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Abstract

Turbulent buoyant plumes in cold fresh water are analysed, assuming a

quadratic dependence of density on temperature. The model is based on the

assumption that entrainment velocity is proportional to vertical velocity in

the plume. Numerical and asymptotic solutions are obtained for both rising

and descending plumes from virtual sources with all possible combinations of

buoyancy, volume and momentum fluxes. Physical sources can be identified as

points on trajectories of plumes from virtual sources.

The zero-buoyancy condition, at which the plume and the ambient have

equal densities but their temperatures are on opposite sides of the temperature

of maximum density, is of particular importance. If an upwardly buoyant plume

rising through a body of water reaches the surface before passing through its

zero-buoyancy level, it will form a surface gravity current; otherwise, the plume

water will return to the source as a fountain. The height at which zero buoyancy

is attained generally decreases as the source momentum flux increases: greater

plume velocity produces greater entrainment and hence more rapid temperature

change. Descending plumes, if ejected downwards against upward buoyancy,

may be classified as strongly or weakly forced according to whether they reach

the zero-buoyancy condition before being brought to rest. If they do, they

continue to descend with favourable buoyancy; otherwise, they may form an

inverted fountain. Once a descending plume has attained downward buoyancy,

it can continue to descend indefinitely, ultimately behaving like a plume in a

fluid with a linear equation of state. In contrast, a rising plume will eventually

come to rest however large its initial upward buoyancy and momentum fluxes

are.
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Figure 1: Schematic of usual behaviour of warm water discharged from an outfall at

the bed of a cooler water body

1 Introduction

Power stations discharge their cooling water at temperatures approximately 10◦C

higher than it is taken in (Macqueen, 1979). The discharged water is therefore less

dense than the receiving water. With an outfall at the bed of a water body, the

warm water will rise to the surface as a turbulent plume, reducing its temperature

substantially as it entrains cold water from the ambient. The warm water will then

spread horizontally as a surface gravity current, cooling further by entrainment and

possibly by losing heat to the atmosphere: see figure 1. In this scenario, the warm

water has no effect on the ecology at the bed of the water body, and there is no risk

of it recirculating into a power station’s intake situated at the bed.

Now suppose that the receiving water is below the temperature of maximum

density, approximately 4◦C in fresh water but decreasing with increasing salinity in

brackish water. Mixing between the warm water from the discharge and the cold

receiving water can then produce water which is denser than either component, the

so-called cabbeling phenomenon (e.g. Foster (1972)). This may occur in the rising
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plume, in which case the dense water will form a fountain, returning to the bed outside

the rising plume: see figure 2(a). Alternatively, the plume may reach the surface still

positively buoyant, but then the warm water will inevitably become denser than the

ambient water during its subsequent surface spreading: the gravity current will then

be arrested, and a dense plume will descend from its head (where mixing is most

intense) to the bed, as seen in the laboratory experiments of Marmoush, Smith &

Hamblin (1984): see figure 2(b). In either case, water which may be as much as 8◦C

warmer than the ambient (in a lake at 0◦C) will then spread along the bed as a dense

gravity current, possibly affecting the bed ecology or entering an intake. Evidence

for this was found in Lake Michigan by Hoglund and Spigarelli (1972), who measured

a rise of 5.2◦C from a natural ambient temperature of 0.5◦C; however, these authors

were principally concerned with the biological implications of the spread of warm

water along the lake bed, and did not attempt to analyse the dynamics. There, the

warm water flow at the bed was considered undesirable; alternatively, if the main

concern is to avoid erosion of the Winter ice cover (Gu and Stefan, 1993), formation

of a fountain would be considered the most desirable outcome.

There are thus four possible stages of motion to be analysed: a rising plume, a

surface gravity current, a descending plume, and a gravity current along the bed. The

last of these has no features which are qualitatively different from situations where

cabbeling does not apply. The surface gravity current will be addressed in a future

paper. The remaining stages are the vertical plumes, both rising and descending,

which are the object of study here. We restrict ourselves to two-dimensional geometry:

thus we are modelling a line plume rising from a multiport diffuser, or descending

from the head of a broad (spanwise) gravity current. The latter case includes annular

descending plumes following axisymmetric spreading across the surface from above a
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Figure 2: Possible behaviours of warm water discharged from an outfall at the bed of

a freshwater body below the temperature of maximum density: (a) the rising plume

loses buoyancy and forms a fountain; (b) the rising plume remains buoyant but the

subsequent gravity current suffers buoyancy reversal, giving rise to descending plumes.

point outfall: these may be modelled as two-dimensional if the plume’s width is small

compared to its radial distance from the outfall. The plumes are also assumed to be

steady, as would be expected of power station cooling water discharges. Thermals

arising from instantaneous releases can be modelled by a similar formalism (Turner,

1973), while starting plumes, formed when the source of buoyant fluid is switched on at

some initial time and then maintained, require more complicated modelling (Turner,

1962); this might be relevant in understanding the plumes observed by Marmoush

et al. (1984) descending from the head of a lock-release gravity current, but is not

considered here.

We will consider only unstratified ambient conditions: in relation to protecting

the bed ecology, this may be regarded as a ‘worst case’. A lake which freezes over in

Winter will typically have inverse thermal stratification, with temperature increasing

from 0◦C at the surface to possibly as high as 4◦C at the bed (Gu and Stefan, 1993).

Consider a discharge at 10◦C from a lake bed, with the receiving water either (a)

at a uniform temperature of 0◦C, or (b) inversely stratified. In case (a) the plume’s
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buoyancy is lower, and its cooling rate due to entrainment is higher, than in case (b);

hence the discharge is more likely to experience buoyancy reversal before reaching

the surface in our model than in a real lake. Similarly, a plume descending from the

head of an arrested gravity current will have greater negative buoyancy and greater

impact on the lake bed (in terms of both temperature difference and velocity) in our

unstratified model than in the more realistic situation.

Whereas buoyancy reversal is the main feature of interest in rising plumes, for

descending plumes a notable phenomenon is that entrainment can increase the (neg-

ative) buoyancy. Consider, for instance, a fresh water plume at 7◦C, which is denser

than ambient water at 0◦C: as the plume descends and mixes with its surroundings,

the density difference will increase until its temperature has dropped to 4◦C. This

is in contrast to plumes with linear mixing properties, for which entrainment always

reduces the buoyancy.

The plan for the remainder of this paper is as follows. The assumptions used in

modelling plume behaviour are discussed in Section 2. The governing equations are

written down and nondimensionalised in Section 3, and the relation (3.20) between

volume flux and momentum flux is derived as a first integral of these equations: this

is a pivotal result of the paper. A thorough analysis of plume motion, based on (3.20),

is presented in Sections 4 and 5 for upward and downward motion respectively, with

all possible regimes considered. In Section 6 we discuss the application of our results

to power station cooling water discharges, which provided the motivation for this

study. Some concluding remarks are given in Section 7. Results in Sections 4 – 6 are

presented graphically based on numerical integrations, but many asymptotic formulae

have also been derived, which give further insight into the dynamics. However, these

formulae have mainly been confined to the Appendix to avoid cluttering the main
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text with mathematical detail.

2 Modelling considerations

To model the behaviour of warm plumes in cold fresh water, we must account for two

physical phenomena: the non-monotonic dependence of density ρ on temperature T ,

and the entrainment of ambient fluid. For the former, Oosthuizen & Paul (1996) state

that a quadratic relationship

ρ = ρm − β(T − Tm)2. (2.1)

is a good fit to experimental data for temperatures up to 10◦C, implying that (2.1)

is adequate to analyse a power station cooling water discharge at 10◦C into an am-

bient at 0◦C. The constants in (2.1) are: Tm = 3.98◦C, the temperature of max-

imum density for fresh water at atmospheric pressure (taken as 4◦C in numeri-

cal examples below); ρm = 1.000 × 103 kg.m−3, the density at that temperature;

β = 8.0× 10−3 kg.m−3(◦C)−2 (Moore & Weiss, 1973).

Entrainment will be modelled using the well-established hypothesis of Morton,

Taylor & Turner (1956), that ambient fluid is entrained at a velocity proportional

to the vertical velocity within the plume. A defence of this entrainment model in

a case involving buoyancy reversal has been given by Caulfield and Woods (1995).

An issue of particular relevance to the present application is that the plume must be

fully turbulent for the entrainment assumption of Morton et al. (1956) to be valid.

This would certainly be achieved in a power station discharge, with its large volume

flux. However, in a laboratory-scale experiment, with a plume driven by the very

small density differences in water close to its temperature of maximum density, the
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Reynolds number may be too low for the required level of turbulence. Calculations

of Reynolds numbers in these situations are given in Section 7 below.

If the warm water reaches the surface and then spreads out horizontally, our

plume model will clearly become invalid where surface impingement effects become

significant. A more severe limitation applies in the case where a fountain is formed,

since the entrainment will then be between the inner upflow and outer downflow,

as well as from the ambient into the downflow. Bloomfield and Kerr (2000) have

developed a model of fountains, taking all these interactions into account. However,

the same authors’ previous model assumed entrainment directly from the ambient

into the upflow, with surprisingly good agreement with experimental results for the

initial fountain height in the case of an axisymmetric fountain, although a greater

discrepancy was found for line fountains (Bloomfield and Kerr, 1998).

