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Abstract

Trapped modes in the linearized water-wave problem are free oscillations of an unbounded fluid
with a free surface that have finite energy; it has been known for some time that such modes are
supported by certain structures when held fixed. This paper investigates the problem of a freely-
floating structure that is able to move in response to the hydrodynamic forces acting upon it and
it is shown that trapped modes also exist in this problem. For a freely-floating structure a trapped
mode is a coupled oscillation of the fluid and the structure.

1 Introduction

It is known that, within the linearized theory of water waves, certain structures when held fixed can
support a trapped mode of a particular frequency (McIver 1996). Such a mode is a free oscillation of
an unbounded fluid with a free surface that has finite energy, does not radiate waves to infinity, and
in the absence of viscosity will persist for all time. If, for a specified frequency of fluid oscillation, the
structure does not support a trapped mode, then the solutions to the frequency-domain radiation
and scattering problems at that frequency are unique. From the practical point of view, the
existence of a trapped mode means that it is difficult to find accurate numerical solutions to the
radiation and scattering problems for a range of frequencies around the trapped-mode frequency
(Newman 1999).

McIver (1997) showed that trapped modes are orthogonal to any incident wave and consequently
will not be excited in a scattering problem in either the time or frequency domains. However, the
existence of a trapped mode implies that at the trapped-mode frequency there is a pole in a
frequency-domain radiation potential and the solution to the corresponding radiation problem does
not exist at that frequency. A consequence of this is that trapped modes can be excited in the time
domain by the forced oscillations of a trapping structure (McIver, McIver & Zhang 2003).

Recently, it has been established that the trapped modes supported by a fixed structure, as
described above, cannot be excited when that structure is allowed to float freely (and hence respond
to the hydrodynamic forces on it), with or without incident waves (McIver 2005). For motion
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in a single mode this follows immediately from the frequency-domain equation of motion which
shows that the pole in the radiation potential at the trapped-mode frequency is annulled by a
corresponding zero in the velocity. However, it was also found that trapped modes supported by
fixed structures cannot be excited by more general motions of the structure that involve more than
one mode of oscillation. Thus, although the existence of such trapped modes leads to numerical
difficulties in the solution of the frequency-domain radiation and scattering problems, their existence
has no direct relevance to the problem of a freely-floating body in which the radiation and scattering
problems are combined through the equation of motion. It is therefore natural to investigate
questions of uniqueness, and in particular the existence of trapped modes, in the problem of a
freely-floating structure.

Remarkably, there appears to be only one published result on uniqueness in the problem for a
freely-floating structure and that is due to John (1950) (although Kuznetsov, 2003, has applied the
ideas in the proof to a structure supported by an air cushion). Suppose a structure satisfies the
conditions that vertical lines drawn downwards from the free surface do not intersect the structure
and that no part of the free surface is isolated from infinity, then John’s result states that there
is a unique solution to the problem of a freely-floating structure, and hence no trapped modes,
provided that the frequency is sufficiently high.

The purpose of the present work is to demonstrate the existence of freely-floating structures
that do support trapped modes; these modes correspond to coupled free oscillations of both the
structure and the surrounding fluid. In line with the terminologies employed by McIver (2005)
in the context of a more general discussion of resonances, fixed structures that support persistent
free oscillations of the fluid will be called “sloshing trapping structures”, while structures that
may oscillate freely in the presence of the fluid will be called “motion trapping structures”. The
method used in the constructions described here is an inverse procedure similar to that used by
Kyozuka and Yoshida (1981) to obtain wave-free oscillating structures, and by McIver (1996) to
obtain sloshing trapping structures. All of the examples presented violate both of the conditions
in John’s theorem and, in particular, there is always a portion of the free surface that is isolated
from infinity. John’s result does not rule out trapped modes for structures that have no isolated
portion of the free surface, but attempts to find such structures have failed.

