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Abstract

The universal period-doubling scaling of a unimodal map with an asymmetric crit-
ical point is governed by a period-2 point of a renormalisation operator. The period-2
point is parametrised by the degree of the critical point and the asymmetry modulus.
In this paper we study the asymptotics of period-2 points and their associated scaling
parameters in the singular limit of degree tending to 1.

1 Introduction

In this paper we study the asymptotics of the solutions of the following functional equations:

f̃L(x) = −λ−1fRfR(−λx) , (1.1a)

f̃R(x) = −λ−1fRfL(−λx) , (1.1b)

fL(x) = −λ̃−1f̃Rf̃R(−λ̃x) , (1.1c)

fR(x) = −λ̃−1f̃Rf̃L(−λ̃x) , (1.1d)

with the normalisations fL(0) = fR(0) = f̃L(0) = f̃R(0) = 1 so that λ = −fR(1) > 0 and
λ̃ = −f̃R(1) > 0.

These equations arise in the theory of period-doubling cascades for families of unimodal
maps f of an interval with a single critical point of degree d and at which the left and right
dth derivative at 0 differ.

In [19] it was shown that the critical behaviour of such families of maps was governed by
a period-two point of a generalised Feigenbaum renormalisation operator. The period-two
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point is given by the solution of the functional equations (1.1). (Note that these equations
were written with α = −λ and α̃ = −λ̃ in [19].)

Here fL and fR correspond to the left and the right parts of the unimodal map f , i.e.,

f(x) =

{
fL(x) if x ≤ 0 ;

fR(x) if x ≥ 0 .
(1.2)

The solutions of (1.1) depend on two parameters, viz., the degree d of the critical point and
the asymmetry ‘modulus’ µ, which (for the case when d is an even integer) is the ratio

µ =
f

(d)
L (0−)

f
(d)
R (0+)

. (1.3)

When µ = 1, the equations (1.1) correspond to the standard Feigenbaum equation

f(x) = −λ−1ff(−λx) , f(0) = 1 . (1.4)

In [20] the Herglotz function techniques of H Epstein [9, 10, 11] were adapted to prove the
existence of a solution of the equations (1.1) for all real µ > 0 and d > 1.

It should be noted that the fixed-point theorem used in [20] to prove existence of a solution
of (1.1) does not guarantee uniqueness. It is however believed that analytic solutions of (1.1)
are unique up to normalisation.

In this paper we study the asymptotics of the solutions of the equations (1.1) in the limit
d→ 1+. We are particularly interested in the scaling parameters λ, λ̃. This work follows on
from previous studies of the asymptotics of the solutions of the Feigenbaum equation (1.4)
in the limit d→ 1+ [2].

Our results may be summarised as follows:

Theorem. For fixed µ > 1, there exists a family of solutions to (1.1) parametrised by d > 1
satisfying in the limit d→ 1+

λ ∼ Cµ−1/(2(d−1)) (1.5)

λ̃ ∼ √µ− 1 , (1.6)

where

C =
µ(1+2

√
µ)/(4(

√
µ−1))

e3(
√
µ− 1)1/2

. (1.7)

The theorem will be proved in Sections 3 and 4. A corresponding result for µ < 1 may be
obtained by switching λ and λ̃ in the above theorem.

This result differs substantially from the symmetric case µ = 1. In [2] it is shown that for
µ = 1 there exist solutions with

λ = λ̃ ∼ −(d− 1) log(d− 1) , (1.8)

as d→ 1+.

2 The Herglotz function approach

The Herglotz function approach as pioneered by Epstein [9] has been an extremely fruitful
technique in the analysis of the accumulation of period-doubling. For the problem in hand,
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it was used in [20] to prove the existence of a solution of the equations (1.1) for all real µ > 0
and d > 1. We recall here how equations (1.1) may be recast as an anti-Herglotz function
problem.

Firstly we build the singularity into our functions by defining

fR(x) = FR(|x|d) , f̃R(x) = F̃R(|x|d) . (2.1)

The left-hand functions are given in terms of the right-hand ones by

fL(x) = FL(|x|d) = FR(µ|x|d) , f̃L(x) = F̃L(|x|d) = F̃R(µ−1|x|d) . (2.2)

We then we consider the inverses of these functions by defining

FR(x) = U−1(x) , F̃R(x) = Ũ−1(x) . (2.3)

The functions U and Ũ satisfy

U(1) = 0, U(−λ) = 1 , (2.4a)

Ũ(1) = 0, Ũ(−λ̃) = 1 . (2.4b)

