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1 Introduction

Soliton damping in weakly dissipative media has been studied for several decades,
usually using the asymptotic theory of the slowly-varying solitary wave solution
of the Korteweg-de Vries (KdV) equation. Damping then occurs according to
the energy balance equation, and a shelf is generated behind the soliton. Vari-
ous examples of this process have been given by Ott & Sudan (1970) Pelinovsky
(1971), Karpman & Maslov (1977), Grimshaw (1981), Grimshaw (1983), Newell
(1985), and Smyth (1988).

However, for many cases in nonlinear wave dynamics, such as for internal
solitary waves in the ocean and atmosphere, the nonlinearity is not so weak
as is implied by the KdV equation. In the next order of the perturbation
theory, a higher-order KdV equation can be obtained, which in general includes
cubic nonlinearity, fifth-order linear dispersion, and nonlinear dispersion. The
contribution of the various high-order terms depends on the parameters of the
model (e.g. density stratification and shear flow), and sometimes several of them
may be more important. For instance for internal waves in a two-layer fluid the
quadratic nonlinear term vanishes when the pycnocline lies in the middle of
fluid (in the Boussinesq approximation) and then it is the cubic nonlinear term
which is the most important, so that the higher-order equation reduces to the
modified KdV equation. In the absence of any damping term, this last equation
is fully integrable, as is of course the KdV equation. For certain environmental
conditions when the quadratic nonlinear term is small, the cubic nonlinear term
becomes the major from the high-order terms and it should be taken into account
together with the quadratic nonlinear term. The corresponding equation

∂u
∂t

+ αu
∂u
∂x

+ βu2 ∂u
∂x

+
∂3u
∂x3 = 0 (1)

is known as the extended Korteweg-de Vries (eKdV) equation, or the Gardner
equation. This equation has been used as a model of strongly nonlinear inter-
nal waves in the ocean (Holloway et al, 2001). The coefficient β of the cubic
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nonlinear term may take either sign depending on the fluid stratification. For
the classical two-layer model it is always negative, but for certain three-layer
models, it may be negative, or positive, or zero (Grimshaw et al, 1997). The so-
lutions of the eKdV equation describe various kinds of nonlinear waves (solitons,
breathers, dissipationless shock waves) for the various signs of the coefficients of
the quadratic and cubic nonlinear terms. A knowledge of possible wave regimes
is very important for an understanding of nonlinear wave dynamics in the ocean
and atmosphere. Further equation (1) is integrable, but unlike the KdV equa-
tion, the number of explicitly solved problems is small. In particular, soliton
interaction has been investigated by Slunyaev & Pelinovsky (1999) and Slunyaev
(2001) for both signs of the cubic nonlinear term. Instability of the algebraic
solitons in the eKdV equation has been studied by Pelinovsky & Grimshaw
(1997); any disturbance leads to the transformation of the algebraic soliton to
a ”normal” soliton, or to a breather. Interesting example of the soliton trans-
formation when the quadratic nonlinear term changes its sign (this situation
is realised for internal waves in the coastal zone with an inclined pycnocline)
was given by Grimshaw et al (1999). The influence of all high-order terms on
the soliton dynamics was investigated numerically by Marchant & Smyth (1990,
1996).

Our purpose here is to consider the eKdV equation supplemented with a
damping term, so that (1) is replaced by written as

∂u
∂t

+ αu
∂u
∂x

+ βu2 ∂u
∂x

+
∂3u
∂x3 + νT{u} = 0, (2)

where the term T{u} is in general a nonlinear integro-differential operator de-
scribed wave dissipation, and ν is a small parameter. In the linear case, the
operator T can be presented as

T{u} =
1
2π

∫ ∞

−∞
g(k) exp(ikx)u(k)dk, (3)

where u(k) is the spectrum of the wave field, and g(k) is the linear decrement.
For instance, when g(k) = k2, the operator T = −∂2u/∂x2, and (2) can be
called the eKdV-Burgers equation; we call this case “linear viscosity”. When
the dissipation is principally due to a laminar boundary layer at a rigid boundary
(bottom of the ocean), g(k) = (−ik)1/2, and the dissipative term in (2) is an
integro-differential operator (Grimshaw, 1981; Smyth, 1988; Craig, 1991). A
turbulent boundary layer is often parametrised either by linear friction, T = u
(Brink, 1988), or by a quadratic term (Chezy friction), T = |u|u (Holloway et
al, 2001).