For a structure to support motion trapped modes of a particular frequency ω = ω0 in a single
mode of oscillation, the corresponding frequency-dependent hydrodynamic coefficients must satisfy
two conditions at this frequency. First of all the damping coefficient must be zero, so that there
is no wave radiation to infinity, and secondly the added mass coefficient must satisfy a resonance
condition obtained from the requirement that the homogeneous form of the equation of motion
for the structure has a non-trivial solution. The latter condition may be rewritten in terms of
properties of the velocity potential by an application of Green’s theorem. Trapping structures are
found by an application of the inverse procedure that uses a singular velocity potential that does
not radiate waves to infinity and satisfies the additional requirements imposed by the new form
of the resonance condition. Motion trapping structures are then obtained by examination of the
streamlines corresponding to a modified potential that ensures that the correct boundary condition
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on the surface of the structure is satisfied. Unlike sloshing trapping structures, there is no singular
behaviour at the trapped-mode frequency in any of the hydrodynamic coefficients.

This paper is concerned with two-dimensional motions and attention is focussed mainly on
structures that are constrained to move in heave. The problem is formulated in § 2 and the
modified form of the resonance condition is obtained in § 3. Specific constructions of motion
trapping structures are described in § 4 and some consequences of the existence of motion trapping
structures are discussed in § 5. Finally, in § 6, it is demonstrated that the restriction to vertical
motions is not necessary for the existence of motion trapping structures and an example that
oscillates horizontally is described briefly.

2 Formulation

Attention is restricted to motion in two dimensions and Cartesian coordinates x, z are chosen with
z directed vertically upwards from the mean free surface. In addition, plane polar coordinates R, θ
will be used where θ is measured from the downward vertical so that z = −R cos θ.

Consider a moored surface-piercing structure constrained to move in the vertical direction with
initial displacement Z(0) and initial velocity Ż(0). The Fourier transform of the time-domain
equation of motion yields the frequency-domain equation of motion[
ρgW + κ− ω2 {M + a(ω) + i(b(ω) + γ)/ω}

]
v(ω) = −iω[X(ω) +MŻ(0)]− (ρgW + κ)Z(0) (1)

(see, for example, McIver 2005; the Fourier transform is defined so that the frequency-domain
motions are equivalent to oscillations with a time dependence e−iωt). Here ρ is the fluid density,
g is the acceleration due to gravity, W is the water plane area, κ is the spring constant of the
moorings, M is the mass of the structure (which by Archimedes principle is ρ times the submerged
volume V ), a is the added mass coefficient, b is the damping coefficient, γ is the damping constant
of the moorings, v is the (complex) amplitude of the structural velocity, and X is the exciting force
due to wave incidence on a fixed structure. Note that the functions of frequency in equation (1)
are Fourier transforms in time of physical quantities so that, for example, v(ω) has the dimensions
of length rather than velocity. The inclusion in (1) of Z(0) and Ż(0) is significant in considerations
of the behaviour in the time domain of motion trapping structures.

3 Conditions for heave resonance

Investigation of the uniqueness of the solution to a problem involving a freely-floating structure in
heave leads to consideration of the homogeneous form of (1) which is[

ρgW + κ− ω2 {M + a(ω) + i(b(ω) + γ)/ω}
]
v = 0. (2)

It follows that necessary conditions for the existence of a non-zero v (so that the structure is in
motion) for some particular frequency ω = ω0 are that

ρgW + κ− ω2
0 {M + a(ω0)} = 0 (3)
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and
b(ω0) + γ = 0. (4)

For the fluid motion to have finite energy there can be no radiation of waves to infinity and hence,
at the frequency ω0, it is required that the damping coefficient b is zero. It then follows from (4)
that the mooring characteristic γ must also be zero. The resonance condition (3) can, in principle,
be satisfied at any frequency by an appropriate choice of the spring constant κ (although in some
cases κ would be negative). The focus here is on structures without moorings, and in this case the
construction of a freely-floating trapping structure requires that both

ρgW − ω2
0 {M + a(ω0)} = 0 (5)

and
b(ω0) = 0. (6)

So-called wave-free structures, for which b(ω0) = 0, have been studied by a number of authors.
For example, Kyozuka & Yoshida (1981) obtain such structures by an inverse procedure in which
the velocity potential for the fluid motion is expressed in terms of singular solutions of the governing
equations, and then the surface of a structure is obtained from examination of the streamlines of a
modified flow. In general, the structure so obtained will not possess hydrodynamic characteristics
that also allow equation (5) to be satisfied at the same frequency ω = ω0. However, insight on how
this might be achieved may be obtained through an application of Green’s theorem as follows.

