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Abstract

A method is suggested for the computation of the generalized dimensions of fractal
attractors at the period-doubling transition to chaos. The approach is based on an
eigenvalue problem formulated in terms of functional equations, with a coefficient
expressed in terms of Feigenbaum’s universal fixed-point function. The accuracy of the
results is determined only by precision of the representation of the universal function.

PACS numbers: 05.45.Df, 05.45.-a, 05.10.Cc
The multifractal or thermodynamic formalism is an important tool for description of

strange sets arising in dynamical systems in different contexts. Its basic ideas have been
clearly formulated e.g. in the paper of Halsey et al. [1]. Some of the examples presented
by these and other authors relate to the fractal attractors that occur at the onset of chaos
via period doubling and quasiperiodicity [2]–[7]. The multifractal analysis reveals global
scaling properties of these attractors, such as the generalized dimensions and the f(α)
spectra. They are of principal interest because of their universality for systems of different
nature. Moreover, they allow a measurement in physical experiments [7].

One of the well-studied multifractal objects is the Feigenbaum attractor, which oc-
curs at the period-doubling transition to chaos in unimodal one-dimensional maps with
quadratic extremum and in a wide class of more general nonlinear dissipative systems [8,
2, 9]. Beside the original procedure of Halsey et al. (namely the construction and analysis
of the partition functions defined as sums over some natural covering of the attractor),
several other approaches to the computation of the multifractal characteristics have been
developed. Bensimon et al. [3] used a method based on a break up of a partition sum into
two components with subsequent use of the scaling property. Kovács [4] suggested a pro-
cedure of extracting the dimensions from the eigenvalue problem for the Frobenius-Perron
operator. Christiansen et al. [5] exploited the idea of approximating the strange sets by
periodic orbits and expressed the desired quantities in terms of cycle expansions. (To
our knowledge, the calculation of the Hausdorff dimension of the Feigenbaum attractor in
Ref. [5] remains the most precise to date.)

In some sense, the global description of scaling properties in the multifractal formalism
seems opposite to the local description in terms of the Feigenbaum renormalization group
approach [8]. The latter is based on the solution of the functional fixed-point equation
and associated with scaling relations for the evolution operators in a neighborhood of the
extremum of the map under consideration.
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In this note we present a novel method for precise computation of the multifractal
characteristics: the problem may be presented in terms of the Feigenbaum renormaliza-
tion transformation applied to some auxiliary function. The desired quantities, such as
the generalized dimensions and the f(α) spectrum, can be extracted from an eigenvalue
problem, formulated as a functional equation involving Feigenbaum’s universal fixed-point
function. An analogous approach was previously suggested in application to the problem
of the effect of noise onto the period-doubling transition [10, 2]. That problem appears to
be linked with one special generalized dimension, as noted e.g. in Refs. [2, 11], and this
circumstance obviously supports a possibility of the generalization we undertake here. A
similar idea was used in Ref. [12] for a study of scaling regularities in the Fourier spectrum
and response function of the quadratic map at the period-doubling transition to chaos.

Using the representation of the Feigenbaum function from Ref. [13] we obtain the
generalized dimensions with high precision in excellent agreement with the previously
known data. Also we present accurate results for generalized dimensions of the multifractal
attractors at the onset of chaos in the unimodal maps of degrees 4, 6, and 8, for which the
universal functions g(x) are available in the literature in the form of numerically found
polynomial expansions [14].

To estimate the multifractal characteristics for the Feigenbaum attractor by the stan-

dard approach the generalized partition functions Γk(q, τ) =
2k∑
i=1

pq
i /l

τ
i are exploited. Here

q and τ are some real parameters, pi = 2−k, li = |xi − xi+2k |, and the sequence xi

results from iterations of the unimodal map at the limit point of the period-doubling ac-
cumulation, starting from the extremum point. Obviously, Γk(q, τ) = 2−qkS2k(τ), where

S2k(τ) =
2k∑
i=1

l−τ
i . For each given q an appropriate value of τ = τ(q) may be found that

ensures an asymptotic equality Γk+1(q, τ) = Γk(q, τ) as k → ∞. Vice versa, for a given τ
we can select a respective value of q = q(τ). This relation of q and τ is used then to obtain
the generalized dimensions and f(α) spectrum.

For large k the lengths of the intervals li are small, and they may be estimated via the
derivatives as

li ∼= |dxi/dx1|l1. (1)

In this approximation we can compute them together with the sums S step by step via
simultaneous iterations of the relations

xi+1 = f(xi),
li+1 = |f ′(xi)|li,
Si+1 = Si + l−τ

i+1Ψ(xi).
(2)

We have introduced here an auxiliary function Ψ(x) which at this moment is supposed to
be identically equal to 1.

