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§1. Introduction

The paper is devoted to the solution of the inverse boundary problem for
the heat equation. Let Ω be a connected bounded domain in Rn (n ≥ 2)
with Cl ( l ≥ 2 ) boundary Γ. Consider the mixed problem for the heat
equation

(1.1)


(ρ(x)∂t −4)uf (t, x) = 0 in (0,+∞)× Ω,

uf (t, x′) = f(t, x′) on (0,+∞)× Γ,

uf (0, x) = 0 on Ω.

The density ρ(x) is a Cl+σ, 0 < σ < 1, function on Ω satisfying

(1.2) 0 < ρ1 ≤ ρ(x) ≤ ρ2(< +∞).

The inverse data used in the paper is a set of normal derivatives ∂up

∂ν |(0,2)×Γ

where up is the solution of (1.1) with

(1.3) f(t, x′) = χ(t) p(x′).

Here χ(t) is a (arbitrary) fixed C∞ function satisfying 0 ≤ χ(t) ≤ 1 in R,
χ(t) = 1 for t ≥ 1 and χ(t) = 0 for t ≤ 1/2. The function p(x′) in (1.1) is
the boundary value of a harmonic polynomial p(x) (i.e. 4p = 0).

We assume that ∂up

∂ν |(0,2)×Γ or, more precisely,

(1.4)
∫

Γ

∫ t

0

∂up

∂ν
(s, x′) q(x′) dx′ds, 0 < t < 2,

are given for all sources f of form (1.3) with p ∈ HPm, where

HPm = { harmonic polynomial of degree ≤ m } (m = 0, 1, 2, · · · ),
1
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and all q ∈ HPm.
In the paper we describe algorithms for an approximate reconstruction

of ρ given approximate integrals (1.4) with p, q ∈ HPm, m = 0, 1, 2, ....
The algorithms lead to explicit formulae for an approximate solution of the
inverse problem under consideration together with an error estimate in the
corresponding reconstruction procedure. These error estimates depend upon
the parameter m and a ”measurement” error, i.e. an error in the inverse data
(1.4) and are of the logarithmic character. The algorithms are described in
§3 where we do not use a pseudoanalytic continuation of the inverse data
and in §4 where we utilize results on pseudoanalytic continuation (see e.g.
[Car, L]). The corresponding formulae together with the error estimate are
given in Theorems 3.4 and 4.4.

The method used in the paper is the parabolic analog of the Moments’
Method introduced in [K-S] for the solution of the inverse boundary spectral
problem for the acoustic operator Aρ = −ρ−14. Its main idea is to utilise
the generating properties of the products of harmonic polynomials. These
polynomials belong to the null-space of the acoustic operator. The considered
generating properties are, in fact, an algebraic version of the well-known fact
(see e.g. [Cal]) that the linear combinations of the products of harmonic
functions are dense in L2(Ω).

This fact was extensively used for solving inverse boundary problems (see
[S-U] for the pioneering work in this direction). In the parabolic case the
study of the inverse problems for the system (1.1) and even for some more
general parabolic equations was carried out by a number of authors. The
main results dealt with the question of uniqueness and stability in the iden-
tification of the unknown coefficient(s) via various sets of the inverse data on
the boundary. A very good introduction to this area together with a number
of advanced results is given in [Is; Ch. 9]. However, we would like to stress
that our main goal is not to obtain stability estimates pe se but to develop
some reconstruction procedures and to obtain stability estimates for these
procedures. In its turn such procedures may prove useful for the numerical
solution of inverse boundary problems. Indeed, the acoustic variant of the
Moments’ Method was successfully used in [K-P] for the numerical solution
of some model inverse problems.

§2. The direct problem

Consider the mixed problem (1.1) and denote by up(t, x) its solution with
the source f of form (1.3). When p, q ∈ HP∞(= ∪∞m=0HP

m) we define
Φρ(t; p, q) by

(2.1) Φρ(t; p, q) =
∫

Ω

ρ(x)up(t, x)q(x) dx.
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We define also the harmonic moments Mρ(p, q) corresponding to ρ:

(2.2) Mρ(p, q) =
∫

Ω

ρ(x)p(x)q(x) dx.

In this section we discuss some properties of Φρ(t; p, q) and relations between
Φρ(t; p, q), Mρ(p, q) and the response operator

Rρ : p(x′) 7→ ∂u

∂ν
|(0,+∞)×Γ.