To finish the transformation we normalise by setting

U(x) = kψ(x) , Ũ(x) = k̃ψ̃(x) , (2.5)

where

k = U(0) , k̃ = Ũ(0) , (2.6)

so that the functions ψ and ψ̃ satisfy

ψ(1) = 0, ψ(0) = 1 , (2.7a)

ψ̃(1) = 0, ψ̃(0) = 1 . (2.7b)

These normalisation constants will be of great use to us in what follows, and we may write
this last step as

U(x) = z1
dψ(x) , Ũ(x) = z̃d1 ψ̃(x) , (2.8)

where

z1 = ψ(−λ)−1/d , z̃1 = ψ̃(−λ̃)−1/d . (2.9)

In this new setting our equations are

ψ(x) =
µz̃d1
λ̃dzd1

ψ̃(z̃1ψ̃(−λ̃x)1/d) , ψ̃(x) =
zd1

µλdz̃d1
ψ(z1ψ(−λx)1/d) . (2.10)

These may be written in the form

ψ(x) = τ̃−1ψ̃(φ̃(x)) , ψ̃(x) = τ−1ψ(φ(x)) , (2.11)

where

φ(x) = z1ψ(−λx)1/d =
ψ(−λx)1/d

ψ(−λ)1/d
, φ̃(x) = z̃1ψ̃(−λ̃x)1/d =

ψ̃(−λ̃x)1/d

ψ̃(−λ̃)1/d
, (2.12)
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and

τ = ψ(z1) = ψ(ψ(−λ)−1/d) , τ̃ = ψ̃(z̃1) = ψ̃(ψ̃(−λ̃)−1/d) (2.13)

satisfy

λd =
τzd1
µz̃d1

, λ̃d =
µτ̃ z̃d1
zd1

. (2.14)

The method of the existence proof is now to show that (2.10) has a solution in a suitably
chosen space of pairs of functions.

Definition. Let C+, C− denote the upper and lower half planes in C. A complex analytic
function on C+∪C− is said to be Herglotz (resp. anti-Herglotz) if f(C+) ⊆ C̄+ and f(C−) ⊆
C̄− (resp. f(C+) ⊆ C̄− and f(C−) ⊆ C̄+).

Let A, B ∈ R satisfy A < 0 < 1 < B and let Ω(A,B) denote C+ ∪ C− ∪ (A,B). We denote
by H(A,B) and AH(A,B) (respectively) the space of Herglotz and anti-Herglotz functions
(respectively) analytic on the interval (A,B). Furthermore, let E(A,B) denote the space of
anti-Herglotz functions ψ ∈ AH(A,B) which satisfy the normalisations

ψ(0) = 1 , ψ(1) = 0 . (2.15)

As is normal, we equip H(A,B), AH(A,B) and E(A,B) with the topology of uniform con-
vergence on compact subsets of Ω(A,B).

Herglotz and anti-Herglotz functions have a number of important properties which we list
here (see [9] and references therein):

1. E(A,B) is compact;

2. Any non-constant function f ∈ H(A,B) (resp. AH(A,B)) is strictly increasing (resp.
decreasing) on any open interval of R on which it is analytic; moreover, on such an
interval, the Schwarzian derivative S(f) = f ′′′/f ′ − (3/2)(f ′′/f ′)2 > 0 ;

3. Functions ψ ∈ E(A,B) satisfy so-called a priori bounds:

For x < 0 and x > 1:

1− x
1− λλ̃x

≤ ψ(x) ≤ 1− x
1 + λ̃x

, (2.16a)

1− x
1− λλ̃x

≤ ψ̃(x) ≤ 1− x
1 + λx

; (2.16b)

and for 0 < x < 1:

1− x
1 + λ̃x

≤ ψ(x) ≤ 1− x
1− λλ̃x

, (2.17a)

1− x
1 + λx

≤ ψ̃(x) ≤ 1− x
1− λλ̃x

. (2.17b)

In [20] we prove the following

Theorem. For each µ > 0 and for each d > 1, there exists a solution pair (ψ, ψ̃) for (2.10)
with ψ ∈ E(−λ̃−1, (λλ̃)−1) and ψ̃ ∈ E(−λ−1, (λλ̃)−1).
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From this it is straightforward to reverse the transformation above to show that (1.1) has a
solution. See [20].

The following results are either explicitly stated in [20] or are simple consequences of the
arguments therein.