If the dissipation, ν is small, damping of the solitary wave can be studied
with the use of asymptotic methods developed for perturbed solitons, see, for
instance, Karpman & Maslov (1977), Newell (1985), and Grimshaw & Mitsudera
(1993). In the first approximation, the variation of the solitary wave amplitude
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can be found from the energy balance equation obtained from (2)

dP
dt

= −ν
∫ ∞

−∞
uT{u}du, (4)

where P =
∫ ∞

∞

1
2
u2dx, (5)

is the momentum (energy), by simply substituting the expression for a solitary
wave directly into (4). This procedure is standard now. For weak-amplitude
solitary waves (β = 0), all known results can be obtained in this manner from
(5). Our aim is to obtain some new nontrivial results for large-amplitude solitary
waves.

2 Damping of “thick” solitary waves

When the coefficient β of the cubic nonlinear term is negative, the solitary wave
solution of the eKdV equation (1) may be presented explicitly,

u(x, t) =
α
β

B2 − 1
1 + B cosh[γ(x− γ2t)]

, γ2 =
α2

6β
(B2 − 1), a =

α
β

(B − 1), (6)

where γ is a free parameter, characterising the inverse width of the solitary
wave, a is the wave amplitude (peak value), and 0 < B < 1. The solitary wave
has positive polarity, that is, aα > 0. Its shape for α = 1, β = 1 is shown in
Figure 1. At small wave amplitudes (γ → 0 or B → 1) the solitary wave (6)
transforms into the KdV soliton

u = a sech2
[√

αa
12

(x− αa
3

t)
]

. (7)

As B → 0, the wave amplitude increases and approaches the limiting value,

alim =
α
|β|

, (8)

while the width of the solitary wave increases to infinity; it becomes the so-called
“thick” soliton, see Figure 1. The “thick” soliton can be presented in the form
of a kink-antikink combination

u(x, t) =,
alim

2
[tanh Z+ − tanh Z−], Z± =

α
√

24|β|
(x− α2

6β
t± L/2), (9)

where L is the distance between the kink and antikink, and is the effective width
of the solitary wave ( L =

√

24|β|| lnB|/α). The two almost independent parts
of the solitary wave, namely the “high-wavenumber” kink - antikink pair, and
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the almost constant top (“table-hill”) can have different responses to dissipative
processes.

First, let us consider, the linear friction case, T = u, when the damping is
independent of wavenumber. In this case the energy balance equation (4) can
be integrated to give,

P (t) = P0 exp(−2νt), (10)

where P0 is the initial soliton momentum. The relation between the momentum,
P and amplitude, a is given by (Grimshaw et al, 1999),

P =
α
√

6|β|
β2

[

2 tanh−1

√

a/alim

2− a/alim
−

√

a
alim

(

2− a
alim

)

]

, (11)

For the “thick” soliton P ∼ a2
limL. It means that the distance between the

kinks decreases as
L(t) = L0 exp(−2νt) (12)

due to the damping. When the kinks are close each to other, the “thick” soliton
transforms into the “normal” (KdV-like) soliton, and then its amplitude will
decrease tending to the dependence

a ∼ exp
(

−4νt
3

)

, (13)

known for the damping of the KdV soliton.
Also, the equation for conservation of mass obtained from equation (2) can

be integrated for this case of linear friction to give,

M(t) =
∫ ∞

−∞
u(x, t)dx = M0 exp(−νt), (14)

Using (6) the soliton mass can be calculated

Ms = 4

√

6
|β|

tanh−1

√

a/alim

2− a/alim
. (15)

It is easily to show that the soliton mass differs from (14). It means that a
tail will form behind the soliton and it mass (normalised by M0) is displayed
in Figure 2. In particular, in the weak-amplitude limit (KdV limit) Ms ∼
exp(−2νt/3) which is decaying more slowly than the total mass (14), and this
means that the tail mass is negative, and is described by

Mt = M0 (exp(−νt)− exp(−2νt/3)) . (16)

On the other hand, the “thick” soliton mass is Msol ∼ alimL ∼ exp(−2νt),
and it is damping faster than the total mass (14). Thus, a positive tail should
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form behind the “thick” soliton. The transition value atr of the initial wave
amplitude, below which the tail mass is negative, can be found from the tran-
scendental equation

M0

P0
= 2

dM0

dP0
, (17)

and it is atr/alim ' 0.61.