Theorem 2.1. Φρ(t; p, q) is a bilinear mapping from HP∞ × HP∞ →
C0(R+) with the following properties:

‖Φρ(·; p, q) ‖C0(R+) ≤ C ‖ p ‖L2(Ω) ‖ q ‖L2(Ω) ,(i)

‖Φρ(·; p, q)− Φρ̃(·; p, q) ‖C0(R+)(ii)

≤ C ‖ ρ− ρ̃ ‖C0(Ω) ‖ p ‖L2(Ω) ‖ q ‖L2(Ω) ,

|Φρ(·; p, q)−Mρ(p, q) |(iii)

≤ Ce−C′λ0t ‖ p ‖L2(Ω) ‖ q ‖L2(Ω) ,

where C,C ′ are positive constants determined from ρ1, ρ2 and λ0 is the first
eigenvalue of the Dirichlet problem for −4 on Ω.

Note. We denote by C,C ′ different constants which depend upon Ω, ρ1

and ρ2. In the case of their dependence upon some other parameters we note
this dependence explicitly.

Proof. Consider the mixed problem
∂tw(t, x)− ρ−14w(t, x) = 0 in (0,+∞)× Ω,

w(t, x′) = 0 on (0,+∞)× Γ,

w(0, x) = f(x) on Ω,

and denote by {λj}j=1,2,···, λ1 < λ2 ≤ · · · the eigenvalues of the self-adjoint
differential operator −ρ−14 with the domain H2(Ω)∩H1

0 (Ω) in the Hilbert
space L2

ρ(Ω) with the inner product (f, g)ρ =
∫

Ω
ρ(x)f(x)g(x) dx. We can

express the solution w(t, ·) = E(t)f in the form

(2.3) E(t)f =
∞∑
j=1

e−λjt(f, ϕj)ρ ϕj ,
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where the functions {ϕj}j=1,2,··· are the L2
ρ-orthonormal eigenfunctions corre-

sponding to the eigenvalues λj . Note that the first eigenvalue λ1 is estimated
by λ0, i.e. λ0ρ

−1
2 ≤ λ1 ≤ λ0ρ

−1
1 .

Then we have

(2.4) up(t, x)− χ(t)p(x) =
∫ t

0

E(t− s)(−χ′(s)p(x)) ds.

But L2
ρ(Ω) = L2(Ω) as a set and ρ1 ‖ f ‖2 ≤ ‖ f ‖2ρ ≤ ρ2 ‖ f ‖2 , where we

denote by ‖ f ‖ the usual L2-norm of f . Hence (2.3) yields that∥∥ ∫ t
0
E(t− s)(−χ′(s)p(x)) ds

∥∥ ≤ (ρ2/ρ1)1/2eλ1(1−t) sup
s∈R
|χ′(s) | ‖ p ‖ .

Thus, we obtain

|Φρ(t; p, q)−
∫

Ω
ρ(x)p(x)q(x) dx |

≤ | (1− χ(t))
∫

Ω
ρpq dx |+ |

∫
Ω
ρ(u− χp)q dx |

≤ (eλ1ρ2 + (ρ2/ρ1)1/2eλ1 ‖χ′ ‖C0(R+))e
−λ1t ‖ p ‖ ‖ q ‖ ,

which proves (i) and (iii).
Denote by ũp(t, x) the solution of the equation (1.1) with ρ̃(x) instead of

ρ(x), and by Ẽ(t) the operator of form (2.3) corresponding to ρ̃. We see that

up(t, x)− ũp(t, x) =
∫ t

0

E(t− s){(ρ̃− ρ)ρ−1∂sũ
p(s, ·)} ds.

Therefore (1.2) implies that
(2.5)

‖up(t, x)− ũp(t, x) ‖ ≤ ρ−1
1 (ρ2/ρ1)1/2 ‖ ρ− ρ̃ ‖C0(Ω)

∫ t

0

‖ ∂sũ(s, ·) ‖ ds.

From (2.4) it follows that ∂sũp(s, ·) = −
∫ s

0
∂tẼ(s − t)[χ′(t)p] dt = χ′(s)p −∫ s

0
Ẽ(s− t)χ′′(t)p dt, which yields that

‖ ∂sũp(s, ·) ‖ ≤ |χ′(s) | ‖ p ‖

+ (ρ2/ρ1)1/2

∫ 1

0

e−λ̃1(s−t) dt ‖χ′′ ‖C0(R+) ‖ p ‖ .

In the above, λ̃1 is the first eigenvalue of the self-adjoint realization of −ρ̃−14
on L2

ρ̃(Ω). Combining this with (2.5), we obtain

|Φρ(t; p, q)− Φρ̃(t; p, q) | ≤ |
∫

Ω
(ρ̃− ρ)u(t, ·)q dx |

+ |
∫

Ω
ρ̃{u(t, ·)− ũ(t, ·)}q dx | ≤ C ‖ ρ− ρ̃ ‖C0(Ω) ‖ p ‖ ‖ q ‖ .