The result will be explained in detail for two-dimensional motion in water of infinite depth.
Denote by φ0 the velocity potential corresponding to the vertical oscillations of a wave-free structure
at frequency ω = ω0 so that, in particular,

∂φ0

∂n
= nz on Γ (7)

where n is a normal coordinate to the wetted surface of the structure Γ, directed out of the fluid,
and nz is the vertical component of the unit normal to Γ. By definition, the added mass

a(ω0) = ρ

∫
Γ
φ0nz ds (8)

where the fact that b(ω0) = 0 has been used. With the assumption of symmetry about x = 0, any
wave-free potential must satisfy

φ0 =
µ cos θ
R

+ o

(
1
R

)
as R→∞, (9)

where µ is a constant, so that to leading order φ0 is dipole-like at infinity (Ursell, 1950); it is
possible that µ may be zero.

Let S denote the union of Γ with the free surface F and a closing semicircle S∞ at infinity in
z < 0. Application of Green’s theorem over S to the harmonic functions φ0 and

u = z + 1/K (10)
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yields ∫
S

[
φ0
∂u

∂n
− u

∂φ0

∂n

]
ds = 0. (11)

The contribution to the integral from F is zero, as both φ0 and u satisfy the free-surface condition,
and it follows from the asymptotic form (9) that∫

S∞

[
φ0
∂u

∂n
− u

∂φ0

∂n

]
ds = −πµ. (12)

From the boundary condition (7),∫
Γ

[
φ0
∂u

∂n
− u

∂φ0

∂n

]
ds =

∫
Γ

[
φ0nz −

(
z +

1
K

)
nz

]
ds. (13)

The integral of φ0 is written in terms of the added mass using (8). The divergence theorem may
be used to show that for an arbitrary χ∫

Γ+W
χnz ds = −

∫∫
V
∇χ · ez dV, (14)

where V (= M/ρ) is the submerged volume of the structure (per unit length in the y direction),
ez is a unit vector in the z direction, and the normal coordinate n is directed into V . The choice
χ = z then gives ∫

Γ
znz ds

(
=

∫
Γ
z dx

)
= −V, (15)

and the choice χ = 1 yields ∫
Γ
nz ds = −

∫
W
nz ds =

∫
W

dx = W. (16)

Thus, the application of Green’s theorem results in

ρgW − ω2
0 {M + a(ω0)} = −πµρω2

0 (17)

and it is apparent that the resonance condition (5) can be satisfied if and only if the dipole coefficient
µ is zero.

For two-dimensional motion in fluid of constant finite depth h a similar application of Green’s
theorem leads to

ρgW − ω2
0 {M + a(ω0)} = −ρω2

0

∫ ∞

−∞
φ0

∣∣
z=−h

dx. (18)

so that, given a wave-free potential φ0 at a frequency ω = ω0, a necessary condition for the existence
of a motion trapped mode at that frequency is∫ ∞

−∞
φ0

∣∣
z=−h

dx = 0. (19)
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4 Construction of motion trapping structures

Motion trapping structures may be constructed using a modification of the inverse procedure de-
scribed by Kyozuka & Yoshida (1981). Let φ0 be a wave-free potential with dipole coefficient µ = 0;
typically φ0 will be singular at a number of discrete points in z ≤ 0. From equation (7), if a suitable
structure could be identified, the modified potential

φ = z − φ0 (20)

would satisfy
∂φ

∂n
= 0 on Γ (21)

so that Γ is a streamline of the flow corresponding to φ. Hence motion trapping structures are
obtained from any streamlines of this flow that isolate the singularities of φ from infinity.