The results of this perturbation theory for the soliton damping are confirmed
by numerical simulations in the framework of (2) for α = 1, β = −1 and
ν = 10−4. The solitary wave keeps its “soliton” form and its amplitude is
described by the theoretical formula very well, but we will not display this case.
The polarity of the wave tail coincides with theory also (see Figure 2). The
condition of the applicability of this adiabatic theory is the weakness of the last
dissipative term in (2) in comparison with the nonlinear and dispersive terms.
For the “thick” soliton it reduces to

νL3 << 1. (18)

As the distance between the distance between the kinks increases, (or as the
friction coefficient increases), the coherence of the solitary wave breaks and
the kinks become more independent. As a result, the linear friction acts on the
“table” crest independently from the kinks resulting in its damping as exp(−νt).
Thus a wide impulse with an amplitude just less than the limiting one has no
quasi-steady-state form, and will evolve mainly due to the joint action of the
nonlinearity, dispersion and dissipation. The forward (right) kink is more stable
due to the opposite action of nonlinearity and dispersion. The backward (left)
kink (antikink) will smooth because nonlinearity and dispersion act in the same
direction. As a result, the wave profile becomes more asymmetric like a “quasi-
shock” wave. This process is illustrated in Figure 3 (see the profile at time
200) where the results of numerical simulation of equation (2) for ν = 0.001
are presented. The upper part of the wave forms into a soliton-like wave. The
lower part of the wave is the positive tail, and tends to have a triangular form
(see times 300 - 400). As the wave amplitude decreases, the generation of the
tail is reduced (for the adiabatic stage the critical value of the amplitude is
0.61alim), and the positive wave tail transforms into an isolated impulse (times
800 and greater). Due to its small amplitude it not moves quite slowly, (see
the upper part of Figure 3 where contours of the wave field in the x − t plane
are given). The leading solitary wave and the secondary impulse separate in
space. When the friction coefficient is increased to ν = 0.005), the tail is more
energetic (see Figure 4) and it attempts to split into two impulses (it is more
visible in the upper part of Figure 4). But the wave damping is also increased,
and the primary and secondary waves cannot separate significantly in space.
When the friction is larger still (ν = 0.05), an initial soliton damps rapidly as
a linear wave, and there is no formation of the secondary waves (see Figure 5).
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Thus, the main feature of the damping of a “thick” solitary wave due to linear
friction is the formation of the secondary impulses, a process apparently not
previously reported in the literature. For weak-amplitude solitons (KdV-limit)
the tail is negative and it damps as the oscillatory wave packet.

Second, consider the linear viscosity case, when T = −∂2u/∂2x, and equa-
tion (2) transforms to the extended KdV-Burgers equation. In this case the
momentum balance equation has the form

dP
dt

= −νD = −ν
∫ ∞

−∞

(

∂u
∂x

)2

dx. (19)

The integral D is given by

D =
α3

3β2
√

6|β|
D̃, (20)

D̃ =

[

1 + 2
(

1− a
alim

)2
]√

(

a
alim

)(

2− a
alim

)

−

−6
(

1− a
alim

)3

atanh

√

a/alim

2− a/alim
].

In particular, for the weak-amplitude KdV solitons equation (19) gives

a(t) =
a0

1 + 4αa0νt/45
. (21)

For the “thick” soliton, the energy dissipation is concentrated entirely in the
kinks, and the function D̃ → 1 so that D takes the constant value,

Dlim =
α3

3β2
√

6|β|
. (22)

As a result, the momentum of the “thick” solitary wave (or the distance between
the kinks) damps linearly

P (t) = P0 − νDlimt. (23)

Also it is easily shown that the total mass, M is conserved, but the soliton mass,
Ms is decreases. As a result, the tail generated behind the solitary wave has
positive mass for any initial amplitude.