Proposition 1. For a solution pair given by the theorem above we have

1. λ ≤ z1, and λ̃ ≤ z̃1 ;

2. λ ∈ [0, µ−1/d] and λ̃ ∈ [0, µ1/d] ;

3. z1, z̃1, τ, τ̃ ∈ (0, 1) ;

4. 0 < λλ̃ < 1 ;

5. τ τ̃ = (λλ̃)d ≤ 1/(1 + λλ̃) ;

6. ψ and ψ̃ may be extended continuously to −λ̃−1 and −λ−1 respectively and satisfy
ψ(−λ̃−1) = τ̃−1 and ψ̃(−λ−1) = τ−1 .

We shall use these results in the proofs that follow.

3 The limit d→ 1, fixed µ 6= 1

Without loss of generality we shall confine attention to the case µ > 1. The case µ < 1
merely corresponds to an interchange of λ with λ̃. As in [20], it will be convenient to use
the notation

ν = µ1/d . (3.1)

It will also be convenient to introduce the perturbation parameter ε by writing

d = 1 + ε . (3.2)

Henceforth when we write the limit d → 1 it is to be understood that the right-hand limit
d→ 1+ is intended.

In this section we shall prove the following theorem, from which the theorem in Section 1
follows.

Theorem. Let µ > 1 be fixed. Then, for any family (not necessarily continuous) of solutions
of equations (2.10) parametrised by d > 1, we have that as d→ 1+

λ = Cµ−1/(2(d−1))(1 + o(1)) (3.3a)

λ̃ = (
√
µ− 1)(1 + o(1)) , (3.3b)

where

C =
µ(1+2

√
µ)/(4(

√
µ−1))

e3(
√
µ− 1)1/2

. (3.4)

For the remainder of this paper we assume that we have a family of solutions of (2.10) as in
the statement of the theorem.

We shall build up our results as a sequence of lemmas.
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Lemma 1. For ψ ∈ E(−λ̃−1, (λλ̃)−1), ψ̃ ∈ E(−λ−1, (λλ̃)−1), and with ψ and ψ̃ having con-
tinuous extensions to λ̃−1 and −λ−1 respectively, and satisfying ψ(−λ̃−1) = τ̃−1, ψ̃(−λ−1) =
τ−1, we have

ψ(x) ≤ 1− x
(τ̃ + λ̃τ̃ − λ̃)(1− x) + (1− τ̃)(1 + λ̃)

for x ∈ (−λ̃−1, 0) , (3.5a)

ψ̃(x) ≤ 1− x
(τ + λτ − λ)(1− x) + (1− τ)(1 + λ)

for x ∈ (−λ−1, 0) . (3.5b)

Proof. Let θ(x) be the unique fractional linear transformation preserving 0 and 1, and which
maps 1 + λ̃−1 to τ̃−1:

θ(x) =
x

(τ̃ + λ̃τ̃ − λ̃)x+ (1− τ̃)(1 + λ̃)
. (3.6)

Then θ−1 ◦ψ has positive Schwarzian derivative, intersects the line 1−x at the points −λ̃−1,
0, and 1, and moreover

(θ−1 ◦ ψ)′(x)→ −∞ as x→ −λ̃−1 . (3.7)

(This can be seen by differentiating the functional equations (2.11) and letting x → −λ̃−1,
noting that θ−1 is an increasing fractional linear transformation, and, hence, has positive
derivative.) We conclude that (θ−1 ◦ψ)(x) < 1−x for x slightly above −λ̃−1 so that we have

(θ−1 ◦ ψ)(x) ≤ 1− x for x ∈ (−λ̃−1, 0) . (3.8)

Since θ is increasing we deduce that

ψ(x) ≤ θ(1− x) , (3.9)

and hence the result.

The proof for ψ̃ is similar.

Lemma 2. λλ̃→ 0 as d→ 1.

Proof. Suppose to the contrary that λλ̃ 6→ 0 as d → 1. Then there exists a sequence (di)
convergent to 1 such that the corresponding sequence (λλ̃) is bounded away from 0. We
note, taking the limit d→ 1 of property 5 of Proposition 1, that (λλ̃) is also bounded away
from 1. Since λ ∈ [0, ν−1] and λ̃ ∈ [0, ν] it follows that λ 6→ 0 and λ̃ 6→ 0 for this sequence.
Now consider a subsequence for which both λ and λ̃ converge, with limits λ1 > 0 and λ̃1 > 0
say. Then, for this subsequence, ψ ∈ E(−λ̃−1, (λλ̃)−1) and ψ̃ ∈ E(−λ−1, (λλ̃)−1) will be
contained in a compact space of anti-Herglotz functions. (In fact ψ ∈ E(−b̃−1, c−1) and
ψ̃ ∈ E(−b−1, c−1) where b = supλ, b̃ = sup λ̃ and c = supλλ̃.) We may therefore restrict
further to obtain a convergent subsequence (ψ, ψ̃)→ (ψ1, ψ̃1), and, since λ→ λ1 and λ̃→ λ̃1,
we may extract a subsequence such that (ψ, ψ̃) → (ψ1, ψ̃1), where ψ1 ∈ E(−λ̃−1

1 , (λ1λ̃1)−1)
and ψ̃1 ∈ E(−λ−1

1 , (λ1λ̃1)−1).