This completes the proof of Theorem 2.1.

The following theorem shows the relationship between the form Φρ(t; p, q)
and the response operator Rρ:
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Lemma 2.2. For any p, q ∈ HP∞ we have

Φρ(t; p, q) =
∫

Γ

∫ t

0

Rρ[χp|Γ](s, x′) ds q(x′) dx′

−
∫ t

0

χ(s) ds
∫

Γ

p(x′)
∂q(x′)
∂ν

dx′.

Proof. By integration by parts we have∫
Ω

∫ t

0

{(∂s − ρ−14)up(s, x)}q(x)ρ(x) ds dx

=
∫

Ω

up(t, x)q(x)ρ(x) dx−
∫

Ω

up(0, x)q(x)ρ(x) dx

−
∫

Ω

∫ t

0

up(s, x)4q(x) ds dx

−
∫

Γ

∫ t

0

∂up

∂ν
(s, x′)q(x′) ds dx′ +

∫
Γ

∫ t

0

up(s, x′)
∂q

∂ν
(x′) ds dx′.

As up is a solution of (1.1) and q ∈ HP∞ the above inequality implies that

0 = Φρ(t; p, q)−
∫

Γ

∫ t

0

Rρ[χp|Γ](s, x′)q(x′) ds dx′

+
∫

Γ

∫ t

0

χ(s) ds p(x′)
∂q

∂ν
(x′) dx′.

This proves Lemma 2.2.

In the inverse problems, generally, we expect recovering ρ by the measure-
ments expressed in terms of the responce operator. Lemma 2.2 implies that
our original setting of the inverse problem may be reduced to the inversion
of the mapping : ρ 7→ Φρ.

We start with verifying the uniqueness of the inverse problem.

Theorem 2.3. If for any p, q ∈ HP∞, Φρ(t; p, q) is equal to Φρ̃(t; p, q) on
an interval (1 <) a < t < b, then ρ coinsides with ρ̃.

Remark. Lemma 2.2 means that Φρ = Φρ̃ if Rρ = Rρ̃, and therefore the
unique determination of ρ by Rρ is derived from Theorem 2.3.

Proof of Theorem 2.3 is based on the following lemma.
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Lemma 2.4. Any polynomial can be expressed as a linear conbination of
products of the harmonic polynomials.

For the proof of Lemma 2.4, see [K-S; Proposition 3].

Proof of Theorem 2.3. The solution up(t, x) in (1.1) becomes analytic in t
for t > 1 (cf. (2.3)). Therefore, if Φρ(t; p, q) = Φρ̃(t; p, q) on (a, b), Φρ(t; p, q)
is equal to Φρ̃(t; p, q) on (1,+∞). Hence, by (iii) of Theorem 2.1, we have

Mρ(p, q) = lim
t→∞

Φρ(t; p, q) = lim
t→∞

Φρ̃(t; p, q) = Mρ̃(p, q); p, q ∈ HP∞.

By Lemma 2.4 this implies that∫
Ω

ρ(x)xα dx =
∫

Ω

ρ̃(x)xα dx

for any multi-index α. As the domain Ω is bounded this implies that ρ = ρ̃.
The proof is complete.

§3. Reconstruction of ρ(x)

In this section, we reconstruct ρ(x) approximately, by employing the har-
monic moments Mρ(p, q) with p, q ∈ HPm where m is a sufficiently large
positive integer.

The reconstruction is based on the fact that the Gaussian distribution

(
√
π)−nµn exp(−µ2 |x |2) = (

√
π)−nµn

∞∑
k=0

1
k!

(−µ2 |x |2)k

tends to the Dirac δ-function as µ→ +∞ (note that
∫
Rn µ

n exp(−µ2|y|2) dy
= (
√
π)n for any µ > 0). Namely, we use

Lemma 3.1. Let

δmµ (x) = (
√
π)−nµn

m/2∑
k=0

(−µ2 |x |2)k

k!
,

where µ ≥ 1 and m ia a positive even integer. Then for any ρ(x) ∈ Cl+σ(Ω)
(0 ≤ l ≤ m/2, integer, 0 < σ < 1) we have

‖ ρ(x)−
∫

Ω
δmµ (x− y)ρ(y) dy ‖Cl(µ−1/2)

≤ C{‖ ρ ‖Cl+σ µ−σ/2 + (C ′µ)mm−m/2+l},
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where C,C ′ are independent of ρ, µ and m. Here we denote by ‖ ρ ‖Cl+σ the
Cl+σ-norm of ρ in Ω and by ‖ ρ ‖Cl(ε) - the Cl-norm of ρ in Ωε. In its turn,
Ωε = {x ∈ Ω|dist (x,Γ) > ε }.