For the validity of the adiabatic theory for weakly-damped solitary waves
(with a rigid relation between the kinks through the “table” crest) it is necessary
to have a very small dissipative coefficient

νL << 1. (24)
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The adiabatic stage of the solitary wave damping in this case is quite similar to
the adiabatic stage with the linear friction damping; the solitary wave keeps its
form, and a very small tail of positive polarity is generated (in previous case it
can have different polarity depending on the amplitude). This adiabatic stage
will be not discussed here in any further detail.

The non-adiabatic stage of soliton damping was studied numerically, and
these results are presented in Figure 5 for α = 1, β = −1 and ν = 0.05.
The tail forms on the back-face of the solitary wave (see the times 400 and
800). With decreasing of the solitary wave amplitude, the tail becomes weaker
and eventually separates from the primary wave (see times 1200 and 2400). It
has very large length, and the further evolution is controlled mainly by the
nonlinearity, so that it transforms into a shock wave. The primary wave damps
and its speed decreases. The “shock-wave” tail overtakes the small solitary
wave and absorbs it (see times 6000 and 20000). This overtaking at the time
around 10000 is clearly seen in the upper part of Figure 5 in the x− t plot. In
fact, this process of soliton damping by the viscosity in this last stage (when
the wave amplitude is weak) is similar to the theory for soliton damping in the
KdV model (Grimshaw, 1983).

With the viscosity is increased (ν = 0.5) the friction term dominates over
the dispersive term, and the solitary wave transforms to a shock wave, as it
should be the case in the Burgers equation (Figure 6). The influence of the
cubic nonlinearity leads here to a different shape For the back-face of the wave.
In the Burgers model the back-face is described by the self-similar solution

αu(x, t) =
x
t
, (25)

which is the same as when the viscosity is zero, but here in the extended Burgers
model the self-similar solution is

αu + βu2 =
x
t
, (26)

and this difference is important for large amplitudes, see Figure 6 for time 600.
In the final stage, when the wave amplitude is weak, the back-face becomes lin-
ear, and the wave transforms into the triangular shock, according to predictions
in the framework of the Burgers equation.

3 Soliton transformation into a wave packet

When the coefficient β of the cubic nonlinear term is positive, there are two
families of solitary wave solutions of equation (1). They are also described by
(6) but with B2 > 1. The positive solitons (1 < B < ∞) with a weak amplitude
are the solitons of the KdV equation, while those of large amplitude are solitons
of the modified KdV equation. Overall, the damping of these solitons is similar
to that for the dynamics KdV solitons and will not be discussed here. The other
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family of solitary waves has negative polarity and are realised for negative B
(−∞ < B < −1). For large amplitude (B → −∞) this wave is also the soliton of
the modified KdV equation, but its amplitude now is negative. The amplitudes
(in modulus) of these negative solitons should be greater than critical value,

acr = −2α
β

. (27)

As the amplitude tends to the critical value (B → −1), this wave becomes the
standing algebraic soliton

u(x) =
acr

1 + α2x2/6β
. (28)

The shape of this last family of the solitary waves (for α = −1, β = 1) is shown
in Figure 7 (normalised by acr). In the “gap” area, there are no steady-state
solutions, but instead breather solutions exist and solitons can be transformed
into breathers (Pelinovsky & Grivshaw, 1997; Grimshaw et al, 1999). The same
effect is expected here due to dissipative effects.