Furthermore we have that

ψ1(x) = τ̃−1
1 ψ̃1(φ̃1(x)) , ψ̃1(x) = τ−1

1 ψ1(φ1(x)) , (3.10)

where

φ1(x) =
ψ1(−λ1x)

ψ1(−λ1)
, φ̃1(x) =

ψ̃1(−λ̃1x)

ψ̃1(−λ̃1)
, (3.11)
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and

τ1 = ψ1(ψ1(−λ1)−1) , τ̃1 = ψ̃1(ψ̃1(−λ̃1)−1) . (3.12)

For clarity we now drop the subscript 1. We note that Proposition 1 holds in the limit d→ 1.

Now, we have z1 = ψ(−λ)−1, and, by Lemma 1,

ψ(−λ) ≤ 1 + λ

(τ̃ + λ̃τ̃ − λ̃)(1 + λ) + (1− τ̃)(1 + λ̃)
, (3.13)

and so

z1 ≥
1 + λτ̃ + λλ̃(τ̃ − 1)

1 + λ
. (3.14)

Thus the a priori bounds show that τ = ψ(z1) satisfies

τ ≤ 1− z1

1− λλ̃z1

≤ 1− (1 + λτ̃ + λλ̃(τ̃ − 1))/(1 + λ)

1− λλ̃(1 + λτ̃ + λλ̃(τ̃ − 1))/(1 + λ)
(3.15)

=
λ(1− τ̃)(1 + λ̃)

(1 + λ)(1− λλ̃(1 + λτ̃ + λλ̃(τ̃ − 1))/(1 + λ))
(3.16)

≤ λ(1− τ̃)(1 + λ̃)

(1 + λ)(1− λλ̃)
, (3.17)

where in the last step we have used the fact that

0 ≤ 1 + λτ̃ + λλ̃(τ̃ − 1)

1 + λ
≤ 1 . (3.18)

A similar argument shows that

τ̃ ≤ λ̃(1− τ)(1 + λ)

(1 + λ̃)(1− λλ̃)
, (3.19)

and thus (remembering we are at the limit d = 1)

λλ̃ = (λλ̃)d = τ τ̃ ≤ λλ̃(1− τ)(1− τ̃)

(1− λλ̃)2
, (3.20)

which gives the contradiction

1 ≤ (1− τ)(1− τ̃)

(1− τ τ̃)2
< 1 , (3.21)

where, for the final inequality, we have used 0 < τ, τ̃ < 1 (property 3 of Proposition 1) and
0 < ττ̃ < 1, which follows from property 5 of Proposition 1, taking d→ 1.

Lemma 3. λ→ 0 as d→ 1.

Proof. The a priori bounds give

1 + λ

1 + λ2λ̃
≤ ψ(−λ) ≤ 1 + λ

1− λλ̃
. (3.22)
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Suppose λ 6→ 0 as d→ 1 (and thus λ̃→ 0 by Lemma 2). Then (as earlier) there is a sequence
(di) convergent to 1 such that the corresponding sequence (λ) converges with limit r ∈ (h, 1]
where h > 0. The a priori bounds act as a sandwich and we deduce from Lemma 2 (for this
sequence) that ψ(−λ)→ 1 + r. Hence z1 = ψ(−λ)−1/d → (1 + r)−1.

Using the a priori bounds we have

1− z1

1 + λ̃z1

≤ ψ(z1) ≤ 1− z1

1− λλ̃z1

, (3.23)

which gives τ = ψ(z1)→ 1− (1 + r)−1 = r/(1 + r).

Now from (2.14) we have

λd =
zd1τ

µz̃d1
, (3.24)

and so we have

z̃1 = ψ̃(−λ̃)−1/d → 1

µ(1 + r)2
< 1 . (3.25)

But λ̃ → 0, so from the a priori bounds ψ̃(−λ̃)−1/d → 1 which is a contradiction. Hence
λ→ 0 as d→ 1.

Lemma 4. λ̃→ √µ− 1 as d→ 1.