Proof. For f ∈ Cl(Ω) we denote by Df the Cl-continuation of f onto Rn

with supp [Df ] ⊂ {x | dist (x,Ω) < 1} and ‖Df ‖Cl(Rn) ≤ 2 ‖ f ‖Cl . As∫
Rn δ

∞
µ (x) dx = 1, then for any |α | ≤ l

∂αx ρ(x)− ∂αx
∫

Ω

δmµ (x− y)ρ(y) dy =
∫

Rn

δ∞µ (y)(∂αx ρ(x)− ∂αxDρ(x− y)) dy

+
∫

Rn\Ω
∂αx δ

∞
µ (x− y)Dρ(y) dy +

∫
Ω

(∂αx δ
∞
µ (x− y)− ∂αx δmµ (x− y))ρ(y) dy

= I1 + I2 + I3.

Since δ∞µ (x)− δmµ (x) = (
√
π)−nµnRm(µ2|x|2), where

Rm(X) =
Xm/2+1

(m/2)!

∫ 1

0

(1− θ)m/2+1e−θX dθ,

then for |α| ≤ m/2 + 1 we obtain

| ∂αx (δ∞µ (x)− δmµ (x)) | ≤ 4|α||α|!
(m/2 + 1− |α|)! (

√
π)−nµn+|α|(µ |x |)2m+1−|α|.

This implies that

| I3 | ≤ (
√
π)−nµn+|α| 4|α| |α|!

(m/2 + 1− |α|)! (µr0)2m+1−|α|
∫

Ω

ρ(y) dy

≤ (
√
π)−n4|α| |α|!µn (m/2)|α|

r
|α|
0

(µr0)(2m+1)

(m/2)!

∫
Ω

ρ(y) dy

≤ (
√
π)−nr2

0 |α|!µn+m+2(
2m
r0

)|α|
(2enr2

0)m/2

mm/2

∫
Ω

ρ(y) dy,

where r0 = diam(Ω) and we use Stirling formula to estimate (m2 )! for suffi-
ciently large m.

Since |x− y| ≥ µ−1/2 holds if x ∈ Ωµ−1/2 and y ∈ Rn \ Ω, we obtain

| I2 | ≤ C ‖ ρ ‖C0

∫
Rn\Ω

µn+|α|(1 + µ |x− y |)|α|e−µ2|x−y|2 dy

≤ C ‖ ρ ‖C0 µ
|α|e−µ/2

∫
Rn

(1 + | y |)|α|e−|y|2 dy
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At last

| I1 | ≤
∫
|y|≤µ−1/2

δ∞µ (y) ‖ ρ ‖Cl+σ | y |
σ
dy

+ 2
∫
|y|>µ−1/2

δ∞µ (y) ‖Dρ ‖Cl(Rn) dy

≤ C(µ−σ/2 ‖ ρ ‖Cl+σ + e−µ
∫

Rn

e−|y|
2
dy ‖ ρ ‖Cl)

Combining the above estimates we obtain Lemma 3.1.
The Proof is complete.

We fix a complete system {pmi }i=1,··· ,N(m) in HPm so that {pmi } ⊂
{pm+1
i }. Lemma 2.4 means that any xα ( |α | ≤ m ) is expressed in the

form

xα =
N(m)∑
i,j=1

Cαi,jp
m
i (x)pmj (x).

The function δmµ (x − y) in Lemma 3.1 is then decomposed into a sum of
polynomials xαyβ :

δmµ (x− y) =
∑

|α+β|≤m
Cm,α,β µ

n+|α+β|xαyβ .

