
separation distance in the y-direction, depends on the initial relative velocity difference, but
scarcely depends on the initial phase (i.e. initial position of two lumps).

To quantitatively study this dependence, we have to turn to the exact solution. Direct
interaction means we should set: k1R = k2R = γ1I = γ2I = 0 in Eq.6. First, we investigate
the phase change before and after the nonlinear interaction. With the help of symbolic
computation, it is easily proved that their phase shifts turn out to be zero after collision, with
also their amplitude, velocity and size are restored. Secondly we investigate quantitatively
the largest vertical distance between two solitons. Due to independence of the distance
on the initial phase, it is, for brevity, further assumed that γ1R = γ2R = 0. With the
help of symbolic computation again, we finally formulate the maximum separation in the
y- direction in terms of the velocities(V1 = V1x, V2 = V2x)

ym = 6( 1
V 3
1 (V1−V2)4V 3

2
(−V 6

1 V 2
2 − 12V 5

1 V 3
2 + 26V 4

1 V 4
2 − 12V 3

1 V 5
2 − V 2

1 V 6
2 +

(−V 3
1 (V1 − V2)4V 3

2 (V 6
1 + 10V 5

1 V2 − 113V 4
1 V 2

2 −
820V 3

1 V 3
2 − 113V 2

1 V 4
2 + 10V1V

5
2 + V 6

2 ))1/2))1/2

(13)
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let V1 = (k + 1)V2, i.e. (V1 − V2)/V2 = k, then we can get

ym =
6

kV2
(

−1
(1 + k)3

(16 + 48k + 49k2 + 18k3 + k4−

((1 + k)3(1024 + 3072r + 3136k2 + 1152k3 + 48k4 − 16k5 − k6))1/2))1/2 (14)

when k → 0 in Eq. (14), it reads

ym =
24
kV2

(15)

Fig. 8 shows the dependence of ymV2 on the relative ratio k and the limit behavior when
k → 0, from which we can get the critical relative velocity difference kc=7.326. It has been
confirmed by the numerical results shown in Fig. 7 where k = 8, i.e., no separation occurs.

4.3 Oblique Interaction of two lump solitons

There are two types of oblique interaction. When V1y and V2y have the opposite sign we
call them, oblique collision I , and when they possess the same sign, oblique collision II. To
illustrate these interaction processes, we give three numerical examples, where without loss
of generality, klR = k1I , i = 1, 2 are imposed in each example.
1. Case 1

The initial condition is as follows:

u(x, y, 0) = 16−4(x− x01 − 2k1I(y − y01))2 + 16k2
1I(y − y01)2 + 1/k2

1I

[(x− x01 − 2k1I(y − y01))2 + 16k2
1I(y − y01)2 + 1/k2

1I ]
2 +

16−4(x− x02 − 2k2I(y − y02))2 + 16k2
2I(y − y02)2 + 1/k2

2I

[4(x− x02 − 2k2I(y − y02))2 + 16k2
2I(y − y02)2 + 1/k2

2I ]
2

(16)

where k1I = 0.5, k2I = −0.5, and x01 = 15, y01 = −15, x02 = 15, y02 = 15. The initial profile
is shown in Fig 9. from which we see that two solitons with the same amplitude are initially
independently, located symmetrically about the x-axis. In Fig. 10, we plot contours at t = 1
to t = 10 from the numerical results. These show that two solitons move without noticing
the existence of the other one. The exact solution confirms that two solitons moving from
opposite y-directions to the horizontal do move along their original paths. This is true even
when the two solitons have different amplitudes(velocities). Of course, when they interact
they are far from just a linear superposition of two independent solitons.
2. Case 2

In this case, the initial condition is the same as Eq. (16), but with parameters k1I =
0.5, k2I = 0.3, and x01 = 15, y01 = −30, x02 = 34.2, y02 = −18. which means the two
solitons initially are located in the same side of the x-axis, and they will travel to the same
position (45, 0). The initial profile is shown in Fig.11. The numerical results are shown
in Fig. 12, while the exact solution with the same parameters is shown in Fig. 13. The
agreement between numerical and exact solutions is quite satisfactory. We can see that when
the two solitons approach together from the same side, the tall one gradually reduces its
amplitude and velocity, while the small one increases its amplitude and velocity, and finally
the two solitons become of the same size at the minimum distance apart (this distance
cannot be zero unless the relative amplitude difference of two solitons is large enough).
After that, the two solitons interchange their positions, this means two solitons experience

7



an abrupt phase change. Due to the nonlinear interaction, the front soliton becomes taller
until it recovers its initial amplitude, while the rear soliton decreases and gradually recover
its original state. Fig. 14 shows the trajectory of two lumps in the oblique collision. Again
the solid line shows the trajectory of each soliton when ignoring the existence of the other
one. It is clearly seen that the two solitons attract each other before collision and repel
after collision , and both solitons experience an abrupt phase shift. Another interesting
phenomena in this case is when the relative amplitude difference between the two solitons
is large enough, two solitons can merge and then separate and move in their own original
ways. Fig. 15 shows the exact solution with parameters k2I = 0.1 and the other parameters
at the same. It seems that the interaction between two solitons strongly depends on their
relative amplitude difference, and strongly nonlinear interactions can only occur when this
difference becomes larger than a critical value.