Proof. The a priori bounds give

1

1 + λλ̃2
≤ ψ̃(−λ̃)

1 + λ̃
≤ 1

1− λλ̃
. (3.26)

Since λ̃ is bounded, by Lemma 2 we have

lim
d→1

ψ̃(−λ̃)

1 + λ̃
= 1 , (3.27)

i.e., ψ̃(−λ̃) ∼ 1 + λ̃ as d→ 1. Hence

z̃1 = ψ̃(−λ̃)−1/d ∼ 1

1 + λ̃
as d→ 1 . (3.28)

Thus, using the a priori bounds, τ̃ = ψ̃(z̃1) satisfies

1− z̃1

1 + λz̃1

≤ τ̃ ≤ 1− z̃1

1− λλ̃z̃1

, (3.29)

and so

τ̃ ∼ λ̃

1 + λ̃
. (3.30)

Now, using the a priori bounds again, ψ(−λ) satisfies

1 + λ

1 + λ2λ̃
≤ ψ(−λ) ≤ 1 + λ

1− λλ̃
, (3.31)
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and so since λ → 0 (by Lemma 3) we have ψ(−λ) → 1 and z1 = ψ(−λ)−1/d → 1 as d → 1.
Now in (2.14)

λ̃d =
µτ̃ψ(−λ)

ψ̃(−λ̃)
, (3.32)

we take the limit d→ 1 to get

λ̃ ∼ µλ̃

(1 + λ̃)(1 + λ̃)
, (3.33)

which gives λ̃→ √µ− 1 as d→ 1 as desired.

Lemma 5. For x ∈ (−λ−1, (λλ̃)−1) we have ψ̃(x) → 1 − x and for x ∈ (−λ̃−1, (λλ̃)−1) we
have ψ(x)→ 1− x as d→ 1.

Proof. The a priori bounds clearly show that ψ̃(x) → 1− x as d → 1. The behaviour of ψ
is not so immediate.

We have (2.11)

ψ(x) = τ̃−1ψ̃(φ̃(x)) . (3.34)

Now as d→ 1 the behaviour of z̃1 (3.28) and ψ̃ show

φ̃(x) = z̃1ψ̃(−λ̃x)1/d =
1 + λ̃x

1 + λ̃
+ o(1) . (3.35)

Also (using (3.30) and Lemma 4)

τ̃ =

√
µ− 1
√
µ

+ o(1) , (3.36)

hence

ψ(x) =

(
1 + λ̃

λ̃
+ o(1)

)(
1−

(
1 + λ̃x

1 + λ̃
+ o(1)

)
+ o(1)

)
(3.37)

=
1 + λ̃

λ̃

(
1 + λ̃− (1 + λ̃x)

1 + λ̃

)
+ o(1) (3.38)

= 1− x+ o(1) , (3.39)

Thus ψ(x)→ 1− x as required.

Lemma 6. For x ∈ (−λ−1, (λλ̃)−1), ψ̃′(x)→ −1 as d→ 1.

Proof. Recall that ψ̃ ∈ AH(−λ−1, (λλ̃)−1) and satisfies ψ̃(0) = 1, ψ̃(1) = 0.

Suppose that, for a fixed x, ψ′(x) 6→ −1. Then there is a sequence of d’s such that ψ′(x) 6→
−1. Restricting to this sequence we have a sequence of ψ’s converging to 1− x in AH(A,B)
with A < 0 < 1 < B. For a convergent subsequence we then have ψ̃′(x) → −1 which is a
contradiction.

Lemma 7. For x ∈ (−λ̃−1, (λλ̃)−1), ψ′(x)→ −1 as d→ 1.
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Proof. We differentiate (2.11)

ψ(x) = τ̃−1ψ̃(z̃1ψ̃(−λ̃x)1/d) (3.40)

to get

ψ′(x) = τ̃−1ψ̃′(z̃1ψ̃(−λ̃x)1/d)
z̃1

d
ψ̃(−λ̃)1/d−1ψ̃′(−λ̃x)(−λ̃) . (3.41)

Taking the limit d→ 1, using the fact that τ̃ ∼ λ̃/(1 + λ̃), we have ψ′(x)→ −1.

(We have also used z̃1 → 1/
√
µ, d→ 1, and ψ̃′ → −1.)

Lemma 8. τ ∼ λ as d→ 1.

Proof. Recall that τ = ψ(z1) = ψ(ψ(−λ)−1/d).