The condition (21) can be satisfied if the near field to the structure contains a dipole component,
while the resonance condition (5) holds only if there is no dipole component in the far field. This
can be arranged using the following construction that uses a wave-free potential for the fluid motion
of the trapped mode that has two components. The first component is

φs =
∫ ∞

0
−

eµz cosµ(x− ξ)
µ−K

dµ+
∫ ∞

0
−

eµz cosµ(x+ ξ)
µ−K

dµ (22)

and is a combination of logarithmically singular wave sources in the free surface at x = ±ξ that
satisfies Laplace’s equation, the free-surface condition and, provided that Kξ = (2n + 1)π/2 for
some integer n ≥ 0, is wave-free at infinity (for all of the calculations reported here n is chosen to
be zero). This potential was used by McIver (1996) in the construction of sloshing trapped modes
for fixed structures. The potential φs may be written in terms of the exponential integral E1 as

φs = (−1)nRe
{

eKz+iKx
[
π sgn(x− ξ)− π sgn(x+ ξ)

− i E1(Kz + iK(x− ξ)) + iE1(Kz + iK(x+ ξ))
]}

(23)

and the corresponding stream function is

ψs = (−1)(n+1)Im
{

eKz+iKx
[
π sgn(x− ξ)− π sgn(x+ ξ)

− i E1(Kz + iK(x− ξ)) + iE1(Kz + iK(x+ ξ))
]}

(24)

From equation (23) and standard asymptotic results (Abramowitz & Stegun, 1964, equation 5.1.51)
it may be shown that

φs ∼ −2 cos θ
KR

as R = (x2 + z2)1/2 →∞. (25)

Thus φs has the property that it is logarithmic near to (x, z) = (±ξ, 0) but dipole-like in the far
field. The second component of the wave-free potential is

φd =
1
K2

[φ1(R+, θ+) + φ1(R−, θ−)] (26)
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Figure 1: The lower figure shows the streamlines corresponding to the stream function (31) and
the upper figure shows the same stream function plotted on z = 0; K = 4; n = 0, δ = 1.

where R±, θ± are polar coordinates with origin at (x, z) = (±ξ, 0) and

φ1(R, θ) =
K cos θ
R

+
cos 2θ
R2

(27)

is a standard wave-free potential that satisfies Laplace’s equation and the free-surface condition;
the stream function corresponding to (28) is

ψ1(R, θ) = −K sin θ
R

− sin 2θ
R2

(28)

The potential φd is singular at the same points as φs, has a dipole component in the near field to
each singularity, and to leading order is dipole-like in the far field so that

φd ∼
2 cos θ
KR

as r →∞. (29)

With the above properties of φs and φd in mind, the wave-free potential to be employed in the
construction of motion trapping structures is

φ0 = δ(φs + φd) (30)

where δ is an arbitrary positive constant (it is demonstrated below in § 4.1 that suitable stream
lines can be found for any δ > 0). This choice for φ0 has all of the required properties and, in
particular, no dipole component in its far-field expansion. From Ursell (1950), it is known that
in the far-field any potential symmetric about x = 0 has an expansion in terms of a wave source
and wave-free potentials. Thus, the elimination from φs (which is already wave-free) of the dipole
component using (28) also eliminates the quadrupole component so that φ0 = O(1/R3) as R→∞.
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Figure 2: The right-hand element of trapping structures obtained from the stream function (31);
K = 4, n = 0. Each structural surface is marked with the corresponding value of δ.

Motion trapping structures are obtained by examination of the stream function

ψ = −x− δ (ψs + ψd) (31)

where
ψd =

1
K2

[ψ1(R+, θ+) + ψ1(R−, θ−)] (32)

The lower part of figure 1 shows the streamlines of ψ in x > 0 for the case K = 4, δ = 1. (The
wavenumber K could be scaled out of the problem, but it is convenient not to do this in view of
some of the computations for finite depth presented later in the paper.) The streamline pattern for
x < 0 is obtained by reflection in x = 0. This figure is typical in that, for x > 0 , there is a single
dividing streamline part of which (shown by a thick line in the figure) forms a contour that, in the
fluid region, isolates the singular point from infinity; the part of this contour that lies in z < 0,
together with its reflection in x = 0, forms the wetted surface Γ of the motion trapping structure.
It should be born in mind that the streamline pattern shown in Figure 1 does not correspond to
that in the water-wave problem, it serves only to determine the contour Γ. The value of the stream
function on the dividing streamline is obtained by numerically locating the stagnation point of the
flow and inserting the coordinates into the stream function. Once the dividing streamline is known
the resonance condition (5) can be verified by computing the added mass from equation (8) and
the submerged volume (and hence the mass) from equation (15).