Whereas Bloomfield and Kerr’s fountains were produced by injecting dense fluid

upwards into a less dense ambient, we are considering fountains resulting from buoy-

ancy reversal. Turner (1966) drew attention to the fundamental differences between

these situations; he found that plumes with buoyancy reversal become oscillatory, and

obtained scaling laws for the height, radius and period of oscillation of such plumes.

Plumes and jets with buoyancy reversal have previously been considered in the con-

text of evaporative cooling at cumulus cloud tops (Turner, 1966), hydrothermal vents

at the ocean floor (Turner and Campbell, 1987) and volcanic plumes (Caulfield and

Woods, 1995), as well as fresh water below the temperature of maximum density (Gu

and Stefan, 1993). Of these authors, only Caulfield and Woods (1995) have provided

an analysis of the plume entrainment equations with density as a quadratic function of

mixing ratio. Although in their case mixing between plume and ambient fluid caused

a decrease in density, their results show many similarities to those presented here, in
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particular when one notes our reciprocal relation (below) between volume flux and

temperature (although they did not have such a convenient parameter as temperature

in terms of which to express the nonlinear density formulation). However, they only

considered axisymmetric plumes and motion in one direction, and their analysis was

not as detailed as that presented below.

The classical models of steady plumes use equations for conservation of mass,

momentum and buoyancy (e.g. Turner (1973)). Conservation of buoyancy applies if

the buoyancy is a linear function of some conserved quantity (thermal energy, salinity,

etc.). In the present case, the buoyancy is a nonlinear function of temperature,

which is proportional to thermal energy; thus we shall use equations derived from

the conservation laws for mass, momentum and thermal energy (cf. Gu and Stefan

(1988); Wüest, Brooks & Imboden (1992)), with the nonlinearity appearing in the

buoyancy forcing term in the momentum equation. We will make the usual Boussinesq

approximation, that density variations will be ignored except in the buoyancy term

which is the difference between hydrostatic pressure gradients within and outside the

plume. The dynamic pressure is ignored, on the basis that the plume is thin; this

assumption breaks down where radial spreading due to surface impingement becomes

significant.

We assume symmetry and self-similarity, so that horizontal profiles of vertical

velocity w′(x, z) and temperature T ′(x, z) (where x is the cross-plume coordinate)

may be replaced by equivalent top-hat profiles, w(z) and T (z), both with the same

half-width b(z):

bw =

∫ ∞

0

w′ dx (2.2)

bw2 =

∫ ∞

0

w′2 dx (2.3)
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bwT =

∫ ∞

0

w′T ′ dx . (2.4)

In case the velocity and temperature profiles are of different widths, as found by

Rouse, Yih & Humphreys (1952), a transformation similar to that employed by Lee

& Emmons (1961) may be used to obtain the equations in the next section.

Ambient water of uniform temperature T∞ and density ρ∞ is entrained into the

plume at a velocity ve, assumed to be proportional to the vertical velocity (Morton

et al., 1956):

ve = α|w| . (2.5)

The entrainment constant α has a value around 0.08 for top-hat profiles according

to Turner (1973), but 0.16 according to Lee & Emmons (1961); the factor of 2/
√
π

required to account for Lee & Emmons’ Gaussian profile only exacerbates the discrep-

ancy, and the later review by Turner (1986) does not provide any further information

for two-dimensional plumes. Although α is scaled out of most of the calculations

below, we take α = 0.1 where a numerical value is required.

We shall consider the cases of upward and downward motion separately, orienting

the vertical co-ordinate z and the vertical velocity w in the direction of motion in

each case. Since a change in direction does not imply a switch from entrainment

to detrainment, the equations describing entrainment (of mass and thermal energy)

would otherwise involve a factor |w|, and so would in any case have to be solved

separately for upward and downward motion. Furthermore, although we will see

that the mathematical solution can be continued through a change in direction of

the plume, this is unphysical as it represents upward and downward moving fluid

occupying the same space (Caulfield and Woods, 1995); this is where the fountain

equations of Bloomfield and Kerr (2000) would be required. We are not attempting
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such a complex model here, but we do expect that our analysis will provide useful

information on important parameters such as maximum height of an upward plume

and height at which buoyancy reversal occurs.

3 Governing equations and scalings

Conservation of mass yields, after cancelling the density (under the Boussinesq ap-

proximation), an equation for volume flux:

d

dz
(bw) = αw . (3.1)

Next in the analysis of Morton et al. (1956) and many subsequent authors is an

equation for conservation of buoyancy flux, but this depends on the buoyancy being a

linear function of a conserved quantity. This is not therefore applicable in the present

case, so we consider conservation of thermal energy, which yields an equation for

temperature flux:

d

dz
(bwT ) = αwT∞ . (3.2)

Equations (3.1) and (3.2) give the temperature in the plume:

T = T∞ +
F

2bw
(3.3)

where F is the relative thermal flux which is conserved because of the unstratified

ambient conditions:

F = 2bw(T − T∞) = constant. (3.4)

The vertical momentum equation is

d

dz
(bw2) = ∓gb ρ− ρ∞

ρm

(3.5)
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(Lee & Emmons, 1961), where the upper and lower signs refer to upward and down-

ward moving plumes respectively. Using the equation of state (2.1) to obtain the

buoyancy force in terms of temperature, and then eliminating the latter by means of

(3.3), this becomes

d

dz
(bw2) = ∓gβ

ρm

b (T − T∞)(2Tm − T − T∞) (3.6)

= ∓gβ
ρm

F

2w

(
2Tm − 2T∞ −

F

2bw

)
. (3.7)

It will be convenient to use volume flux

q = bw (3.8)

and momentum flux

m = bw2 (3.9)

(of the half-plume) as dependent variables rather than width and velocity. Noting

that

b =
q2

m
, w =

m

q
, (3.10)

the equations (3.1) and (3.7) for volume flux and momentum flux become

dq

dz
=

αm

q
(3.11)

dm

dz
= ∓gβ

ρm

Fq

2m

(
2Tm − 2T∞ −

F

2q

)
. (3.12)

The natural scaling parameters of the problem are the temperature scale (Tm − T∞),

the conserved thermal flux F and the buoyancy scale

gm =
gβ(Tm − T∞)2

ρm

; (3.13)
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the first two of these combine to provide a volume flux scale

qT =
F

Tm − T∞
. (3.14)

Hence we define dimensionless variables

Z =

(
α2gm

q 2
T

)1/3

z , B =

(
gm

αq 2
T

)1/3

b , W =
(

α
gmqT

)1/3

w ,

Q =
q
qT , M =

(
α

gmq
4
T

)1/3

m, θ = T − T∞
Tm − T∞ ,

(3.15)

where we are scaling out the entrainment coefficient α so that our results are inde-

pendent of its numerical value. Note that a plume with θ = 1 is at the temperature

of maximum density, while a plume with θ = 2 has the same density as the ambient

(due to the equation of state (2.1)): thus buoyancy reversal occurs when θ passes

through the value 2.

The thermal flux equation (3.4) yields a relation between dimensionless tempera-

ture and volume flux,

θ =
1

2Q
, (3.16)

and the equations of motion (3.11) and (3.12) become

dQ

dZ
=

M

Q
(3.17)

dM

dZ
= ∓4Q− 1

4M
. (3.18)

Eliminating Z, we obtain

dM

dQ
= ∓4Q2 −Q

4M2
, (3.19)

with solution

M3 = M 3
0 ∓

(
Q3 − 3

8
Q2

)
, (3.20)
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where M0 is the value of M at Q = 0. The variation of volume flux and momentum

flux with height can then be obtained by substituting from (3.20) into (3.17) and

integrating numerically. It is useful to bear in mind that buoyancy forces are upward

where Q < 1
4

and downward where Q > 1
4
, since according to (3.16) these inequalities

imply θ > 2 and θ < 2 respectively.

Plume width and velocity are obtained from dimensionless forms of (3.10). The

plume’s expansion angle ψ is given by

tanψ =
db

dz
= α

dB

dZ
(3.21)

= α

(
2− 1

W 2

dM

dZ

)
(3.22)

= α

(
1− B

W

dW

dZ

)
. (3.23)

Since α is rather small, tanψ ≈ ψ in most regions of the plumes; thus, for brevity

we shall often refer to the quantity α dB/dZ as the expansion angle of a plume. The

quantity dB/dZ will be called the normalised expansion angle.