Therefore the integral
∫

Ω
δmµ (x−y)ρ(y) dy is then represented in terms of the

harmonic moments Mρ(p, q)

∫
Ω

δmµ (x− y)ρ(y) dy =
∑

|α+β|≤m
Cm,α,β µ

n+|α+β|xα
N(m)∑
i,j=1

CβijMρ(pmi , p
m
j )

This representation together with Lemma 3.1 imply the possibility of an
approximate reconstruction of ρ in terms of the harmonic moments. For this
end we introduce the polynomial Qmµ (x;M) where M is a bilinear form on
HP∞ ×HP∞:

(3.1) Qmµ (x;M) =
∑

|α+β|≤m
Cm,α,βµ

n+|α+β|xα
N(m)∑
i,j=1

CβijM(pmi , p
m
j ).
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Theorem 3.2. (i) The mapping : M 7→ Qmµ (x;M) is continuous in the
following sense:

(3.2)
∥∥Qmµ (x;M)−Qmµ (x; M̃)

∥∥
Cl

≤ CµneC′µ2 ∥∥M − M̃ ∥∥
m

max
|β|≤m

N(m)∑
i,j=1

∣∣Cβij ∣∣ ‖ pmi ‖ ‖ pmj ‖ ,
where

∥∥M − M̃ ∥∥
m

= sup{
∣∣M(p, q)− M̃(p, q)

∣∣
‖ p ‖ ‖ q ‖ ; p, q ∈ HPm }

(ii) Let ρ(x) ∈ Cl+σ(Ω) (0 ≤ l ≤ m/2, integer 0 < σ < 1). Then we have

‖ ρ(x)−Qmµ (x,Mρ) ‖Cl
≤ Cl{‖ ρ ‖Cl+σ µ−σ/2 + (C ′µ)mm−m/2+l}(3.3)

Here, the constants C,C ′ are independent of ρ, µ and m.

Proof. The estimate (3.3) of Theorem 3.2 follows from Lemma 3.1 imme-
diately. The estimate (3.2) is also easily checked:

∥∥Qmµ (x;M)−Qmµ (x; M̃)
∥∥
Cl
≤

∑
|α+β|≤m

|Cm,α,β |µn+|α+β|r|α|1

∥∥M − M̃ ∥∥
m

N(m)∑
i,j=1

∣∣Cβij ∣∣ ‖ pmi ‖ ‖ pmj ‖ ,
where r1 = max |x|, x ∈ Ω. Since each Cm,α,β is the coefficient of the
expansion of δmµ (x− y), we obtain

∑
|α+β|≤m

|Cm,α,β |µn+|α+β|r|α|1 ≤ (
√
π)−n µnenµ

2(r1+1)2
,

which implies the estimate (3.2).

From Theorem 3.2 and Theorem 2.1, we have
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Corollary 3.3. Let Φρ(t; p, q) be the function of form (2.1). Then

‖ ρ(x)−Qmµ (x; Φρ(t; ·, ·)) ‖Cl(µ−1/2)

≤ Cl{‖ ρ ‖Cl+σ µ−σ/2 + (Cµ)mm−m/2+l

+ eC
′µ2
e−Cλt max

|β|≤m;i,j=1,··· ,N(m)

N(m)∑
i,j=1

∣∣Cβij ∣∣ ‖ pmi ‖ ‖ pmj ‖}
for the constants C,C ′ are independent of ρ, µ and m.

Corollary 3.3 implies that we can reconstruct ρ approximately via Φρ(t; ·, ·).
Indeed, for any ε > 0 and compact set D in Ω, there exist µ, m and t such
that ‖ ρ(x)−Qmµ (x; Φρ(t; ·, ·)) ‖Cl(D) < ε.

Further analysis of the estimate in Corollary 3.3 involves an estimate of∑N(m)
i,j=1

∣∣Cβij ∣∣ ‖ pmi ‖ ‖ pmj ‖. Together with an optimal choice of the parameter
µ this gives the final estimate which involves only m and t.

Theorem 3.4. Let Φρ(t; p, q) be the functional introduced in Theorem 2.3
and Qm(x; Φρ) - the polynomials defined by formula (3.1) with M = Φρ and
µ = m1/2. Then, there exist constants C > 0, c1 > 0 and c2 > 0 such that

‖ ρ(x)−Qm(x; Φρ(t; ·, ·)) ‖Cl(m−1/4)

≤ C{(‖ ρ ‖Cl+σ + 1)m−σ/4 + ec1m−c2λ0t}.

Proof. We employ the directional moments of order q:

Xq
e (x) =< x, e >q, e ∈ Sn−1,

where Sn−1 is the unit sphere in Rn and < ·, · > stands for the scalar product
in Rn. The goal of the proof is to find a representation

xα =
P (q)∑
γ=1

cαγX
q
eγ (x)

and to estimate
∑P (q)
γ=1 |cαγ |, |α| = q ≤ m.