Although for each K and δ the potential φ0 generates a single motion trapping structure,
continuous variation of δ gives a range of structures with the same resonant wave number K.
Numerical experimentation suggests that trapping structures can only be obtained for δ > 0 and
some of the structures obtained for K = 4 are shown in figure 2. For most of the values of δ
illustrated, the structures resemble the sloshing trapping structures obtained by McIver (1996) in
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that the so-called John condition is satisfied on the inside of the structural element (small x), so
that vertical lines drawn down from the free surface do not intersect Γ, but on the outside of the
element the John condition is violated. However, for small δ the John condition is violated on both
sides of the element (Motygin & Kuznetsov, 1998, obtained a family of sloshing trapping structures
that violate the John condition on both sides of an element).

4.1 The streamline pattern

In this section the streamline pattern associated with the potential φ = z − φ0 is discussed and,
in particular, it is shown that motion trapping structures are possible for any positive value of the
parameter δ that appears in equation (30). The stream function ψ associated with φ is

ψ = −x+ δ

[∫ ∞

0
−

eµz sinµ(x− ξ)
µ−K

dµ+
∫ ∞

0
−

eµz sinµ(x+ ξ)
µ−K

dµ

+
(x+ ξ)

K[z2 + (x+ ξ)2]
− 2z(x+ ξ)
K2[z2 + (x+ ξ)2]2

+
(x− ξ)

K[z2 + (x− ξ)2]
− 2z(x− ξ)
K2[z2 + (x− ξ)2]2

]
. (33)

This function is antisymmetric in x so that ψ(0, z) = 0, and to leading order ψ has a quadrupole
singularity at (x, z) = (ξ, 0). From an investigation of the variation of the stream function along
z = 0, we will demonstrate that if δ > 0 and Kξ = π/2, there is a streamline of the function which
leaves the free surface from a point to the right of x = ξ and re-enters it in the region 0 < x < ξ.
By symmetry there is then a corresponding streamline in x < 0, and this pair of streamlines form
a motion trapping structure (in the following it is assumed that x ≥ 0).

From (33) ψ(x, 0) ranges from zero at x = 0 to −∞ as x→ ξ− and ψ(x, 0) ranges from +∞ to
−∞ as x varies from ξ to ∞ (see the upper part of figure 1). From equation (33)

∂ψ

∂x
(x, 0) = −1

+Kδ

[∫ ∞

0
− cosµ(x− ξ)

µ−K
dµ+

∫ ∞

0
− cosµ(x+ ξ)

µ−K
dµ− 1

K2(x+ ξ)2
− 1
K2(x− ξ)2

]
. (34)

The integrals in (34) may be rewritten with the use of contour integration and the quadrupole
terms may also be expressed as integrals to give

∂ψ

∂x
(x, 0) = −1 +Kδ

[
−π (sinK|x− ξ|+ sinK(x+ ξ)) +

∫ ∞

0

µ e−µ|x−ξ|

K2 + µ2
dµ+

∫ ∞

0

µ e−µ(x+ξ)

K2 + µ2
dµ

− 1
K2

∫ ∞

0
µ e−µ|x−ξ| dµ− 1

K2

∫ ∞

0
µ e−µ(x+ξ) dµ

]
= −1−Kδ [π (sinK|x− ξ|+ sinK(x+ ξ))

+
1
K2

∫ ∞

0

µ3 e−µ|x−ξ|

K2 + µ2
dµ+

1
K2

∫ ∞

0

µ3 e−µ(x+ξ)

K2 + µ2
dµ

]
(35)

Thus if Kξ = π/2

∂ψ

∂x
(x, 0) = −1− δ

K

[∫ ∞

0

µ3 e−µ|x−ξ|

K2 + µ2
dµ+

∫ ∞

0

µ3 e−µ(x+ξ)

K2 + µ2
dµ

]
, for x > ξ, (36)
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and for 0 ≤ x < ξ

∂ψ

∂x
(x, 0) = −1− δ

K

[
2π cosKx+

∫ ∞

0

µ3 e−µ|x−ξ|

K2 + µ2
dµ+

∫ ∞

0

µ3 e−µ(x+ξ)

K2 + µ2
dµ

]
. (37)

As 0 ≤ Kx < π/2 in (37), ∂ψ/∂x(x, 0) < 0 ∀x 6= ξ, and so ψ monotonically decreases from +∞ to
−∞ as x varies from ξ to ∞ and ψ monotonically decreases from 0 to −∞ as x varies from 0 to ξ.