The solution (3.20) is plotted for various values of M0, for upward motion in figure

3 and for downward motion in figure 7. Plume motion is from left to right in these

plots, since the volume flux Q must always be increasing due to entrainment. Points

where plume trajectories emerge from either axis represent virtual sources: on the M -

axis, including the origin, the plume width is zero while its velocity and temperature

are infinite; on the Q-axis, the velocity is zero but the width is infinite. The solution

(3.20), in terms of the single parameter M0 describing conditions at an unphysical

virtual source, is mathematically elegant but is not so useful for providing physical

insight. It is therefore useful to relate M0 to conditions at a physical source. Plume

behaviour is governed by the dimensionless temperature and Froude number at the
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source (Lee & Emmons, 1961), defined respectively as

θs =
Ts − T∞
Tm − T∞

, φs =
ws√
gmbs

, (3.24)

where bs, ws and Ts are the width, velocity and temperature at the physical source;

note that we shall always define Froude numbers with respect to the constant buoy-

ancy scale gm rather than the buoyancy of the plume, so that the Froude number is

simply a dimensionless velocity. Given positive, finite values of θs and φs, we can find

the corresponding co-ordinates in Q-M space,

Qs =
1

2θs

, Ms =

(
αφ 2

s

16θ 4
s

)1/3

, (3.25)

and substitute into (3.20) to obtain

M0 = (2θs)
−4/3

(
αφ 2

s ±
(

2θs −
3

2
θ 2

s

))1/3

. (3.26)

Conversely, any point (Qs,Ms) on a trajectory in Q-M space can be regarded as a

possible physical source for a plume, with

θs =
1

2Qs

, φs =
M

3/2
s

α1/2Q 2
s

. (3.27)

4 Rising plumes

The upper, middle and lower curves in figure 3 represent a forced plume, a pure plume

and a lazy plume, respectively, in the nomenclature preferred by Hunt & Kaye (2005).

The pure plume emanates from a virtual source that supplies buoyancy flux but no

momentum flux or volume flux. The forced plume is given an upward momentum

flux as well as buoyancy flux at its virtual source (so may alternatively be thought

of as a buoyant jet); the source has zero volume flux, and hence infinite temperature
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Figure 3: Trajectories in Q-M space from solution (3.20) for upward motion, with

M0 = −0.14, M0 = 0 and M0 = 0.14

(by (3.16)). In contrast, the lazy plume has less upward momentum flux than a pure

plume; it comes from a virtual source with positive volume flux Q0, zero momentum

flux and finite temperature. Its negative value of M0 suggests a downward initial

momentum flux at a source with Q = 0 (Morton, 1959), but that initial downward

motion would obviously not appear in this plot, even if we make the unphysical

continuation from it to the rising plume. All three plumes in figure 3 have upward

momentum flux increasing to a maximum when Q = 1
4
; at this point the buoyancy

force changes sign and the momentum flux then decreases to zero, so that all rising

plumes eventually come to rest with infinite width and finite final volume flux Qf (in

our model which cannot describe fountains or the oscillatory behaviour identified by

Turner (1966)). The value of Qf , and also of Q0 in the case of a lazy plume, can be

found as solutions of (3.20) with M = 0. The initial and final volume fluxes Q0 and
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Qf converge to the value 1
4

as M0 approaches a critical value −2−7/3 ≈ −0.1984; no

rising plume can exist with larger negative values of M0 than this. The number 2−7/3

will be seen to have further significance in the context of descending plumes.

The differences between the three classes of plume are most pronounced near

their respective virtual sources, as shown by the asymptotic formulae (A.1) – (A.12)

(see Appendix, section A.1) for volume flux, momentum flux, half-width and vertical

velocity close to the three classes of virtual source: note that in all cases the zero of

the vertical coordinate Z is set at the virtual source. The different behaviours near

the source are also apparent in figure 4, where the half-width, normalised expansion

angle, velocity, temperature and momentum flux are plotted as functions of height for

a pure plume and for examples of a forced plume and a lazy plume. A forced plume

has an initial expansion angle of 2α as for a jet, so is broader than a pure plume for

which the angle is 4
3
α at its source (see equations (A.3) and (A.7)); this is because the

greater velocity of the forced plume in its earlier stages (panel (c) in figure 4) leads

to greater entrainment. In contrast, a lazy plume has infinite width at its virtual

source, but the width rapidly contracts to a minimum and the velocity rises to a

maximum, with minimum width occurring before maximum velocity, which in turn

occurs before the point of zero buoyancy (see Appendix, section A.3). Beyond the

point of maximum velocity, the lazy plume appears remarkably similar to the forced

plume, while the pure plume remains the narrowest (figure 4(a)); but a more strongly

forced plume than in the example in figure 4 would eventually become narrower than

the pure plume.

The plume angle increases monotonically for the pure plume (panel (b)). However,

the forced plume’s angle initially decreases, remaining less than that for a jet while

its momentum flux is increasing; it then becomes equal to the jet value of 2α at

17



0.1 0.2 0.3 0.4 0.5

0.05

0.1

0.15

0.2

0.25

Z

B
-2 -1 1 2 3 4

0.05

0.1

0.15

0.2

0.25

Z

dB/dZ

0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5

W

Z

1 2 3 4 5 6 7

0.1

0.2

0.3

0.4

Z

θ 0.05 0.1 0.15 0.2

0.1

0.2

0.3

0.4

0.5

M

Z

(a)
(b)

(c)

(d)
(e)

Figure 4: Dimensionless plume properties vs. height above virtual source for a pure

plume (solid curves), a forced plume with M0 = 0.14 (dashed curves) and a lazy

plume with M0 = −0.14 (dotted curves): (a) Half-width, (b) Normalised expansion

angle, (c) Vertical velocity, (d) Temperature, (e) Momentum flux. The vertical line

on panel (b) indicates the normalised expansion angle for a non-buoyant jet, while

that on panel (d) indicates the temperature of zero buoyancy.
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the zero-buoyancy level, and greater than the jet value when its momentum flux is

decreasing: see also equation (3.22). As the plumes come to rest, they all spread out

to infinite width (not apparent on the scale used in figure 4(a)).

The temperature plot (figure 4(d)) shows that the greater entrainment in the

forced plume causes it to cool down much more rapidly than the pure plume, thus

reaching the temperature of zero buoyancy at a lower level, as also shown by the

positions of the maxima in momentum flux (panel (e)). The lazy plume, despite

starting from a finite temperature, cools down rather slowly due to its low velocity

and consequent slow entrainment, and the height at which it reaches the temperature

of zero buoyancy is close to that of the pure plume. We may calculate this zero-

buoyancy height as

Zn =

∫ 1/4

Q0

Q

M
dQ (4.1)

(from (3.17)), where we use the convention that Q0 = 0 for forced and pure plumes.

The height Zn is the maximum depth of water in which a plume could reach the

surface lighter than the ambient, and so spread out as a surface gravity current. It

is plotted as a function of M0 in figure 5, and asymptotic formulae valid for various

ranges of M0 are given in the Appendix, section A.2. Figure 5 clearly confirms that for

forced plumes, an increase in the forcing at the source causes a decrease in the height

travelled before the zero-buoyancy condition is reached (with the caveat that we are

considering a virtual source here, so this may not be directly applicable to practical

situations: see Section 6 below): for large M0, Zn decreases as 1/M0. For lazy plumes,

there is very little variation in Zn for −0.15 < M0 < 0: the maximum value of Zn is

0.1967 at M0 = −0.0874, compared with Zn = 0.1960 for a pure plume. Only when

M0 comes close to the critical value −2−7/3 does Zn reduce significantly. A plume in

this near-critical regime has a virtual source only a little above the temperature of
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Figure 5: Dimensionless height of zero buoyancy, calculated from (4.1), as a function

of M0

zero buoyancy: it therefore experiences a very weak upward buoyancy force, so its

velocity remains low, but the consequent slow entrainment means that it cools down

very slowly and so can still travel a considerable distance before its temperature drops

to θ = 2.

The maximum rise height of the plume and the dimensionless temperature at that

height can be found from (3.17) and (3.16) as

Zf =

∫ Qf

Q0

Q

M
dQ , (4.2)

θf =
1

2Qf

(4.3)

and are plotted as functions of M0 in figure 6. In our model, the plume comes to rest

at the height Zf . In reality, this will be the height of the fountain top, attained only

momentarily if the oscillatory regime of Turner (1966) applies; it is also the maximum
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Figure 6: (a) Maximum rise height and (b) temperature at this height, as a function

of M0. The vertical dashed line in (b) indicates the critical value M0 = −2−7/3

depth of water in which the plume will impinge on the surface.

The plume attains its maximum rise height when all the momentum flux attained

at the point of zero buoyancy has been removed by adverse buoyancy forces. Setting

Q = 1
4

in (3.20), the momentum flux to be removed is

Mn =

(
M 3

0 +
1

128

)1/3

. (4.4)

The variation of Mn with the initial forcing M0 is directly reflected in the amount of

cooling required to bring the plume to rest (figure 6(b)): the fountain-top temperature

θf varies little from its pure-plume value of 4
3

while |M0| < 0.1, but decreases as 1/M0

for strong forcing (when Mn ∼M0) and increases rapidly towards the zero-buoyancy

temperature as M0 approaches −2−7/3. Consequently, for moderate values of M0 the

increased entrainment is the dominant effect on Zf as for Zn, and we have the rather

counter-intuitive result that pushing a plume harder at its source may lead to it

rising less far; a similar phenomenon was found by Turner (1986) with vortex rings in

a stable environment. However, this effect of entrainment is less pronounced than was
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found for Zn, and Zf reaches a minimum value of 0.4297 whenM0 = 0.1791, compared

to Zf = 0.4534 for a pure plume. For larger values of M0, the requirement to remove

more momentum flux means that the plume can travel further, and for strong initial

forcing the height of a fountain increases linearly with M0. For lazy plumes, the

variation of Zf with M0 is similar to that of Zn, except that the maximum of Zf is

at M0 = 0: as laziness (negative M0) increases from zero, the slight reduction in the

amount of cooling required to bring the plume to rest cancels out the effect of reduced

entrainment which caused Zn to increase. All the above physical effects are reflected

in the asymptotic formulae (see Appendix, section A.2).