Consider polynomials of the form Xq1
e1 (x) Xq2

e2 (x) where < e1, e2 >= 0.
Then (for details see [K-S])

Xq
eφ

(x) =
∑

q1+q2=q

Cqq1 cosq(φ) tanq1(φ) Xq1
e1 (x)Xq2

e2 (x),
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where eφ = e1 cos(φ) + e2 sin(φ) and Cqq1 are the binomial coefficients.
Equations (3.4) with φ = φ1, · · · , φq+1 where tan(φi) 6= tan(φj), i 6=

j form a system of linear equations for the unknown Xq1
e1 (x)Xq2

e2 (x). The
corresponding matrix is essentially the Vandermonde matrix for tan(φi), i =
1, · · · , q + 1. In the following we take tan(φi) = 1 + (i− 1)/q. Then

(3.5) Xq1
e1 (x)Xq2

e2 (x) =
q+1∑
i=1

1
Cqq1 cosq(φi)

∆q1,i

∆
Xq
ei(x),

where ei = eφi and ∆, ∆q1,i denote the determinant and (q1, i) minor of the
Vandermonde matrix, correspondingly.

Denote by ∆q1(z) the determinant of the Vandermonde matrix with z
instead of tan(φq1);

∆q1(z) =
q+1∑
j=1

∆q1,jz
j−1.

As, on the other hand,

∆q1(z) = Πi<j;i,j 6=q1(tan(φi)− tan(φj))Πi<q1(z− tan(φi))Πi>q1(tan(φi)−z),

we obtain that

(3.6)
∆q1,i

∆
=

1
2πi

∫
Γ

∆q1(z)
∆

dz

zi
,

where Γ is e.g. a circle of the radius 1. But

∆q1(z)
∆

= Πi<q1

(z − tan(φi))
(tan(φq1)− tan(φi))

Πi>q1

(tan(φi)− z)
(tan(φi)− tan(φq1))

.

However, as tan(φi) = 1 + (i− 1)/q

Πi 6=q1 |(tan(φi)− tan(φq1))| ≥ (
q!
qq

)2 ≥ C−q.

Substitution of this estimate into (3.6) leads to the estimate

(3.7) |∆q1,i

∆
| ≤ Cq.

Returning to the estimate for Xq1
e1 (x) Xq2

e2 (x), q1 +q2 = q we use the estimate
cos(φi) ≥ 5−1/2. Hence equations (3.5), (3.7) yield that

(3.8) Xq1
e1 (x) Xq2

e2 (x) =
∑

i=1,··· ,q+1

cq1,iX
q
ei(x); |cq1,i| ≤ Cq.
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Let us consider xα = xα1
1 · · ·xαnn . By induction, it is easy to show that

formula (3.8) yields the representation

xα =
P (q)∑
i=1

cαi X
q
ei(x), |α| = q,

where
P (q) ≤ (1 + q)n, |cαi | ≤ Cq.

Furthermore

Xq
e = 2−q(Ze + Ze)q = 2−q

q∑
q1=0

Dq
q1Z

q1
e Z

q−q1
e ,

where Ze =< x, e > +i < x, e′ > for an arbitrary e′ such that < e, e′ >= 0.
Then

xα =
P (q)∑
i=1

cαi X
q
ei =

P (q)∑
i=1

cαi 2−q
q∑

q1=0

Dq
q1Z

q1
ei Z

q−q1
ei

=
N(q)∑
j,k=1

cαj,k pj(x)pk(x),

Here pj are harmonic polynomials of the form: pj(x) = Zq1ei (x) with q1 ≤ q

and pk(x) = Zq−q1ei (x). Moreover, as
∑q
q1=0D

q
q1 = 2q

N(q)∑
j,k

| cαj,k | =
P (q)∑
i=1

| cαi | 2−q
q∑

q1=0

|Dq
q1 | ≤ qnCq ≤ Cqn.

As ‖ pj ‖ ‖ pk ‖ ≤ V (Ω)(1+r1)q, where V (Ω) is the volume of Ω, the above es-
timate together with Theorem 3.2 and Corollary 3.3 give rise to the following
estimate:

‖ ρ(x)−Qmµ (x; Φρ(t; ·, ·)) ‖Cl(µ−1/2) ≤ C{‖ ρ ‖Cl+σ µ−σ/2

+(Cµ)mm−m/2+l + eC
′µ2−Cλ0tCm}

Thus, inserting µ = m1/2 into the above inequality, we obtain the estimate
in Theorem 3.4.

Analysing the proof of Theorem 3.4 we obtain also the following stability
estimate which will be used in §4:
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Lemma 3.5. Let Mm, M̃m be bilinear forms from HPm to C0(0, 2). Let
Qmµ (x;M) and Qmµ (x; M̃) be given by formula (3.1). Then∥∥Qmµ (x;M)−Qmµ (x; M̃)

∥∥
Cl
≤ Cl

∥∥M − M̃ ∥∥
m
ec
′µ2
.