A streamline which emanates from the free surface to the right of the singular point, on which
ψ > 0, cannot cross the z axis, as ψ = 0 there. In addition it cannot go off to infinity in x > 0 as
ψ ∼ −x as x2 + z2 → ∞, nor can it return to the free surface as there is no other place at which
ψ > 0 than where it started. Thus the streamline must terminate at the singular point, which is
possible as the flow field is quadrupole like in the immediate neighbourhood of that point.

At large distances to the right of the singular point the streamlines asymptote to those for a
uniform stream in the z direction, so streamlines coming out of the free surface for large values
of x go to negative infinity in z. Thus there is a dividing streamline which emanates from the
free surface to the right of the singular point, on which ψ = ψd ≤ 0, and which separates the
streamlines that enter the singular point from those which tend to infinity. If ψd = 0 then the
dividing streamline must connect to the x axis rather than the free surface and so form a structure
with one element rather than two, but in practice this does not seem to happen.

Assume now that ψd < 0. If there is no stagnation point on the dividing streamline in z < 0
then it must meet the free surface at some x in the interval (0, ξ) and hence form one element of
a two-element structure. However this situation is impossible as the resulting flow pattern would
not be able to accommodate those streamlines that tend to negative infinity in z and for which
ψ ∈ (−∞, ψd). If the dividing streamline does come to a stagnation point (of any order) in z < 0
then one branch of the streamline that emerges from the stagnation point must go to infinity, and
at least one branch must go into the singularity. If there is no other branch with ψ = ψd, then the
streamlines that emerge from the free surface with ψ < ψd could not be accommodated into the
flow pattern as streamlines at large depths with this range of stream function values already exist to
the right of the dividing stream line. Hence one branch of the streamline from the stagnation point
must join the free surface to the left of the singular point, where it divides streamlines emanating
from this portion of the free surface into those entering the singular point and those going to
negative infinity in z. (If there are further stagnation points then the above arguments can be
repeated with minor modifications, although numerical calculations suggest that there is a single
stagnation point.) The portion of the dividing streamline which connects to the free surface, plus
its reflection in the z axis, removes the singularities from the flow field and so may be taken to be
the boundary of a motion trapping structure. Thus, for a given K a trapping structure may be
found for any δ > 0.
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Figure 3: Heave added mass a/ρ (———) and damping b/ρω (– – – –) coefficients for motion
trapping structures with K = 4 and (a) δ = 0.05, (b) δ = 1.

5 Consequences of the existence of motion trapped modes

5.1 The frequency domain

In the case of a sloshing trapping structure, the frequency-domain radiation potential has a pole at
the trapped-mode frequency, but the scattering potential is orthogonal to the trapped mode and
hence is well-behaved at the trapped-mode frequency. Newman (1999) has performed detailed nu-
merical calculations of the frequency-domain hydrodynamic coefficients for fixed trapping structures
in three dimensions. The most striking manifestation of the singularity in the radiation potential is
the very rapid change in the added mass coefficient that occurs around the trapped-mode frequency.

For a motion trapping structure the scattering and radiation potentials are both well behaved
at the resonant frequency ω = ω0. Consequently, the hydrodynamic coefficients for such a structure
are analytic functions of the frequency ω for all real positive values. By construction the damping
coefficient b is zero at the resonant frequency ω = ω0 and hence, from the Haskind relation, the
exciting force X(ω0) = 0. The added mass and damping coefficients for two motion trapping
structures are shown in figure 3 (the corresponding structures are shown in figure 2). In both cases
motion trapping occurs for K = 4 and at lower frequencies there are rapid changes in the added
mass and damping that are associated with a pole of the radiation potential in the lower half of
the complex frequency plane. These poles correspond to sloshing complex resonances associated
with fluid motions between the two elements of each structure (see McIver 2005). In case (a) the
region of rapid change is well away from the motion trapped mode at K = 4 where the added mass
in positive. This contrasts with case (b) in which there are much stronger changes in added mass
and damping and at K = 4 the added mass is negative. In both cases the zero in the damping at
K = 4 occurs in a region where the damping is in any case very small.