5 Descending plumes

Figure 7 shows trajectories in Q −M space for downward plumes with five values

of M0. As before, plumes with negative, zero or positive values of M0 are described

as lazy, pure or forced, respectively; however, M0 is now a downward momentum

flux, and the forcing (or otherwise) provided by the source is with respect to down-

ward momentum. It is clear from the figure that the important distinction among

downward plumes is according to whether M0 is greater or less than 2−7/3. The case

M0 = 2−7/3 will be designated critical forcing ; recall that upward plumes cannot

exist with M0 < −2−7/3. A plume with M0 > 2−7/3 is described as strongly forced. If

0 < M0 < 2−7/3, there are two branches of the solution: the one with with Q < 1
4

(so

that θ > 2) is the warm weakly forced plume, while the branch with Q > 1
4

(so θ < 2)

is the cool weakly forced plume. Pure and lazy plumes only exist in the cool sector,

because a warm (θ > 2) plume has upward buoyancy and so would need downward

forcing from its source in order to move downwards. It is evident from figure 7 that
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Figure 7: Trajectories in Q-M space from solution (3.20) for downward motion, with

M0 = −0.14, M0 = 0, M0 = 0.14, M0 = 2−7/3 and M0 = 0.24, as identified by labels

on curves. The curve for M0 = 2−7/3 separates strongly forced from weakly forced

plumes, while the line Q = 1/4, corresponding to θ = 2, separates the warm and cool

sectors.

23



all plumes in the cool sector, regardless of forcing or laziness, behave similarly at large

distances from the source (the far field), corresponding to large Q in figure 7.

The virtual source of a strongly forced plume or a warm weakly forced plume has

infinite temperature, so that the buoyancy force is initially upward. The behaviour

near the source is similar to that for an upward forced plume, except that the mo-

mentum flux is decreasing (as shown by the sign change in (A.2)). The plume is

ejected downward, and the adverse buoyancy depletes its momentum flux; however,

by entraining cold water, it is continually reducing the upward buoyancy. Weak forc-

ing means that the initial momentum flux is insufficient to prevent the plume being

brought to rest before cooling to the temperature of zero buoyancy (θ = 2), whereas

strong forcing means that the plume reaches this temperature with positive down-

ward momentum and can then gain momentum flux as the buoyancy force becomes

favourable (downward). A critically forced plume comes to rest exactly at the tem-

perature of zero buoyancy, and can in principle then accelerate downwards, although

this continuation may be considered unphysical as the plume has infinite width where

it comes to rest; instead, we may refer separately to warm and cool critically forced

plumes.

A rising lazy plume is a mathematical continuation of a descending weakly forced

plume with the same value of |M0|. Similarly, a descending, cool weakly forced or lazy

plume is the respective mathematical continuation of a rising, lazy or forced plume.

Although it is tempting to think of a plume simply changing direction, possibly twice,

this is unphysical (cf. Morton (1959)): not only would it pass through a condition of

infinite width, but the plume after the reversal would be passing through the same

space that is occupied by the plume before the reversal. A physically realistic model

for change of direction would be as a fountain, inverted in the case of a descending
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weakly forced plume. However, considering the mathematical connection between

rising and descending plume solutions does help to clarify why rising plumes cannot

exist with larger negative values of M0 than the critical value.

We now discuss the details of plume motion for three classes of downward plume:

strongly forced, warm weakly forced, and cool, with the critically forced plume con-

sidered as a limiting case of each class.

5.1 Strongly forced plumes

Figure 8 details the development of a critically forced plume (both warm and cool

phases) and of strongly forced plumes with two values of M0, one of which is close to

the critical value. The point of zero buoyancy is where the momentum flux (panel (b))

reaches its minimum and the volume flux (panel (a)) passes through the value 1
4
. For

the critically forced plume, the volume flux (and hence temperature) is stationary and

the vertical velocity falls to zero at this point, so that the plume is travelling a sub-

stantial distance at low velocity (hence low entrainment) under very small buoyancy

forces. For strongly forced plumes, the vertical velocity (panel (e)) has a minimum

beyond the point of zero buoyancy (see Appendix, section A.4). In the far field where

Q � M0, M ∼ Q from (3.20); equation (3.17) then shows that the volume flux and

momentum flux both increase linearly with distance, so that the normalised expan-

sion angle dB/dZ and the dimensionless vertical velocity W both approach unity as

Z →∞ for all plumes (see Appendix, section A.5, for more details).

The variation of plume width and expansion angle (panels (c) and (d) in figure

8) may be derived from the velocity and momentum flux variations using (3.22) and

(3.23). The expansion angle must change from an initial value of 2α (the angle asso-

ciated with non-buoyant jets) to a final angle of α; the latter is the angle associated
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Figure 8: Dimensionless plume properties vs. vertical distance below an infinite-

temperature virtual source for a critically forced plume with M0 = 2−7/3 ≈ 0.1984

(solid curves) and strongly forced plumes with M0 = 0.205 (dotted curves) and

M0 = 0.24 (dashed curves): (a) Volume flux, (b) Momentum flux, (c) Half-width,

(d) Normalised expansion angle, (e) Vertical velocity. Vertical dashed lines indicate:

level of zero buoyancy in (a); normalised expansion angles for non-buoyant jets and

pure plumes in (d); limiting value of velocity in far field in (e). Z-axis is downwards to

indicate orientation of plume (also in all plots below referring to descending plumes).
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with pure plumes with a linear equation of state, and occurs because the effects of

the initial momentum and the nonlinear temperature-density relation are no longer

felt at great distances. The expansion angle also passes through 2α at the point of

zero buoyancy and through α at the point of minimum velocity. It is greater than

2α while there is an adverse buoyancy force, and less than α while the plume is ac-

celerating; in the case of the plume with M0 = 0.205, the expansion angle actually

becomes negative, i.e. the plume contracts for some distance. A region of plume

contraction is obviously required for the cool critically forced plume, starting from

infinite width at the point of zero buoyancy, and also occurs for strongly forced plumes

with M0 < 2−2/3/3 ≈ 0.2100. On the other hand, for larger values of M0 there is less

‘overshoot’ in the transition from the initial angle 2α to the final angle α.

The distance Zn below the source at which zero buoyancy occurs is again given

by (4.1) (with Q0 = 0), and is plotted as a function of M0 in figure 9; asymptotic

formulae are given in the Appendix, section A.6. Most striking is the rapid drop in

Zn as M0 rises a little above critical. As for rising plumes, greater velocity implies

greater entrainment and hence a decrease in the distance travelled to achieve the fixed

amount of cooling between the source and the zero-buoyancy condition. The low

velocity and small buoyancy forces experienced by the critically forced plume around

the zero buoyancy point contrast with the much greater velocity and buoyancy forces

for a plume with forcing only slightly above critical (see figure 8): hence the large

difference in distances travelled.

5.2 Warm, weakly forced plumes

Figure 10 details the development of a warm critically forced plume and of warm

weakly forced plumes with two values of M0, one of which is close to the critical
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Figure 9: Distance downwards from source to point of zero buoyancy as a function

of M0 for strongly forced plumes. The vertical dashed line indicates the value of M0

for a critically forced plume.

value. In each case, the plume comes to rest with volume flux Qf ≤ 1
4

and infinite

width, but the main feature of interest is the big difference made by a slight departure

from critical forcing (as was the case with strongly forced plumes). A critically forced

plume travels a long distance with low velocity, low entrainment and hence very gentle

deceleration, but this situation is very sensitively balanced: a small decrease in initial

momentum flux from the critical value 2−7/3 ≈ 0.1984 leads to a large reduction in

total distance travelled before coming to rest. This reduction in Zf as M0 decreases

from its critical value is characterised by the 1
6
-power term in the asymptotic formula

(A.56), and can be seen in figure 10 (b) by comparing the Z-axis intercepts of the

curves for M0 = 2−7/3 and M0 = 0.192.

If the initial momentum flux is small, a warm descending plume will be brought

to rest rapidly by the strong adverse buoyancy force at high temperature, before it

has entrained enough cold water to significantly reduce this force. Thus the distance
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Figure 10: Dimensionless plume properties vs. vertical distance below an infinite-

temperature virtual source for a critically forced plume (solid curves) and warm

weakly forced plumes with M0 = 0.192 (dotted curves) and M0 = 0.16 (dashed

curves): (a) Volume flux, (b) Momentum flux, (c) Half-width, (d) Vertical velocity.

Horizontal dashed lines in (c) indicate distances at which plumes come to rest.
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travelled by the plume will be very small, as shown by the quadratic dependence of

Zf on M0 in the asymptotic formula (A.55) for small M0. The temperature at which

a warm weakly forced plume comes to rest may be calculated using (4.3), with Qf

here being identical to the Q0 for lazy rising plumes, as given by formulae (A.20) and

(A.24). This temperature decreases monotonically with increasing initial momentum

flux.