§4. Analytic estimates and stability

In the analysis of §3 we have not used the fact that Φρ(t; ·, ·) is an analytic
function when <(t) > 1 which makes possible to improve the estimates of
Corollary 3.3 and Theorem 3.4 and to obtain some further stability results
for the considered inverse problem.

We start with stability estimates.

Lemma 4.1. Let ρ, ρ̃ satisfy conditions (1.2) and

‖Φρ(t; p, q)− Φρ̃(t; p, q) ‖C0(0,2) ≤ ε ‖ p ‖ ‖ q ‖ p, q ∈ HPm

then

(4.1) |Mρ(p, q)−Mρ̃(p, q)| ≤ CeCλ
1/2| lg ε|1/2 ||p|| ||q||.

Proof. Let z = t−2
t be a conformal map of the halfplane <(t) > 1 onto

the unit disk |z| < 1. Consider the function

f(z) = Φρ(t; p, q)− Φρ̃(t; p, q), z = z(t).

which is analytic in the unit disk. Moreover,

|f(z)| ≤ 2ρ2||p|| ||q||, |z| ≤ 1;

|f(z)| ≤ ε||p|| ||q||, −1 ≤ z ≤ 0.

By Milloux Theorem (see e.g [G; Ch.VIII, §4, Th. 6]) these estimates imply
that when z = 1− ζ, =(z) = 0,

|f(z)| ≤ 2ρ2||p|| ||q||εζ/π.

Taking ζ = 2/t we see that

|Φρ(t; p, q)− Φρ̃(t; p, q)| ≤ 2ρ2||p|| ||q||ε2/πt.

This estimate together with Theorem 2.1 (iii) where t = C( | lg ε|λ0
)1/2 prove

the statement.
The Proof is complete.

Lemma 4.1 together with Theorem 3.2 (iii) and Lemma 3.4 lead to the
following stability result:
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Theorem 4.2. Let ρ, ρ̃ satisfy conditions (1.2) and

||Φρ(t; p, q)− Φρ̃(t; p, q)||C0(0,2) ≤ ε||p|| ||q||; p, q ∈ HPm.

Then

‖ ρ(x)− ρ̃(x) ‖Cl(µ−1/2)

≤ C{‖ ρ ‖Cl+σ µ−σ/2 + eCµ
2
(Cµ)mm−m/2

+ eCµ
2
(Cµ)me{−Cλ

1/2| lg ε|1/2}}

Proof. Obviously

‖ ρ− ρ̃ ‖ ≤ ‖ ρ−Qmµ (x,Mρ) ‖+

+ ‖ ρ̃−Qmµ (x,Mρ̃) ‖+ ‖Qmµ (x,Mρ)−Qmµ (x,Mρ̃) ‖ .(4.2)

The first two terms in rhs of (4.2) may be estimated by means of (3.3). To
estimate the third term we use the relation (4.1) together with Lemma 3.5
with Mρ,Mρ̃ instead of M, M̃ .

The above estimate may be simplified if we take µ = e−am1/2 where a is
a sufficiently large positive number which depends upon Ω, ρ1, ρ2. Then

‖ ρ(x)− ρ̃(x) ‖Cl(m1/4)

≤ C{‖ ρ ‖Cl+σ m−σ/4 + e−Cm + exp (C1m− C2λ
1/2| lg ε|1/2)}.

Our next goal is to improve the reconstruction procedure described in §3
for the case when Φρ(t; ·, ·) is known with some error. Let Ψε(t; p, q), p, q ∈
HPm, t ∈ [0, 2] is such that

‖Φρ(·; p, q)−Ψε(·; p, q) ‖C0(0,2) ≤ ε ‖ p ‖ ‖ q ‖ .

Let

w(t) =
{1− (t− 1)2}1/2 − i
{1− (t− 1)2}1/2 + i

be a conformal map of the halfplane <(t) > 1 with a slit along the interval
(1, 2) onto the unit disk |w| < 1. Then the slit is transformed onto the left
semicircle, |w| = 1,<(w) < 0 and the line <(t) = 1 onto the right semicircle
|w| = 1,<(w) > 0. The function f(w; p, q) = Φρ(t; p, q), w = w(t) is analytic
in the disk.
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Let fε(w; p, q) = Ψε(t; p, q), t ∈ (1, 2), w = w(t). Then fε is defined on
the left semicircle and

(4.3) |f(w)− fε(w)| ≤ ε ‖ p ‖ ‖ q ‖ .