Singular behaviour in a problem involving a motion trapping structure may arise through the
solution of the equation of motion (1) for v(ω). If one or both of the initial displacement and
velocity, Z(0) and Ż(0) respectively, are non zero then from (1) the velocity v will have a simple
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Figure 4: Displacement η/h of the mid point of the internal free surface (——) and displacement
ζ/h of the structure (– – –) due to release of the structure from rest.
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Figure 5: Fourier transform of the displacement, shown in figure 4, of the mid point of the internal
free surface due to release of the structure from rest.

pole at ω = ω0. Thus, in these circumstances, the solution to the boundary-value problem will not
exist at the resonant frequency. However, if Z(0) = Ż(0) = 0 then the analytic nature of X(ω)
means that the zero in X annuls the zero arising from (5) and (6) and so v(ω) is non-singular at
the resonant frequency and the solution to the boundary-value problem exists, although it will not
be unique.

5.2 The time domain

Any persistent oscillation in the time domain with frequency ω0 corresponds to a simple pole in the
frequency-domain potential at a real frequency ω = ω0 (see McIver 2005). In the discussion of § 5.1
it was noted that for a motion trapping structure such poles will occur only as a result of a non-zero
initial displacement and/or velocity. Thus, for example, a motion trapped mode will be excited in
the time domain by displacing the corresponding trapping structure from its equilibrium position
and releasing it from rest. This is illustrated in figure 4 by means of a numerical calculation made
using the method described by McIver et al. (2003). This method is for two-dimensional motion in
fluid of constant finite depth h and hence a modification of the constructive procedure described
in § 4 is needed. For the structure used in the calculations φs is taken to be a pair of wave sources
and φd a pair of wave dipoles (Yu & Ursell 1961) with the spacing 2ξ and finite-depth wave number
k chosen to satisfy kξ = π/2, where k is related to K through K = k tanh kh. The particular
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Figure 6: Displacement η/h of the mid point of the internal free surface (——) and displacement
ζ/h of the structure (– – –) due to an incident wave packet.
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Figure 7: Fourier transform of the displacement, shown in figure 6, of the mid point of the internal
free surface due to an incident wave packet .

trapping structure used here has a trapped-mode frequency corresponding to kh = 4 and the
parameter δ = 0.05 (the shape of the structure obtained is very close to that shown in figure 2 for
infinite depth with K = 4 and δ = 0.05). Figure 4 shows the displacement of the structure and
the free-surface elevation at the mid point of the internal free surface. After an initial transient
has decayed both motions settle to a steady oscillation with the same frequency. The discrete
Fourier transform of the surface elevation shown in figure 5 confirms that this oscillation is at the
trapped-mode frequency (see McIver et al. 2003 for further details of the transform).

If a motion trapping structure is initially at rest in its equilibrium position then, as explained
in § 5.1, the frequency-domain velocity v(ω) does not have a pole at the resonant frequency. Conse-
quently if a time-domain motion is excited by an incident wave there can be no persistent oscillation.
This is illustrated in figure 6 for the same structure used for the calculation shown in figure 4. The
structure is set in motion by a incident Gaussian wave packet with a peak frequency corresponding
to kh = 4 (see equation (31) of McIver 2005 for the definition of the wave packet used). After
interaction with the incident wave the motion of the internal free surface and the structure both
rapidly die away and the Fourier transform of the free-surface confirms the absence of a persistent
oscillation at the resonant frequency.