5.3 Cool plumes

Here we consider plumes from virtual sources with volume flux Q0 ≥ 1
4
, zero momen-

tum flux and finite temperature; the value of M0 for such a plume satisfies (3.20) with

Q = Q0 and M = 0, but cannot now be regarded as an initial momentum flux as

this would require an unphysical continuation from a notional earlier stage of motion.

The source of a critically forced plume is now taken as the point where it is at rest

with Q = 1
4
.

Figure 11 shows the development of a critically forced plume and three plumes

with smaller values of M0: two of these are weakly forced, having the same values of

M0 as those in figure 10, while the third is lazy (with negative M0); however, it is clear

that there is no qualitative distinction between weakly forced and lazy plumes in this

regime, whereas again the critically forced plume behaves differently from the others.

The distinction between the near-source behaviour of critically forced and other cool

plumes is quantified in the comparison between formulae (A.9) – (A.12) and (A.13)

– (A.16), and may be explained physically by the fact that there is zero buoyancy

force at the critical source, whereas there is a downward force acting at any other cool

source; we may suppose that the critically forced plume can move from its position of

rest only due to some infinitesimal perturbation. Note that (Q0− 1/4) has a 1
2

power
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Figure 11: Dimensionless plume properties vs. vertical distance below a finite-

temperature virtual source for a cool critically forced plume (solid curves), cool weakly

forced plumes with M0 = 0.192 (dotted curves) and M0 = 0.16 (dashed curves) and

a lazy plume with M0 = −0.14 (dash-dotted curves): (a) Temperature, (b) Momen-

tum flux, (c) Half-width, (d) Vertical velocity. The vertical dashed line in panel (d)

indicates the far-field limiting value of velocity.
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dependence on the deviation of M0 from its critical value (from (A.22), noting the

mathematical continuation from upward plumes), and this magnifies the sensitivity

to slight deviations from critical forcing when forcing is quantified by the parameter

M0. Further from the source, the contraction in width, reduction in temperature,

acceleration from rest and gain in momentum flux of the critically forced plume are

all delayed (as functions of distance from source) relative to other cool plumes, as

shown in figure 11.

Like lazy rising plumes, cool descending plumes have infinite width at their source

but are broadening at large distances from the source (see (A.51)), so the plume width

must attain a minimum value at some point, known as a neck (Hunt & Kaye, 2005).

This occurs where the volume flux has the value Qm satisfying

Q2
m − 2Q3

m = 4M 3
0 . (5.1)

The temperature θm, distance Zm from the source and half-width

Bm = 2Q2
m

(
Q2

m − 8M 3
0

)−1/3
(5.2)

at the neck are shown as functions of M0 in figure 12, which also includes (except

in the Zm plot) the small range of strongly forced plumes which have a neck. To

interpret this figure it is helpful to think in terms of the temperature θ0 at the virtual

source of cool plumes: in particular, as well as M0 = 2−7/3 ≈ 0.1984 corresponding to

the zero-buoyancy temperature θ0 = 2, a pure plume (M0 = 0) has θ0 = 4/3 while a

source at the temperature of maximum density θ0 = 1 has M0 = −2−5/3 ≈ −0.3150.

One should also bear in mind that a narrow neck close to the source requires strong

acceleration of the plume from the source.

Three distinct regimes are apparent in figure 12. Firstly, for M0 . −0.2, i.e.

source temperature close to or below the temperature of maximum density, the neck’s
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Figure 12: Plume properties at the neck, as a function of M0 for cool plumes and

strongly forced plumes with M0 < 2−2/3/3: (a) temperature, (b) distance downwards

from source, and (c) half-width. The horizontal axis in (b) is drawn at the value of

Zm for a critically forced plume.
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half-width and distance from the source increase linearly with increasingly negative

M0, while the temperature at the neck decreases. The buoyancy forces acting on the

plume become weaker as the source temperature decreases below the temperature of

maximum density (i.e. for larger negative M0), and the resulting weaker acceleration

of the plume produces a broader neck, further from the source. Secondly, for M0

values above −0.2 and not too close to the critical value 2−7/3 ≈ 0.1984, there is very

little variation in the half-width, location or temperature of the neck with M0. With

θm close to the temperature of maximum density, the plume experiences fairly large

buoyancy forces throughout its progress from the source to the neck, so accelerates

rapidly to reach a rather narrow neck within a short distance. Finally, with M0 close

to the critical value, the initially weak buoyancy force leads to a considerable delay

in reaching the neck, although this allows the plume to become even narrower than

for smaller M0. However, the narrowest neck occurs in a strongly forced plume with

M0 = 2−2/3/3, the greatest value of M0 for which a neck exists. These results are

quantified in Appendix A.8, where precise values and asymptotic formulae for Qm,

Zm and Bm are given.

In the far field, cool plumes behave in the same way as strongly forced plumes,

as is clear from figure 7. The behaviour is detailed in Appendix A.5, and the leading

terms in the asymptotic formulae are of the same form as for two-dimensional plumes

with a linear equation of state (Lee & Emmons, 1961). Plumes in the far field have

temperatures much closer to the ambient than the temperature of maximum density,

so the nonlinearity of the equation of state is a small correction when considering the

interaction of the plume with the ambient here. Figure 7 and equation (A.48) suggest

that all plumes in the far field appear to be emanating from a finite-temperature

virtual source with Q = 1/8, θ = 4. However, in contrast to the linear case (Lee &
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Emmons, 1961), it is not possible to locate a unique position for such an apparent

source for all plumes.

6 Plumes from physical sources

While the results presented above cover all conceivable plumes in a fluid with a

quadratic equation of state, they are given in terms of conditions at a virtual source

and so may be difficult to interpret for studies of plumes from physical sources. There

are two kinds of physical source that would appear to be of practical relevance. Firstly,

a power station cooling water outfall at a lake bed would have upward buoyancy and

upward vertical velocity; we consider this case in some detail below. Secondly, a plume

descending from a surface gravity current that has mixed to below the temperature

of zero buoyancy would have dimensionless temperature θs just below 2, volume

flux Qs just above 1
4
, momentum flux Ms and Froude number φs small and positive

(so that its width is finite); it would be a cool, descending plume according to the

classification of Section 5. The behaviour of such a plume is described in Section

5.3; the only adjustment needed to the results there is to avoid the singularity at the

virtual source (see figure 11) by noting that the initial conditions prescribe a physical

source position a little below the virtual source. The cool plume is the only class of

descending plume which does not require its source to eject fluid downwards against

the buoyancy force.

The nondimensionalisations (3.15) may be regarded as appropriate for the power

station discharge problem: the volume flux of warm water and the temperatures

of both the discharge and the receiving water are fixed by power station require-

ments and environmental conditions, so the scales qT and gm are fixed. On the other
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hand, these nondimensionalisations are somewhat obscure for practical purposes; in

particular, with a physical source of half-width bs it would seem natural to define

dimensionless heights with respect to this parameter. We therefore define

ζ ≡ z

bs
= α−2/3 (2θsφs)

2/3 Z , (6.3)

where the Froude number φs and dimensionless temperature θs of the source are

defined in (3.24). Results are presented below using both definitions of dimensionless

height.

6.1 Plumes from a lake-bed outfall

We now consider a discharge at 10◦C into a lake at 0◦C; given the constraint that

power stations discharge their cooling water 10◦C warmer than it is taken in from

the ambient, this is the case of least initial buoyancy. It is therefore the worst case

if one is concerned with protecting the lake bed from intrusions of warm water, but

the best case if conservation of an ice cover is the principal concern.

With T∞ = 0◦C, Ts = 10◦C and Tm = 4◦C, the dimensionless source temperature

is θs = 2.5 and the buoyancy scale is gm ≈ 1.3× 10−3 m.s−2. Macqueen (1979) quotes

a volume flux requirement of 25 m3.s−1 and a maximum discharge velocity of 2 m.s−1

for cooling water from a power station; although he assumes a circular outfall, we

shall assume that the same values would apply for a linear source of half-width bs

and length L � bs (so that the geometry is approximately two-dimensional). Then

the source Froude number is φs ≈ 22
√
L (where L in measured in metres), so it will

be of particular interest to look at the case of large source Froude numbers.

With θs = 2.5, the relation between the source Froude number and the parameter
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Figure 13: Height of zero buoyancy as a function of source Froude number for a source

with dimensionless temperature θs = 2.5, assuming α = 0.1. Dimensionless heights

defined by (a) (3.15) and (b) (6.3).

M0 used in previous calculations is

M0 =
(
0.0016αφ 2

s − 0.007
)1/3

or equivalently φs =
25√
α

√
M 3

0 + 0.007 . (6.4)

In particular, with α = 0.1 we find φs ≈ 6.614 when M0 = 0; but the distinction

between forced, pure and lazy plumes is not so significant when considering plumes

from physical sources with moderate temperatures. The differences between the three

classes of plume are most pronounced near a virtual source, and figure 4 shows that

they all develop in rather similar ways from a source with θs = 2.5. However, it is of

interest to find the height of zero buoyancy and maximum fountain height for plumes

from such a source: these heights are plotted as functions of source Froude number

(which is within the outfall designer’s control) in figures 13 and 14. Note that φs = 0

corresponds to M0 ≈ −0.1913 while φs = 50 corresponds to M0 ≈ 0.7325.