5 Conclusions

The interaction of two lump solitons described by the KPI equation has been analyzed using
exact and numerical methods. The numerical method adopted here is the combination of 3-
order Runge-Kutta method and the Crank-Nicolson scheme. The comparison of numerical
results with the exact solutions is satisfactory, and shows the numerical method is effective.
Some rich phenomena of lump soliton interactions are presented. The most interesting
property revealed in this paper is that the details of the interaction strongly depend on the
relative velocity (or amplitude) difference and the way in which two solitons are approaching;
i.e. they may separate in the y- direction in a direct interaction with the moderate relative
velocity difference, or no separation occurs for a large velocity difference (larger than a
critical value, which is approximately 7.326); they may exchange their positions in oblique
collision(case 2 with moderate relative amplitude difference), or almost keep their original
ways seeming to show total ignorance of the existence of the other lump(case 1 and case 2
with big relative amplitude difference).
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Figure 1: The propagation of one soliton moving on the line y=0. t=1,2,3 a: t=0.0, b:
t=1.0, c: t=2.0, d: t=3.0;
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Figure 2: The initial profile of two solitons on the line y=0 with parameters k1I =√
6/4, k1I =

√
6/8

11



c

20
30

40
50

60
-10

0

10
0
2
4
6

20
30

40
50

60

f

30
40

50
60

70
-10

0

10
0
2
4
6

30
40

50
60

70

b

10
20

30
40

50
-10

0

10
0
2
4
6

10
20

30
40

50

e

20
30

40
50

60
-10

0

10
0
2
4
6

20
30

40
50

60

a

10
20

30
40

50
-10

0

10
0
2
4
6

10
20

30
40

50

d

20
30

40
50

60
-10

0

10
0
2
4
6

20
30

40
50

60

Figure 3: The profile of two solitons in a direct interaction at t=2.5 to 7.5 with increment
of 1.0 a: t=2.5 b: t=3.5, c: t=4.5, d: t=5.5, e: t=6.5, f: t=7.5
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Figure 4: The contours of two solitons in a direct interaction(numerical solution) from t=1.0
to 12.0 left (top to bottom): t=1.0,2.0,...6.0; right (top to bottom): t=7.0,8.0,...12.0
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Figure 5: The contours of two solitons in a direct interaction (exact results) t=1.0 to 6.0
from top left to down left; t=7 to 12.0 from top right to down right
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Figure 7: The contours of two solitons (exact solutions) subject to initial condition as:
k2I =

√
6/12 at t=1,2,...,5(left from top to bottom); 6,7,...,10 (right from top to bottom)
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Figure 8: The dependance of the maximum separation of two solitons in the case of a direct
collison on the relative velocity difference, where the solid line is the exact formula, and the
dash line is the limiting behaviour when k goes to zero.
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Figure 9: The initial condition of two solitons in an oblique collision (case 1)
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Figure 10: The contours of two solitons in an oblique interaction (case 1) (Numerical
solution) at t=1,2,...,5(left from top to bottom); 6,7,...,10 (right from top to bottom)
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Figure 11: The initial condition of two solitons in an oblique collision (case 2)

Figure 12: The contours of two solitons in an oblique interaction (case 2) at t=0,1,...9
(Numerical solution)
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Figure 13: The contours of two solitons in an oblique interaction (case 2)(Exact solution)
at t=1,3,5,7,9 (from top to bottom)
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Figure 14: The trajectories of two lumps in an oblique interaction. top the path of the tall
lump where the solid line means the path when ignoring the existence of the small lump,
while the dots represent the location at t=0.0,0.5,...,4.5; 5.5,6.0,...,9.5; bottom the path of
the small lump where the solid line means the path when ignoring the existence of the tall
lump while the dots represent the location at t=0.0,0.5,...,4.5; 5.5,6.0,...,9.5
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Figure 15: The contours of two solitons(exact solution) with parameters k1I = k1R =
0.5, k2I = k2R = 0.1 at t=1,3,5,7,9(from top to bottom)
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