The adiabatic stage of the solitary wave transformation can again be studied
using the momentum balance equation (10) or (19) depending on the form of
the dissipation. The momentum of the solitary wave is here expressed by

P =
2α
β

√

6
β

[√

a
acr

(

a
acr

− 1
)

+ atan

√

a/acr

a/acr − 1

]

, (29)

(compare (11)). This function is a monotonic function of the soliton ampli-
tude. For large-amplitude solitary waves it coincides with the momentum of the
modified KdV soliton

P = |a|
√

6
β

, (30)

and for the algebraic soliton the momentum is a constant,

Pcr =
πα
β2

√

6β. (31)

The solitary waves of large amplitude damp as solitons of the modified KdV
equation, exponentially for linear friction

a(t) = a0 exp(−2νt), (32)

and as
a(t) =

a0
√

1 + 2νβa2
0t/9

(33)

for linear viscosity. Due to dissipation the solitary wave momentum approaches
the fixed non-zero value (31), and cannot decrease further. Because there is no
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soliton solution with momentum less than Pcr, solitary wave will destruct and
transform into a wave packet. This stage can not be described in the framework
of the adiabatic perturbation method.

Numerical simulations of equation(2) were performed to study the generation
of wave packets from the initial solitary wave for α = −1, β = 1, and various
dissipative coefficients ν. The initial amplitude, a0 = 2.5 in all runs is close to
the critical value, acr = 2. First, let us consider the linear viscosity case. The
results of numerical simulations of soliton damping due to a small linear viscosity
(ν = 0.001) are shown in Figure 8, where the temporal evolution of the wave
field is shown in an x − t plot (upper part), and the spatial Fourier spectrum
is shown in a k − t plot (lower part). In the x − t plot the wave trajectory
at first corresponds to the soliton trajectory, inclined downwards (with a speed
exceeded the linear long-wave phase speed, 0 here), and then to a wave packet
trajectory inclined upwards (with speed less than the linear long-wave phase
speed). The solitary wave transforms into a breather, which is close to a pair of
two oscillating solitons (the colour of the soliton trajectory varies periodically).
For very large times, the breather transforms into a wave packet, due to damping
(middle part of Figure 8). Also a weak positive impulse is visible in Figure 8
at this time, which propagates approximately with the linear long-wave phase
speed and is located in front of the wave packet. The Fourier spectrum of the
wave packet for large times has two components: k = 0.5 (oscillatory part) and
k = 0. The zero component can be explained by mass conservation obtained
from (2) with linear viscosity.

With increasing of the viscosity (ν = 0.015) the process of the breather
transformation into a wave group, and a low-wavenumber impulse are more
clearly seen. Figure 9 shows the evolution of the wave field (upper part) and its
spectrum (lower part). The wave packet now is wider and is closer to the wave
packet with a steady-state envelope like the solitary waves in the nonlinear
Schrodinger equation. The equivalence between weak amplitude breathers in
the extended KdV equation and envelope solitons in the nonlinear Schrodinger
equation was established by Grimshaw et al (2001). For large times the wave
packet damps and only the low-wavenumber impulse propagates (it is clearly
visible in the spectral plane). The dynamics of this impulse for long times is
shown in Figure 10. The impulse has the triangular form corresponding to a
shock wave (because α < 0 the back-face is steeper than the forward face).

The results of numerical simulations for soliton damping by the linear friction
are similar to those described above: the initial solitary wave after approaching
to the critical value transforms into a damped breather, and an impulse located
in front of the wave group. The dynamics of the impulse (zero component) in
the case of the linear friction differs from that considered above. The impulse
is more symmetric and does not transform into a shock wave. Instead, the
friction acts on all spectral components equally and the impulse hence damps
at the same rate as the wave packet. As a result, the wave packet remains more
energetic than the impulse, and this is clear seen in Figure 11.
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4 Conclusion

The eKdV equation (1) is a model for the description of large-amplitude solitary
waves in density-stratified shear flows. Weak dissipation, always present in the
medium, leads to the damping of solitary waves. This process may differ from
that known for the KdV model. The results described here characterize the
main features of the damping of large-amplitude solitary waves, in comparison
with that for to KdV solitons.