13



6 Other modes of motion

This paper has concentrated on heaving motion trapping structures, but it is likely that similar
constructions are possible for other modes of motion. This is demonstrated here for two-dimensional
horizontal motions in water of infinite depth. For such surge motions the hydrostatic restoring force
does not appear in the equation of motion and the construction of a motion trapping structure at
a frequency ω = ω0 requires that the surge added mass coefficient a(ω) satisfies

M + a(ω0) = 0 (38)

and that the surge damping coefficient is zero. Equation (38) indicates that the added mass is
negative at a trapped-mode frequency ω = ω0 which suggests that, in this case, the motion trapped
mode is closely associated with a pole of the radiation potential in the lower half of the complex
frequency plane that lies close to the real frequency axis near ω = ω0. With the assumption of
geometrical symmetry about x = 0, a wave-free potential corresponding to a horizontal oscillation
about x = 0 has the form

φ0 =
µ sin 2θ
R2

+ o

(
1
R2

)
as R→∞ (39)

(Ursell 1950). An application of Green’s theorem to φ0 and u = x similar to that described for
heave in § 3 shows that the resonance condition (38) is satisfied if and only if∫

F
xφ0 dx = 0 (40)

where F is the free surface. The required boundary condition,

∂φ0

∂n
= nx on Γ (41)

can be satisfied by examination of the streamlines of the potential

φ = x− φ0, (42)

where
φ0 = δ

∂φs

∂x
(43)

and φs is the combination of wave sources given in equation (22) (and hence φ0 is formed from a
pair of horizontal wave dipoles).

Here the choices K = 1, n = 0 and δ = 20 are made and the corresponding streamline pattern
is shown in figure 8 for x ≥ 0. To construct a motion trapping structure a streamline is first chosen
from those that surround the singular point in z ≤ 0. A second streamline is then chosen from
those that intersect x = 0 to ensure that equation (40) is satisfied. (This is possible because the
potential φ0 changes sign across x = ±ξ.) One combination of streamlines which, together with
their reflections in x = 0, are able to form a motion trapping structure is shown using thicker lines
in figure 8. The complete structure has three elements and is typical of many calculations (for
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Figure 8: Streamlines corresponding to the potential x − φ0 with φ0 given by equation (43), and
with K = 1 and δ = 20. The singular point is indicated by a filled disk.
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Figure 9: Surge added mass a/ρ (———) and damping b/ρω (– – – –) coefficients for the motion
trapping structure shown in figure 8; a motion trapped mode exists at K = 1.

different values of δ and choices of streamline around the singularity) in that the central element
has a significantly larger draft than the outer elements, and the gaps between elements are relatively
narrow compared to the overall dimensions of the structure. In contrast to the heave case discussed
in § 4, one streamline pattern yields a range of trapping structures.

The added mass and damping coefficients calculated by a panel method are given in figure 9
for the motion trapping structure shown in figure 8. The motion trapping is closely associated
with a very narrow banded resonance around K = 1 that could easily be overlooked in a numerical
investigation of the hydrodynamic properties of this structure. This contrasts with the particular
heave motion trapping structures discussed earlier for which the frequency of the motion resonance
was well separated from the most rapid changes in the added mass and damping coefficients. The
streamline pattern in figure 8 suggests that the resonance in the radiation problem corresponds

15



to out of phase pumping oscillations in the two gaps between structural elements (although the
constructed streamlines correspond to the motion resonance at K = 1). A blow up of the resonant
region is given in figure 9(b). Due to the numerical error in the results of the panel method there
is a frequency shift and the minimum in the damping actually occurs at K = 1.000907 rather than
the value K = 1 used in the original construction. Further indication of the level of numerical error
is given by the fact that at K = 1.000907 the added mass calculated by the panel method is −2.69
rather than the value −2.78 calculated directly from the exact velocity potential φ0 with K = 1.

7 Conclusion

It has been demonstrated that, within the linearized theory of water waves, there are freely-floating
structures that support trapped modes. Such modes are free oscillations involving coupled motions
of the structure and fluid that do not radiate waves to infinity and which, in the absence of viscosity,
will persist for all time. The structures that support such modes are termed here motion trapping
structures and can be contrasted with the previously-known sloshing trapping structures that,
when held fixed, can support free oscillations of the fluid. Examples of motion trapping structures
have been constructed for both heave and surge motions in two dimensions. Examination of the
equations of motion shows that motion trapped modes cannot be excited by incident waves, but
they can be excited by giving the structure a non-zero initial displacement and/or velocity. This
has been confirmed by numerical calculations in the time domain.
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