For fixed volume flux and temperature at the source, the height of zero buoy-

ancy Zns (where the subscript s indicates a height measured from a physical source)

decreases monotonically with increasing Froude number. This is similar to the be-
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haviour of Zn (measured from a virtual source) for positive M0 (see figure 5): indeed,

for large M0, the leading-order term in the expansion (A.31) for Zn should simply be

multiplied by (1 − 4/θ 2
s ) = 0.36 for θs = 2.5, to obtain the asymptotic behaviour of

Zns. In terms of source Froude number, we obtain

Zns ∼ 2−11/3

(
1− 4

θ 2
s

)
θ 4/3

s α−1/3φ−2/3
s +O(φ−8/3

s ) (6.5)

as φs →∞. The discrepancy between the behaviour of Zns and the non-monotonicity

of Zn when M0 is negative is because the temperature of the virtual source is not fixed

as M0 varies in this range, whereas θs is fixed.

For fixed outfall width, figure 13(b) shows the height of zero buoyancy increasing

monotonically with Froude number, with

ζns →
1

8α

(
θ 2

s − 4
)

as φs →∞ ; (6.6)

this limiting value of ζns is 2.8125 when θs = 2.5 and α = 0.1. The maximum water

depth in which a line discharge at 10◦C can spread across the surface of a lake at

0◦C is less than three times the outfall width, irrespective of exit velocity; for a fixed

volume flux requirement, the possibility of surface spreading is maximised by making

the outfall as wide as possible, keeping Froude number low as indicated in figure

13(a).

For fixed volume flux, the maximum fountain height is a non-monotonic function

of source Froude number, but the minimum in figure 14(a) is not directly comparable

with that in figure 6(b) which occurs at a different value of φs: the elevation of the

physical source above its corresponding virtual source does not vary in a similar way

to the fountain height. However, the underlying reason is the same: for small φs the

dominant effect is that entrainment increases with Froude number so that the plume

loses buoyancy faster, but for larger φs the requirement to remove more momentum
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Figure 14: Maximum fountain height as a function of source Froude number for a

source with dimensionless temperature θs = 2.5, assuming α = 0.1. Dimensionless

heights defined by (a) (3.15) and (b) (6.3).

means that the plume can travel further. For large φs, the distance from the virtual

source to the fountain top (Zf = O(φ
2/3
s ) from (A.33)) is much larger than that

between the virtual and physical sources, which is of the same order as the zero-

buoyancy height (Zns = O(φ
−2/3
s )); thus, to leading order, Zfs ∼ Zf in the limit as

φs →∞. With fixed outfall width, the asymptotic dependence of fountain height on

source Froude number is

ζfs ∼
C1

2
α−1/3θ−2/3

s φ 4/3
s +

22/3π

12
√

3
α−2/3θ 2/3

s φ 2/3
s +α−1

(
3

32
θ 2

s −
1

2

)
+O(φ−2/3

s ) (6.7)

(obtained from (A.33) with C1 defined in (A.17)); the distance between virtual and

physical sources is accounted for in the constant term. Comparing figures 14 and 13,

the top of the fountain is more than 40 times the zero-buoyancy height for φs = 50.

Thus, an outfall with a high Froude number (high exit velocity from a narrow orifice)

gives the worst of both worlds: the warm water will return to the lake bed as a

fountain unless the water is very shallow, but the fountain will affect the surface ice

cover unless the water is very deep.
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7 Conclusions

More sophisticated models of turbulent plumes, taking account of a nonlinear equation

of state as well as a variety of other factors, have been presented elsewhere, e.g. Wüest

et al. (1992). However, with such models a new numerical solution is required for

each specific application. The present study is concerned solely with the effects of

a quadratic equation of state; this focus has allowed us to make a thorough study,

obtaining asymptotic as well as numerical solutions for all possible regimes. Plumes

are considered to originate in virtual sources, allowing any physical source to be

interpreted as a point on such a plume’s trajectory. The classification into forced,

pure and lazy plumes, used by Hunt & Kaye (2005) but having its origin in the work

of Morton (1959), has needed to be refined: plumes that are forced to descend against

upward buoyancy may be strongly, critically or weakly forced.

The study was motivated by the temperature-density relationship of fresh water

below 10◦C, but the results could be adapted to other fluids with a quadratic depen-

dence of density on mixing ratio, e.g. volcanic plumes (Caulfield and Woods, 1995)

or certain chemical mixtures (Turner, 1966). In these other applications, it is possible

that physical sources other than those considered in Section 6 above may be realistic.

For rising plumes, the most important parameters to be calculated are the zero-

buoyancy height and the fountain-top height. If the receiving water depth is less

than the zero-buoyancy height, the warm water will travel some distance from the

discharge site as a surface gravity current; otherwise, it will form a fountain, returning

to the bed close to the outfall from which it is discharged. We have shown that the

zero-buoyancy height may be rather small: less than 3 times the outfall width for a

discharge at 10◦C into receiving water at 0◦C. Although the zero-buoyancy height
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would increase as the ambient temperature approaches the temperature of maximum

density (for a fixed 10◦C temperature difference between a power station discharge

and the ambient), this does indicate that it may be difficult to avoid the lake bed close

to an outfall being affected by the return of warm water, as observed by Hoglund and

Spigarelli (1972). Even where a surface gravity current does form, it will eventually

lose buoyancy so that warm water will return to the lake bed, albeit cooled more by

mixing than in a fountain and removed some distance from the outfall.

For fixed volume flux, the zero-buoyancy height decreases with increasing source

Froude number φs. This is due to the increased entrainment, and hence faster drop

in temperature, when the velocity is greater: it is counter-productive to give the

discharge a push at the outfall. For small source Froude numbers, the same effect

applies to the fountain-top height, which is the minimum depth of water in which a

rising plume would impinge on the surface; however, for moderate and large source

Froude numbers, this height increases with φs. Fountain-top height is of importance

if one is concerned about erosion of an ice cover. Thus, keeping the source Froude

number low is advisable whether one is concerned with minimising impact on the lake

bed or on the surface.

In a Boussinesq fluid with a linear equation of state, changing the sign of the initial

buoyancy and momentum fluxes is simply equivalent to inverting gravity. This is not

true with our quadratic equation of state. In sufficiently deep water, a rising plume

will eventually come to rest however large the initial upward buoyancy and momentum

fluxes are, whereas a descending plume with downward buoyancy will continue to

descend indefinitely. Far from its source, a descending plume will behave like a

plume in a linear fluid with the same thermal expansion (or contraction) coefficient

as the quadratic fluid at its ambient temperature. Of more interest is the fact that
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entrainment will increase the buoyancy of a plume between the temperatures of zero

buoyancy and maximum density, whereas in a linear fluid entrainment always results

in a decrease of buoyancy.

Some caution needs to be exercised in using the present results to predict the

behaviour of real plumes, especially if laboratory experiments are used either to test

the theory or to model larger-scale flows in the environment. Our governing equations

assume self-similarity and the entrainment model of Morton et al. (1956), and we

now consider two restrictions on the validity of these assumptions. Firstly, they

only become valid at a distance of several outfall widths from the plume source. Our

predictions of zero-buoyancy height for a discharge at 10◦C into an ambient at 0◦C fall

within the near-source region where our equations may not be accurate; nevertheless,

we do expect our predictions to be qualitatively correct. Secondly, the entrainment

model requires the plume to be fully turbulent, a condition usually obtained with a

Reynolds number Re > 2000 according to Fischer et al. (1979). This criterion will

be comfortably exceeded in a power station discharge; for instance, with an outfall of

width only 10 cm and a discharge velocity of 2 m.s−1, Re ≈ 1.5×105, given a kinematic

viscosity ν ≈ 1.3×10−6 m2.s−1 for water at 10◦C (Batchelor, 1967). However, consider

a rising plume at 10◦C issuing from an orifice of width bs = 1 cm (fairly typical of

laboratory experiments) into an ambient at 0◦C: if we specify a pure plume, for which

the source Froude number is φs ≈ 6.6 (see below equation (6.4)), the exit velocity is

ws ≈ 0.024 m.s−1, so Re < 200 at the source. Even at the maximum rise height, the

volume flux will be less than twice its value at the source (Qs = 0.2 for θs = 2.5, and

Qf = 0.375 for a pure plume), so the Reynolds number (proportional to Q) will be

below 400 throughout the plume. This is insufficient for self-generated turbulence;

such an experiment would be of considerable interest in itself, but the results would
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not then be representative of larger-scale flows in the freshwater environment. An

alternative approach in the laboratory would be to generate turbulence artificially,

e.g. using crosshairs (Bloomfield and Kerr, 1998).

Possible directions for further theoretical research would include axisymmetric

geometry and the effects of ambient stratification. It will also be important to model

the entrainment in a fountain properly, as was done by Bloomfield and Kerr (2000),

and the oscillatory behaviour noted by Turner (1966) should be investigated further.