Consider the function f(y) = ψ(ψ(−y)−1/d), which is Herglotz and analytic at 0 with f(0) =
0. We have

f ′(y) = ψ′(ψ(−y)−1/d)
−1

d
ψ(−y)−1/d−1ψ′(−y)(−1) , (3.42)

so

f ′(0) =
ψ′(1)ψ′(0)

d
. (3.43)

Expanding in a Taylor series

f(y) =
ψ′(1)ψ′(0)

d
y + o(y) . (3.44)

Now

τ = f(λ) =
ψ′(1)ψ′(0)

d
λ+ o(λ) , (3.45)

hence

τ

λ
→ 1 , (3.46)

using the fact that ψ′(0), ψ′(1)→ −1 as d→ 1.

Lemma 9. We have λε → 1/
√
µ as d→ 1.

Proof. From previous lemmas we have λ→ 0, τ = λ+ o(λ), z1 = ψ(−λ)−1/d = 1 + o(1), and
z̃1 = 1/

√
µ+ o(1). Hence (2.14)

λd =
τzd1
µz̃d1

=
(λ+ o(λ))(1 + o(1))

µ(1/
√
µ+ o(1))

(3.47)

and so

λε = λd−1 =
1√
µ

+ o(1) . (3.48)

Corollary 1. λ = o(εα) for every α > 0.

Corollary 2. For fixed x ∈ (−λ−1, (λλ̃)−1), ψ̃(x) = 1− x+ o(εα) for every α > 0.

Proof. This follows immediately from Corollary 1 and the a priori bounds.
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4 Calculations to O(ε) as d→ 1

In this section we explore further the limiting behaviours of the previous section. For λ̃ we
shall calculate the first order correction to Lemma 4. Lemma 9 give an indication of the
behaviour of λ. We shall make a more precise statement here.

Firstly we shall deal with λ̃. We expand the terms in the functional equation for ψ (2.10)

ψ(x) =
µψ(−λ)

λ̃dψ̃(−λ̃)
ψ̃(z̃1ψ̃(−λ̃x)1/d) . (4.1)

as series in ε. (Recall our notation that d = 1 + ε.) Firstly

ψ̃(−λ̃x) = 1 + λ̃x+O(λ) , (4.2)

ψ̃(−λ̃) = 1 + λ̃+O(λ) (4.3)

so

φ̃(x) =
ψ̃(−λ̃x)1/d

ψ̃(−λ̃)1/d
=

(
1 + λ̃x

1 + λ̃

)1/d

+O(λ) . (4.4)

Now, since X1/(1+ε) = X − εX logX +O(ε2), this is

φ̃(x) =

(
1 + λ̃x

1 + λ̃

)(
1− ε log

(
1 + λ̃x

1 + λ̃

)
+O(ε2)

)
+O(λ) . (4.5)

Hence

ψ̃(φ̃(x)) = 1− φ̃(x) +O(λ) (4.6)

= 1−
(

1 + λ̃x

1 + λ̃

)(
1− ε log

(
1 + λ̃x

1 + λ̃

)
+O(ε2)

)
+O(λ) (4.7)

=
λ̃(1− x)

1 + λ̃
+ ε

(
1 + λ̃x

1 + λ̃

)
log

(
1 + λ̃x

1 + λ̃

)
+O(ε2) . (4.8)

(We can absorb the term O(λ) into the term O(ε2) since λ = o(εα) for all α > 0.)

Thus, using (4.1),

ψ(x) =
µψ(−λ)

λ̃d(1 + λ̃+O(λ))

(
λ̃(1− x)

1 + λ̃
+ ε

(
1 + λ̃x

1 + λ̃

)
log

(
1 + λ̃x

1 + λ̃

)
+O(ε2)

)
. (4.9)

Now the a priori bounds for ψ give

1 + λ

1 + λ2λ̃
≤ ψ(−λ) ≤ 1 + λ

1− λλ̃
, (4.10)

from which we see that

ψ(−λ) = 1 +O(λ) , (4.11)

and so

ψ(x) =
µ

λ̃d(1 + λ̃)

(
λ̃(1− x)

1 + λ̃
+ ε

(
1 + λ̃x

1 + λ̃

)
log

(
1 + λ̃x

1 + λ̃

)
+O(ε2)

)
. (4.12)
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Evaluating at x = 0 we obtain

1 =
µ

λ̃d−1(1 + λ̃)2
+

εµ

λ̃d(1 + λ̃)2
log

1

(1 + λ̃)
+O(ε2) , (4.13)

which is an equation for λ̃ to order ε. The solution of this regular perturbation problem is
λ̃ =
√
µ− 1 +O(ε). Writing λ̃ =

√
µ− 1 + ελ̃1 +O(ε2) we have

λ̃d =
√
µ− 1 + ε

(
λ̃1 + (

√
µ− 1) log(

√
µ− 1)