Consider the domain O (see Fig.1) obtained as the intersection of the disk
and the sector of the angle π/2 with its vortex in the point (1, 0) which is
symmetric with respect to the real axis.

A

B

C

∂O

O

w

For the quasianalytic continuation of fε(w) we use the construction sug-
gested in [L ] which is based upon the Carleman lemma [Car]. Let

σε =
1
t2

log
Ct

ε
,

with some t ≥ 2. We define f̃ tε (z) by the following formula:

(4.4) f̃ tε (z) =
e−σε

2πi

∫ 3π
2

π
2

fε(w) exp {σε(
w − 1
z − 1

)2} iwdφ
z − w, w = eiφ.
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Theorem 4.3. Let f̃ tε (z) be given by (4.4) where fε satisfies (4.3). Then

|Mρ(p, q)− f̃ tε (1− 2/t)|

(4.5) ≤ C ‖ p ‖ ‖ q ‖ {tε 1
t2 + e−Cλt}

Proof. Consider f̃ tε (z) − f(z). Using the Cauchy formula for f t(z) =
f(z) exp (σε(z−1)2t2

4 ) we see that

f(1− 2/t) =
eσε

2πi

∫
∂O

f t(z)
dz

1− 2/t− z ,

where the contour ∂O consists of the left semicircle <(z) < 0 and the broken
line ABC (see Fig. 1). Hence

|f̃ tε (1− 2/t)− f(1− 2/t)|

≤ eσε

2π

∫ 3π
2

π
2

|f̃ε(z)− f(z)| exp (
σεt

2

4
<(z − 1)2) | dz

1− 2/t− z |

+
eσε

2π

∫
ABC

|f(z)| exp (
σεt

2

4
<(z − 1)2) | dz

1− 2/t− z | =

(4.6) I1 + I2,

where z = eiφ, φ ∈ (π2 ,
3π
2 ) in the first integral I1. However, <(z − 1)2 ≤ 2

and |1−2/t−z| ≥ 1 when z = eiφ, φ ∈ (π2 ,
3π
2 ). Hence inequality (4.3) yields

the following estimate for I1:

(4.7) I1 ≤ Cε ‖ p ‖ ‖ q ‖ eσε(t
2−1) ≤ Ctε 1

t2 ‖ p ‖ ‖ q ‖ ,

where the last estimate follows from the definition of σε.
To estimate I2 we use the fact that <{(z − 1)2} = 0 and |1−2/t−z| ≥

√
2
t

on ABC. Taking into account estimate (i) of Theorem 2.1 we see that

(4.8) I2 ≤ Ct ‖ p ‖ ‖ q ‖ eσε ≤ Ctε
1
t2 ‖ p ‖ ‖ q ‖ .

Clearly |w(t) − (1 − 2
t )| ≤ C

t2 so that 1 − 2
t = w(t̃), where | t− t̃ | ≤ C.

Taking into account Theorem 2.1(iii) we see that

(4.9) | f(1− 2/t)−Mρ | = |Φρ(t̃; p, q)−Mρ(p.q) | ≤ Ce−C
′λt ‖ p ‖ ‖ q ‖ .
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Equation (4.5) follows from (4.6)- (4.9).
The proof is complete.

Remark. The considerations leading to (4.8) is a special case of the results
obtained by M.Lavrent’ev (see [L; Ch.I, Pr.III]).

Let M ε
ρ(p, q) = f̃ tε (1−2/t), where t = | log ε|1/3λ−1/3

0 . Then estimate (4.9)
implies that

|Mρ(p, q)−M ε
ρ(p, q) | ≤ C| log ε|1/3e−λ

2/3
0 | log ε|1/3 .

Summarising the previous considerations we come to the following

Theorem 4.4. Let Ψε : HPm ×HPm → C0(0, 2) be a bilinear form which
is ε-close to Φρ. Then

‖ ρ(·)−Qmµ (·;M ε
ρ) ‖Cl(µ−1/2)

≤ C{‖ ρ ‖Cl+σ µ−σ/2 + er
2
0µ

2
µn(µr0)m/(

m

2
)!

+| log ε|1/3en2(r1+1)2µ2
[mµ2]n[53n/2(1 + r1)2]me−λ

2/3
0 | log ε|1/3}.

In particular when µ = m1/2 we have

‖ ρ(·)−Qm
m1/2(·;M ε

ρ) ‖Cl(m−1/4)

≤ C(1 + ‖ ρ ‖Cl+σ )(m−σ/4 + exp (Cm− C ′λ2/3
0 | log ε|1/3)).
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