Appendix: Asymptotic formulae, their relation to

physical effects, and other mathematical details

A.1 Rising plumes: behaviour near virtual source

We distinguish four classes of virtual source. Note that where ± or ∓ signs are used,

the upper and lower signs apply to rising and descending plumes, respectively. The

formulae below all apply in the limit as Z → 0.

(a) Infinite-temperature sources

These sources have zero volume flux and positive momentum flux M0. Apart from

cool, weakly forced, descending plumes (see (c) below), all forced plumes, whether

rising or descending, emanate from an infinite-temperature source.

Q ∼ (2M0)
1/2 Z1/2 +O(Z3/2) (A.1)

M ∼ M0

(
1± 1

4M 2
0

Z +O(Z3/2)

)
(A.2)

B ∼ 2Z +O(Z2) (A.3)
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W ∼
(
M0

2

)1/2

Z−1/2 +O(Z1/2) (A.4)

(b) Pure sources

These have zero volume flux and zero momentum flux. They are sources for rising

pure plumes.

Q ∼
(

8

9

)1/4

Z3/4 +O(Z3/2) (A.5)

M ∼
(
Z

2

)1/2

+O(Z5/4) (A.6)

B ∼ 4

3
Z +O(Z7/4) (A.7)

W ∼
(

9

32

)1/4

Z−1/4 +O(Z1/2) (A.8)

(c) Finite-temperature sources

These have positive volume flux Q0 and zero momentum flux. Lazy rising plumes

and cool descending plumes (except for case (d) below) emanate from finite-temperature

sources.

Q ∼ Q0 +

√
2

3

|1− 4Q0|1/2

Q0

Z3/2 +O(Z3) (A.9)

M ∼
∣∣∣∣1− 4Q0

2

∣∣∣∣1/2

Z1/2 +O(Z2) (A.10)

B ∼
∣∣∣∣ 2

1− 4Q0

∣∣∣∣1/2

Q 2
0 Z

−1/2 +O(Z) (A.11)

W ∼
∣∣∣∣1− 4Q0

2

∣∣∣∣1/2
1

Q0

Z1/2 +O(Z2) (A.12)

(d) Critical sources
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The formulae (A.9) – (A.12) are singular in the limit Q0 → 1/4. A source with

volume flux Q0 = 1/4 and zero momentum flux gives rise to a cool, critically forced,

descending plume.

Q ∼ 1

4
+

8

9
Z3 +O(Z6) (A.13)

M ∼ 2

3
Z2 +O(Z5) (A.14)

B ∼ 3

32
Z−2 +O(Z) (A.15)

W ∼ 8

3
Z2 +O(Z5) (A.16)

A.2 Rising plumes: height of zero buoyancy and height of

plume top

We present asymptotic formulae for Zn and Zf valid in four ranges of M0, which

together account for all the variation of these heights shown in figures 5 and 6(a). The

formulae are derived from the integrals (4.1) and (4.2), using the method described

in Section 3.4 of Hinch (1991) to account for a global contribution in addition to local

contributions from one or both ends of the range of integration. There is an added

complication that the limits of integration Q0 (for lazy plumes) and Qf are given as

asymptotic expansions in M0 (also presented below), so that the asymptotic analysis

requires a further rescaling each time the expansion for Zn or Zf is evaluated to the

order of the next term in the expansion of Q0 or Qf . Expansions for the plume-top

temperature θf can be derived from those for Qf by means of the relation (3.16). All

our expansions, including the order of the first neglected terms, have been checked

by comparison with numerical integrations.

For neatness, we use the symbols C1, C2 for the following numerical constants
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which appear frequently:

C1 =
Γ(5

6
)Γ(2

3
)

√
π

≈ 0.8624 (A.17)

C2 = 2−1/3

∫ 2/3

0

t−2/3(1− t)−1/3 dt ≈ 2.2446 (A.18)

(a) M0 close to critical

The critical value of M0 is −2−7/3 so the expansions are in terms of the deviation

from this value,

Md ≡M0 + 2−7/3 . (A.19)

As M0 ↘ −2−7/3:

Q0 ∼ 1

4
− 2−5/6M

1/2
d − 21/3

3
Md +

25/2

9
M

3/2
d +O(M 2

d ) (A.20)

Zn ∼ 2−41/18 32/3

{
C1M

1/6
d − 21/6

3
M

2/3
d − 27/3 5C1

21
M

7/6
d +O(M

5/3
d )

}
(A.21)

Qf ∼ 1

4
+ 2−5/6M

1/2
d − 21/3

3
Md −

25/2

9
M

3/2
d +O(M 2

d ) (A.22)

Zf ∼ 2−41/18 32/3

{
2C1M

1/6
d − 210/3 5C1

21
M

7/6
d +O(M

13/6
d )

}
(A.23)

The leading-order 1
6

powers ofMd give the rapid rise in Zn and Zf asM0 increases from

the critical value, as seen in figures 5 and 6. At leading order, the distance travelled by

the plume while gaining momentum is equal to that travelled while losing momentum

(i.e. Zf ∼ 2Zn), but this symmetry is broken at O(M
2/3

d ).

(b) Small negative M0

As M0 ↗ 0:

Q0 ∼ 23/2

31/2
|M0|3/2 +

32

9
|M0|3 +

215/2 5

37/2
|M0|9/2 +O(|M0|6) (A.24)
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Zn ∼ 2−8/3(C2 − 1) +
213/3

3
|M0|3 −

213/2 31/2C1

7
|M0|7/2 +O(|M0|6) (A.25)

Qf ∼ 3

8
− 64

9
|M0|3 −

216

35
|M0|6 +O(|M0|9) (A.26)

Zf ∼ π

4
√

3
− 213/2 31/2C1

7
|M0|7/2 +O(|M0|13/2) (A.27)

The values of Zn and Zf for a pure plume (M0 = 0) are given by the leading-

order (constant) terms in the expansions (A.25) and (A.27). The terms of order

|M0|7/2 (and also O(|M0|n+7/2), (n = 1, 2, . . .) ) are local contributions from a region

where Q = O(|M0|3/2) at the start of the integration range in (4.1) and (4.2); i.e.

they represent the effect of the (small) initial momentum flux deficit (relative to

a pure plume), which is felt in a region close to the virtual source. The terms of

order |M0|3n (n = 1, 2, . . .) in (A.25) are global contributions, representing the effect

of decreased entrainment allowing the plume to travel further before reaching the

condition of zero buoyancy; they are exactly cancelled out in (A.27), as the amount

of further entrainment required to bring a plume to rest after reaching the zero-

buoyancy level is less for a lazier plume.

The coincidence of opposing terms of high but close orders (|M0|3 and |M0|7/2) in

(A.25) gives the behaviour seen in figure 5 and more clearly in figure 15, where the

maximum value of Zn occurs at a moderate negative value of M0, but is barely above

the value of Zn for a pure plume.

(c) Small positive M0

As M0 ↘ 0:

Zn ∼ 2−8/3(C2 − 1)− 2M 2
0 −

213/3

3
M 3

0 +
211/2 3C1

7
M

7/2
0 +O(M 5

0 ) (A.28)

Qf ∼ 3

8
+

64

9
M 3

0 −
216

35
M 6

0 +O(M 9
0 ) (A.29)
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Figure 15: Dimensionless height of zero buoyancy, as a function of M0 for small and

moderate negative values of M0. Solid line: numerical integration of (4.1); dashed

line: asymptotic formula (A.25) up to O(|M0|7/2).

Zf ∼ π

4
√

3
− 2M 2

0 +
211/2 3C1

7
M

7/2
0 +O(M 5

0 ) (A.30)

Similar comments apply here as to the case of small negative M0, except that

the local contribution from close to the source now consists of terms at orders M 2
0

and M
2+3n/2
0 , (n = 1, 2, . . .) . The height of zero buoyancy is reduced as a result

of increased entrainment in two ways: by a global contribution (i.e. over the whole

plume up to Z = Zn) at O(M 3
0 ), but more strongly (at O(M 2

0 )) by a contribution from

close to the infinite-temperature virtual source (as distinct from the finite-temperature

source that applies in the case of negative M0). This O(M 2
0 ) reduction also applies to

the maximum rise height Zf , but is overcome at larger values of M0 by the O(M
7/2
0 )

term: figure 16 shows that the local minimum value of Zf is well predicted by the

asymptotic formula up to O(M
7/2
0 ).
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Figure 16: Dimensionless maximum rise height of plume, as a function of M0 for

small and moderate positive values of M0. Solid line: numerical integration of (4.2);

dashed line: asymptotic formula (A.30) up to O(M
7/2
0 ).