)
+O(ε2) , (4.14)

(1 + λ̃)2 = µ+ 2ε
√
µλ̃1 +O(ε2) , (4.15)

log
1

(1 + λ̃)
= − log

√
µ− ε λ̃1√

µ
+O(ε2) = − log

√
µ+O(ε) . (4.16)

Thus our equation (4.13)

λ̃d(1 + λ̃)2 = µλ̃+ εµ log
1

(1 + λ̃)
+O(ε2) , (4.17)

becomes (√
µ− 1 + ε

(
λ̃1 + (

√
µ− 1) log(

√
µ− 1)

)
+O(ε2)

)
×
(
µ+ 2ε

√
µλ̃1 +O(ε2)

)
= µ

(√
µ− 1 + ελ̃1 +O(ε2) + ε(− log

√
µ+O(ε))

)
, (4.18)

which can readily be solved to give

λ̃1 =
−√µ

2(
√
µ− 1)

log
(√

µ(
√
µ− 1)

√
µ−1
)
. (4.19)

From now on we assume that λ̃1 is given by this expression and

λ̃ =
√
µ− 1 + ελ̃1 +O(ε2) . (4.20)

We now consider λ. We have ((2.14))

λd =
τ ψ̃(−λ̃)

µψ(−λ)
. (4.21)

For the term ψ̃(−λ̃) we use (4.3) and (4.20) to write

ψ̃(−λ̃) =
√
µ+ ελ̃1 +O(ε2) . (4.22)

For the term ψ(−λ) in the denominator it will suffice to write ((4.11))

ψ(−λ) = 1 +O(λ) = 1 +O(ε2) , (4.23)

but we must be more careful with τ = ψ(z1) ∼ λ.

By (4.9), we can write

ψ(x) = 1− x+ εψ1(x) + o(ε)ψ2(x) , (4.24)
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where ψ1 and ψ2 are analytic on (−λ̃−1, (λλ̃)−1) and where ψ1(0) = 0, ψ1(1) = 0, and
ψ2(0) = 0, ψ2(1) = 0. Thus

ψ(−λ) = 1 + λ+ εψ1(−λ) + o(ελ) , (4.25)

with

ψ1(−λ) = ψ′1(0)(−λ) +O(λ2) . (4.26)

Hence

ψ(−λ) = 1 + λ− ελψ′1(0) + o(ελ) . (4.27)

Now z1 = ψ(−λ)−1/d and so

log z1 =
−1

1 + ε
logψ(−λ) (4.28)

=
−1

1 + ε
log(1 + λ− ελψ′1(0) + o(ελ)) (4.29)

= −λ+ ελψ′1(0) + ελ+ o(ελ) , (4.30)

hence

z1 = 1− λ+ ελ(1 + ψ′1(0)) + o(ελ) , (4.31)

and thus

τ = ψ(z1) = 1− z1 + εψ1(z1) + o(ε)ψ2(z1) (4.32)

= 1− (1− λ+ ελ(1 + ψ′1(0)) + o(ελ))

+ εψ1(1− λ+ ελ(1 + ψ′1(0)) + o(ελ)) + o(ελ) (4.33)

= λ+ ελ(−1− ψ′1(0)− ψ′1(1)) + o(ελ) . (4.34)

So (4.21) becomes

λd = (
√
µ+ ελ̃1 +O(ε2))(λ+ ελ(−1− ψ′1(0)− ψ′1(1)) + o(ελ)))/

(
µ(1 +O(ε2))

)
, (4.35)

and thus

λε =
1

µ
(
√
µ+ ελ̃1 +O(ε2))(1 + ε(−1− ψ′1(0)− ψ′1(1)) + o(ε)) (4.36)

=
1√
µ

(
1 + ε

(
−1− ψ′1(0)− ψ′1(1) +

λ̃1√
µ

))
+ o(ε) , (4.37)

and so

λ = (λε)1/ε ∼
(

1√
µ

)1/ε

exp

(
−1− ψ′1(0)− ψ′1(1) +

λ̃1√
µ

)
. (4.38)

We now calculate the terms in the exponential explicitly. Note that

εψ′1(x) = ψ′(x) + 1 + o(ε) . (4.39)

Now (4.9) becomes

ψ(x) =
µλ̃(1− x)

λ̃d(1 + λ̃)2
+

εµ

λ̃d(1 + λ̃)

(
1 + λ̃x

1 + λ̃

)
log

(
1 + λ̃x

1 + λ̃

)
+ o(ε) (4.40)
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Differentiating we have