When the coefficient of the cubic nonlinear term is negative, there is one
family of solitary waves, ranging from the soliton of the KdV equation for the
weak amplitudes, into the “thick” solitary wave (kink-antikink system) when
the amplitude approaches to the limiting value alim (see (8)). In the case of
linear friction the damping of a large-amplitude solitary wave is accompanied
by the formation of a tail of the same polarity as the solitary wave, while the
decay of weak-amplitude waves is accompanied by the formation of a tail of the
opposite polarity. For a very weak dissipation, when asymptotic perturbation
methods can be used, the transition value of the soliton amplitude distinguishing
these cases is 0.61alim. When the dissipation is not too small, the tail formed
behind the large-amplitude solitary wave has enough mass and momentum to
transform into a group of secondary waves. The primary and secondary waves
separate in space.

In the case of the linear viscosity (high-wavenumber damping) the polarity
of the tail behind of the solitary wave is the same as the soliton polarity for
all amplitudes. It has a relatively large length and evolves mainly as a shock
wave. The solitary wave damps more rapidly and its speed becomes less than
the tail speed. As a result, the shock-wave tail overtakes the small solitary wave
and absorbs it. Also the form of the back-face of the damped large-amplitude
solitary wave differs from the straight line characterised by the KdV-Burgers
solution.

When the coefficient of the cubic nonlinear term is positive, there are two
families of the solitary waves. One of them having a polarity opposite to the
sign of the coefficient of the quadratic nonlinear term, has the lower limit in
amplitude, and so for small amplitudes, the soliton solutions conjugate with the
breather solutions. The damping of these solitons has very interesting features.
For large amplitudes the solitary wave damps as the soliton of the modified
KdV equation. In finite time the soliton amplitude approaches to the critical
value, and the solitary wave transforms into a breather which for longer times
transforms to a weak-amplitude breather (wave packet with soliton envelope)
and a low-wavenumber isolated impulse. The dynamics of this impulse depends
on the character of the dissipation. For the case of the linear viscosity, when
the total wave mass is conserved, the impulse transforms into a triangular shock
wave, and this is the final stage of the solitary wave damping. For the case of
the linear friction this impulse always has less amplitude than the wave packet
(breather) due to the decrease of the total mass.
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Figure Captions
Figure 1. The shape of solitary wave solutions of equation (1) when the coef-
ficient β of the cubic nonlinear term is negative.
Figure 2. The tail mass as a function of time in the adiabatic approximation,
for the linear friction case, when β < 0.
Figure 3. Evolution of the solitary wave for the linear friction case, ν = 0.001,
when β < 0.
Figure 4. The same as in Figure 3, but for ν = 0.005
Figure 5. Evolution of the solitary wave for the linear viscosity case, ν = 0.05,
when β < 0.
Figure 6. The same as in Figure 5, but for ν = 0.5
Figure 7. The shape of solitary wave solutions of equation (1) when the coef-
ficient β of the cubic nonlinear term is positive.
Figure 8. Transformation of a solitary wave into a wave packet for the linear
viscosity case, ν = 0.001, when β > 0.
Figure 9. The same as in Figure 8, but for ν = 0.015.
Figure 10. Long term evolution of the wave field after soliton damping, for
the linear viscosity case, when β > 0.
Figure 11. Transformation of a solitary wave into a breather for the linear
friction case, when β > 0.
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Figure 1. The shape of solitary wave solutions of equation (1) when the coefficient β of the cubic  
nonlinear term is negative 
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Figure 2. The tail mass as a function of time in the adiabatic approximation, for the linear friction 
case, when β < 0 
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Figure 3. Evolution of the solitary wave for the linear friction case, ν = 0.001, when β < 0 
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Figure 4. The same as in Figure 3, but for ν = 0.005 
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Figure 5. Evolution of the solitary wave for the linear viscosity case, ν = 0.05, when β < 0 
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Figure 6. The same as in Figure 5, but for ν = 0.5 
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Figure 7. The shape of solitary wave solutions of equation (1) when the coefficient β of the cubic 
nonlinear term is positive 
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Figure 8. Transformation of a solitary wave into a wave packet for the linear viscosity case, ν = 
0.001, when β > 0. 
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Figure 9. The same as in Figure 8, but for ν= 0.015 
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Figure 10. Long term evolution of the wave field after soliton damping, for the linear viscosity 
case, when β > 0 
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Figure 11. Transformation of a solitary wave into a breather for the linear friction case, when β > 
0 