By twofold application of Eqs. (2) we obtain

xi+2 = f(f(xi)),
li+2 = |f ′(f(xi))f ′(xi)|li,
Si+2 = Si + l−τ

i+2 [|f ′(f(xi))|τΨ(xi) + Ψ(f(xi))] .
(3)

Now we perform Feigenbaum’s scale change x 7→ x/α, l 7→ l/|α| (α is the Feigenbaum
constant) and arrive at the equations, which are of the same form as (2), but with new
functions fnew(x) = αf(f(x/α)), Ψnew(x) = Lf,τΨ(x) where Lf,τ is the linear operator

Lf,τ : Ψ(x) 7→ |α|τ [|f ′(f(x/α))|τ Ψ(x/α) + Ψ(f(x/α))
]
. (4)
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This transformation may be repeated again and again. Asymptotically, f(x) con-
verges to the fixed-point function satisfying the Feigenbaum-Cvitanović equation g(x) =
αg(g(x/α)), and the sequence Ψk(x) will follow the recursion Ψk+1(x) = Lg,τΨk(x).

Thus, as k → ∞, the function Ψk tends to the eigenfunction associated with the largest
eigenvalue of the linear operator Lg,τ , the eigenproblem being

ν(τ)Ψ(x) = |α|τ [|g′(g(x/α))|τ Ψ(x/α) + Ψ(g(x/α))
]
. (5)

(A particular case of this equation for τ = 2 appears in the theory of effect of noise onto
the period-doubling transition. A possibility of computation of the noise scaling constant
via sums of the derivatives over the Feigenbaum attractor was noted e.g. in Refs. [15, 11].)

¿From the construction, we see that the eigenvalue ν(τ) indicates a rate of growth or
decrease of the sums S:

S2k(τ) ∝ ν(τ)k. (6)

To have Γk → const as k → ∞, we must have

ν(τ) = 2q, or q = log2 ν(τ). (7)

Then, in accordance with the multifractal formalism, we can obtain the generalized di-
mensions

Dq =
τ

q − 1
, (8)

and the f(α) spectrum as an implicitly defined relation between the variables

α =
dτ

dq
and f = q

dτ

dq
− τ. (9)

Although our argumentation starts from the approximate relation (1), we believe that
the final Eq. (5) is exact. The data from the numerical computations presented below
strongly supports this conjecture: the generalized dimensions are in excellent agreement
with the best known numerical results, up to all reliable digits. Apparently, in the asymp-
totics of k → ∞ the approximate nature of (1) becomes inessential. One might hope that
a rigorous proof can be found.

We have performed numerical solutions of the eigenvalue problem (5) for the classic
Feigenbaum attractor of the quadratic map and for unimodal maps of even integer degrees
d = 4, 6, and 8. In principle, the achievable precision of the results is determined only by
accuracy of the approximation of the universal functions.

With the known polynomial approximation of g(x) and value of the scaling constant α
we have numerically performed the functional transformation defined by the right-hand
side of Eq. (5). The unknown function Ψ(x) is represented by a table of its values at
the nodes of a one-dimension grid on the interval [0, 1] and by an interpolation scheme
between the nodes. In actual computations it was convenient to use a grid of constant
step along the axis of variable y = |x|d and a fourth-order interpolation in terms of y.
Given the input table for Ψ(x) the program yields an analogous table as output.

Suppose we fix τ and wish to estimate q. We define an initial condition as Ψ(x) ≡ 1,
perform the functional transformation, and normalize the resulting function as Ψ0(x) =
Ψ(x)/Ψ(0). The new function is taken as the initial condition and so on. This operation
is repeated many times, until the form of the function Ψ(x) stabilizes. Then, the value of
Ψ(0) before the normalization is taken to be ν(τ), and we finally set q(τ) = log2 ν(τ).
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To find τ for a given q we use the above procedure together with a simple iteration
scheme for the numerical solution of the algebraic equation q(τ) = q. We may then
calculate Dq = τ/(q − 1) at q 6= 1. In particular, D0 is the Hausdorff dimension, and D2

is the correlation dimension.
To obtain the information dimension D1 it is necessary to determine the limit as q → 1,

that is, as τ → 0. Formally, this follows from L’Hôpital’s rule: D1 = lim
q→1

τ(q)
q−1 =

(
dτ
dq

)
q=1

=
(

dq
dτ

)−1

τ=0
. To compute this without loss of accuracy we use the following algorithm. For

τ � 1 let us write Ψk(x) = 2k|α|kτ [1+τhk(x)] and substitute this expression into Eq. (??).
To first order we have

hk+1(x) = 1
2 [hk(x/α) + hk(g(x/α))] + 1

2 ln |g′(g(x/α))| . (10)

Numerically, representing hk(x) by a table of its values and performing a large number of
steps of the transformation one can observe that hk+1(x)− hk(x) → θ = const as k → ∞.
This implies that Ψk ∝ |α|kτ2kekθτ . On the other hand, Ψk ∝ 2kq(τ) ∼= 2k(q+τdq/dτ) =
2k(1+τ/D1). Hence,

D1 =
ln 2

ln |α| + θ
. (11)

For quadratic maps we have performed the computations based on a polynomial rep-
resentation of g(x) with coefficients taken from the paper of Lanford [13]. His data are of
very high precision, but in our calculations the accuracy is limited due to a use of standard
double-precision arithmetic. As a result, we get not more than 14 true digits in the gener-
alized dimensions. These data are presented in the first column of Table 1. Note excellent
agreement of the Hausdorff dimension (up to the last decimal digit!) with the result of
Christiansen et al. [5]. Other dimensions for the Feigenbaum attractor were presented by
Kovács [4], and they coincide with our results up to the 10-th digit, the accuracy achieved
in that work.