ψ′(x) =
−µλ̃

λ̃d(1 + λ̃)2
+

εµ

λ̃d−1(1 + λ̃)2

(
1 + log

(
1 + λ̃x

1 + λ̃

))
+ o(ε) , (4.41)

so

ψ′(0) + 1 = 1− µ

λ̃d−1(1 + λ̃)2
+

εµ

λ̃d−1(1 + λ̃)2

(
1− log(1 + λ̃)

)
+ o(ε) , (4.42)

ψ′(1) + 1 = 1− µ

λ̃d−1(1 + λ̃)2
+

εµ

λ̃d−1(1 + λ̃)2
+ o(ε) . (4.43)

These can now be expanded to order ε using (4.20). Straightforward calculations reveal

ψ′(0) + 1 = ε

(
1 +

2λ̃1√
µ

+ log(
√
µ− 1)− log

√
µ

)
+ o(ε) , (4.44)

ψ′(1) + 1 = ε

(
1 +

2λ̃1√
µ

+ log(
√
µ− 1)

)
+ o(ε) , (4.45)

with λ̃1 given by equation (4.19). Equation (4.39) now gives

ψ′1(0) = 1 +
2λ̃1√
µ

+ log(
√
µ− 1)− log

√
µ+O(ε) , (4.46)

ψ′1(1) = 1 +
2λ̃1√
µ

+ log(
√
µ− 1) +O(ε) , (4.47)

so that (4.38) becomes

λ ∼
(

1√
µ

)1/ε

exp

(
−3− 3λ̃1√

µ
− 2 log(

√
µ− 1) + log

√
µ

)
(4.48)

=

(
1√
µ

)1/ε
µ(1+2

√
µ)/(4(

√
µ−1))

e3(
√
µ− 1)1/2

. (4.49)

This completes the proof.

5 Discussion

In this paper we have successfully applied Herglotz function techniques to explore the asymp-
totics of period doubling in asymmetric unimodal maps in the limit degree d→ 1. Our results
show that the symmetric (µ = 1) and asymmetric cases have very different asymptotics.

It would certainly be of interest to explore other limits in the (µ, d)-parameter space, for
example the d→∞ limit, for fixed µ.

In the symmetric case, the asymptotics as d → ∞ are somewhat intriguing. Although
λ→ 1 as d→∞, the approach is nontrivial. Using a variety of techniques, various numerical
calculations have been performed [12, 25, 26], the most accurate being those recently obtained
by Briggs et al [1], who find a solution of the d =∞ equations with τ∞ = 0.0333810598(±5),
where τd = λd.

Using computer-assisted techniques, Eckmann and Wittwer [8] show there exists a solution
with

τ∞ ∈ [0.0333808, 0.0333813] . (5.1)
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This (and other bounds obtained in [8]) has been used by Eckmann and Epstein [7] to obtain
bounds on the unstable eigenvalue, δ∞, for period doubling at d =∞. They prove that

δ∞ ∈ [29.5128, 29.957112] . (5.2)

(In [1], Briggs et al estimate this as 29.576303(±1).) In [9] Epstein shows analytically that
a solution of the d =∞ equation exists with

τ∞ ∈ [1/128, 1/5] . (5.3)

For the asymmetric case we expect a scenario somewhat similar to that of Eckmann-Wittwer [8].
We hope to study to this limit using Herglotz function techniques in the near future.

It would also be interesting to consider a different asymptotic regime, namely that for large µ.
This may give us some insight into the situation of asymmetric maps with different left and
right degrees at the critical point. In this case numerical results [14, 3] indicate a loss of
geometric scaling. Maps of this type were also used in the analysis of experiments on forced
nonlinear oscillators [21].

A similar scenario is expected in the case of quasiperiodic orbits in circle maps. Indeed,
the asymmetric case has already been considered in [17, 27]. See also [18] and [16]. What
is needed however is a proof of the existence (and knowledge of properties of) a universal
period-two point, from which we expect asymptotic behaviour may be calculated. It seems
likely that the Herglotz function approach will be fruitful here.

Asymptotics for the limit d→ 1 (always in the symmetric case) have been previously studied
by several groups: Jonker and Rand [15], Ostlund et al [23], Shraiman [24], Dixon and
Kenny [5]. The d → ∞ limit has also been considered: Delbourgo and Kenny [4], Hu et
al [13], Briggs et al [1], Dixon et al [6].

The asymptotics of scaling on the boundary of golden mean Siegel discs has been studied
numerically by Osbaldestin [22]. Although the phenomenology seems identical to that in
circle maps, there is no sight yet of a means of tackling this problem analytically.
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