In the remaining three columns of the Table 1 we present results for the generalized
dimensions of the multifractal attractors at the onset of chaos in unimodal maps of degrees
4, 6, and 8 obtained using the universal functions given e.g. in Ref.[14].

As an alternative to the traditional definition of the generalized dimensions Dq one
might consider a family of dimensions enumerated by the index τ . Let us designate them
as Dτ : Dτ = Dq(τ) = τ/(q(τ) − 1). As mentioned, for τ = 2 the equation (5) is of
a form studied in the theory of noise effect onto the period-doubling transition [10]; the
noise scaling constant is defined as γ =

√
ν(2). Hence, the dimension D2 is linked with the

effect of noise. The scaling factor γ is expressed via the dimension D2 as γ = 21/D2+1/2. In
Table 2 we present high-precision data for values of q(2), dimensions D2, and noise scaling
factors obtained from the numerical solution of the eigenproblem (5) for maps of degree 2,
4, 6, and 8. The data for the factors γ improve the previously known results [16]. (Observe
that value of q depends on the degree, so one cannot speak on a definite dimension from
the family Dq associated with the noise effect!)

For the problem of unimodal maps, our method of calculation of the generalized di-
mensions does not have obvious computational advantages over those of Refs. [3, 4, 5],
but it does represent the problem in a new light and indicates novel links between global
and local descriptions of the scaling regularities. An analogous use of renormalization-
group equations will be feasible in the calculation of multifractal properties in many other
situations at the onset of chaos, e.g. in bimodal one-dimensional maps [17], asymmetric
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one-dimensional maps [18], two-dimensional period-doubling maps [19], quasiperiodically
forced maps [20], and complex analytic maps [21]. Such an approach will be useful es-
pecially for situations where computations based on the traditional partition-function
approach are difficult.
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[5] F.Christiansen, P.Cvitanović, and H.H.Rugh. The spectrum of the period-doubling
operator in terms of cycles. J. Phys. A: Math. Gen., 23, L713–L717 (1990).

[6] A.H.Osbaldestin. Siegel disk singularity spectra. J. Phys. A: Math. And Gen., 25,
1169–1175 (1992); A.D.Burbanks, A.H.Osbaldestin, and A.Stirnemann. Fractal di-
mension of Siegel disc boundaries. European Phys. J., B4, 263–265 (1998).

[7] J.A.Glazier, M.H.Jensen, A.Libchaber, and J.Stavans. Structure of Arnold tongues
and the f(α) spectrum for period doubling – Experimental results. Phys. Rev. A, 34,
1621–1624 (1986); Z.Su, R.W.Rollins, and E.R.Hunt. Measurements of f(α) spectrum
in driven diode resonator systems. Phys. Rev. A, 36, 3515–3517 (1987); J.A.Glazier,
G.Gunaratne, and A.Libchaber. f(α) curves – experimental results. Phys. Rev. A,
37, 523-530 (1988); R.E.Ecke, R.Mainieri, and T.S.Sullivan. Universality in quasi-
periodic Rayleigh-Benard convection. Phys. Rev. A, 44, 8103–8118 (1991).

[8] M.J.Feigenbaum. Quantitative universality for a class of nonlinear transformations.
J. Stat. Phys., 19, 25–52 (1978); M.J.Feigenbaum. The universal metric properties
of nonlinear transformations. J. Stat. Phys. 21, 669–706, (1979); M.J.Feigenbaum.
Universal behavior in nonlinear systems. Physica D7, 16–39 (1983).
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Table 1: Generalized dimensions for fractal attractors at the onset of chaos in unimodal
maps of degree d

d = 2 d = 4 d = 6 d = 8
D5 0.45392270234470 0.407695571 0.373232166 0.351475400
D4 0.46615155691823 0.426832904 0.392400635 0.370142909
D3 0.48077684940009 0.454569793 0.421638052 0.399231039
D2 0.49783645928917 0.495316676 0.468035066 0.447019466
D1 0.51709757255124 0.555181822 0.544847134 0.531111008
D0 0.53804514358055 0.642575065 0.683433256 0.707102082
D−1 0.55991291016494 0.763919555 0.946229117 1.146118382
D−2 0.58173600034603 0.894257449 1.205507002 1.510079742
D−3 0.60247817187829 0.992066238 1.354808070 1.698747772
D−4 0.62126594260209 1.056616863 1.445090859 1.811996998
D−5 0.63760518368338 1.100453275 1.505301852 1.887496869

Table 2: Generalized dimensions D2 and noise scaling factors for unimodal maps of degree
d

d = 2 d = 4 d = 6 d = 8
q(2) 5.45324245756108 6.086657808 6.654767241 7.070578662

D2 = Dq(2) 0.44911096107158 0.393185481 0.353683877 0.329457884
γ 6.61903651081803 8.243910853 10.037886410 11.59386214
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