(d) Large positive M0

As M0 →∞:

Zn ∼ 1

32
M −1

0 − 7

213 15
M −4

0 +O(M −7
0 ) (A.31)

Qf ∼ M0 +
1

8
+

1

64
M −1

0 +
1

768
M −2

0 +O(M −4
0 ) (A.32)

Zf ∼ 2−1/3C1M0 +
π

12
√

3
+

3

128
M −1

0 +
5C1

228/3 3
M −2

0 +O(M −3
0 ) (A.33)

The integrals in this case only have a global contribution. The integrand decreases

with increasing M0, reflecting the role of entrainment in decreasing the distance trav-

elled for a given temperature decrease; hence the O(M −1
0 ) behaviour of Zn. However,

the upper limit of integration for Zf is Qf which increases with M0 (more cooling

being required to remove a greater momentum flux), so that Zf increases with M0.
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A.3 Lazy rising plumes: minimum width and maximum ve-

locity

Setting dB/dZ = 0 and using equations (3.18), (3.20) and (3.22), we find that lazy

rising plumes have their minimum half-width

Bm = 2Q 2
m

(
8|M0|3 −Q 2

m

)−1/3
(A.34)

where the volume flux takes the value Qm given by

Q 2
m − 2Q 3

m = 4|M0|3 . (A.35)

The minimum half-width is plotted as a function of M0 in figure 17(a).

Setting dW/dZ = 0, noting that W = M/Q and using equations (3.17), (3.18)

and (3.20), lazy rising plumes are found to attain their maximum velocity

WM =

{(
|M0|
2−7/3

)−3/2

− 1

}1/3

(A.36)

where the volume flux takes the value

QM = (2|M0|)3/2 ; (A.37)

(A.36) has been written in a form that emphasises the role of the critical value of M0,

i.e. −2−7/3. The heights Zm and ZM at which minimum width and maximum velocity

occur can be found from integrals similar to (4.1), with Qm and QM respectively

inserted as upper limits of integration; these heights are plotted as functions of M0

in figure 17(b). From the above formulae we obtain that Qm < QM < 1
4

whenever

−2−7/3 < M0 < 0; since vertical distance is a smoothly increasing function of volume

flux, we then have that Zm < ZM < Zn.
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Figure 17: (a) Minimum half-width, and (b) Heights at which minimum half-width

(solid line) and maximum velocity (dashed line) are attained, as functions of M0 for

lazy rising plumes. The vertical dashed line in (a) indicates the critical value of M0.

Figure 17 and equation (A.36) show the singular behaviour in the limit as M0 ↗ 0:

from the virtual source, an infinitesimally lazy plume contracts from infinite to in-

finitesimal width and accelerates from zero to unboundedly large velocity in infinites-

imal distance. This reflects the unphysicality of the virtual source. The behaviour

as M0 → −2−7/3 is possibly easier to understand: in this limit the plume only exists

within an infinitesimal range of Q values around 1
4
, so Qm and QM both approach 1

4
;

Bm →∞ since the plume has infinite width at its source; and the heights Zm and ZM

both approach zero. However, a small deviation from the critical value of M0 leads

to a large decrease in minimum half-width and large increases in Zm and ZM . It is

notable from figure 17(b) that both Zm and ZM increase with increasing laziness (de-

creasing M0) until very close to the critical value −2−7/3 ≈ −0.1984: the maximum

of Zm is when M0 ≈ −0.1961, while the maximum of ZM is when M0 ≈ −0.1919.

Asymptotic formulae for volume flux, height and half-width at the point of mini-

mum width are as follows.
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(a) Small negative M0

As M0 ↗ 0:

Qm ∼ 2|M0|3/2 + 4|M0|3 + 20|M0|9/2 +O(|M0|6) (A.38)

Zm ∼ 21/3|M0|2 + C3 |M0|7/2 +
216/3 41

45
|M0|5 +O(|M0|13/2) (A.39)

where C3 =
210/3 5

21
+

211/2

7
√

3

∫ 3/2

1

t−1/2(t− 1)−1/3 dt ≈ 5.638

Bm ∼ 27/3

(
|M0|2 +

16

3
|M0|7/2 +

368

9
|M0|5 +O(|M0|13/2)

}
(A.40)

Terms at O(|M0|7/2) and above in (A.39) include both global and local contributions,

the latter arising from terms at O(|M0|3) and above in the upper limit of integration

Qm.

(b) M0 close to critical

As M0 ↘ −2−7/3, in terms of the variable Md defined in (A.19):

Qm ∼ 1

4
− 21/3 3Md + 214/3 3M 2

d − 3200M 3
d +O(M 4

d ) (A.41)

Zm ∼ 32/3

(
2−41/18C1M

1/6
d − 2−19/9 13

3
M

2/3
d − 21/18 5

21
C1M

7/6
d

+
220/9 21

5
M

5/3
d +O(M

13/6
d )

)
(A.42)

Bm ∼ 3−1/3

(
2−22/9M

−1/3
d − 226/9

3
M

2/3
d +

229/9 23

9
M

5/3
d +O(M

8/3
d )

)
(A.43)

where C1 is defined in (A.17). Terms at O(M
2/3

d ) and O(M
2/3+n

d ) (n = 1, 2, . . .)

include local contributions arising from terms at O(Md) and above in the upper limit

of integration Qm, with considerably larger coefficients than the global contributions

at the respective orders. In particular, the term −21/3 3Md in the expansion for Qm
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gives rise to a corresponding negative local contribution to Zm at O(M
2/3

d ), 12 times

greater than the global contribution at that order; it is this local contribution which

is responsible for the maximum in Zm occurring at such a small value of Md (i.e. with

M0 close to −2−7/3).

A.4 Strongly forced descending plumes: minimum velocity

Similarly to the case of maximum velocity for lazy rising plumes (Section A.3 above),

we find that the minimum velocity

Wm =

{
1−

(
M0

2−7/3

)−3/2
}1/3

(A.44)

for descending plumes occurs where the volume flux takes the value

QM = (2M0)
3/2 . (A.45)

Since QM > 1
4

for M0 > 2−7/3, the minimum of velocity occurs at a greater depth

below the source than the point of zero buoyancy.

For near-critical forcing, we use the notation

MD = M0 − 2−7/3. (A.46)

The case of forcing just above critical is important because of the effect of low veloc-

ities on the distance travelled by a plume: as M0 ↘ 2−7/3,

Wm ∼ 31/3 24/9M
1/3

D +O(M
4/3

D ) , (A.47)

with the 1
3

power of MD indicating a sharp rise in Wm as M0 increases from the

critical value.
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A.5 Descending plumes: far-field asymptotics

For strongly forced plumes and all cool plumes,

M ∼
(
Q− 1

8
− 1

64
Q−1 +

(
M 3

0

3
− 5

1536

)
Q−2 +O(Q−3)

)
as Q→∞ . (A.48)

As Z →∞,

Q ∼ Z − 1

8
lnZ +O(1) (A.49)

M ∼ Z − 1

8
lnZ +O(1) (A.50)

B ∼ Z − 1

8
lnZ +O(1) (A.51)

W ∼ 1− 1

8
Z−1 − 1

64
Z−2 lnZ +O(Z−2) (A.52)

The O(1) terms in (A.49) – (A.51) and the O(Z−2) term in (A.52) arise from a region

within distance Z ∼ O(1) from the source, and are dependent on the source condition,

i.e. the value of M0. Thus plumes with different degrees of forcing or laziness at their

source will differ in their volume flux, momentum flux and half-width by constant

amounts in the far field.

A.6 Strongly forced descending plumes: depth of zero buoy-

ancy

The notations (A.46), (A.17) and (A.18) are used in the formulae below, which are

again obtained using the methods described in Section A.2.

(a) M0 above, but close to, critical

As M0 ↘ 2−7/3:

Zn ∼ 2−8/3(C2 + 1)− 2−41/1837/6C1M
1/6

D + 2−19/93−1/3M
2/3

D
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+
2−1/3 3

5
MD −

21/1831/6 5

7
C1M

7/6
D +O(M

5/3
D ) (A.53)

The leading-order (constant) term and terms of order M n
D (n = 1, 2, . . .) are global

contributions, while the terms at orders M
1/6

D and M
(1+3n)/6

D (n = 1, 2, . . .) are local

contributions from the region where 1
4
−Q = O(M

1/2
D ) at the end of the integration

range; the latter terms are similar to the expansion (A.21) for Zn for rising plumes with

near-critical forcing (in which all terms are local, since the length of the integration

range approaches zero as M0 → −2−7/3). These local contributions relate to the

distance travelled at low velocity close to the zero-buoyancy point for near-critically

forced plumes.

(b) Large positive M0

As M0 →∞:

Zn ∼
1

32
M −1

0 +
7

213 15
M −4

0 +O(M −7
0 ) (A.54)

Note the similarity to the formula (A.31) for rising plumes; the same comments apply

as in Section A.2(d).

A.7 Warm weakly forced descending plumes: total distance

travelled

We again use the notations (A.46), (A.17) and (A.18).

(a) Small M0

As M0 ↘ 0:

Zf ∼ 2M 2
0 +

211/2 31/2C1

7
M

7/2
0 +O(M 5

0 ) (A.55)

The upper limit of integration in (4.2) is O(M
3/2
0 ) (as given by (A.24)), and the

integrand is O(M
1/2
0 ).
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(b) M0 below, but close to, critical

As M0 ↗ 2−7/3:

Zf ∼ 2−8/3(C2+1)−2−23/18 32/3C1|MD|1/6−2−1/3 3

5
|MD|+

219/18 5C1

31/3 7
|MD|7/6+O(|MD|2)

(A.56)

Note the similarities to the expansion (A.53) for plumes just on the strong side of

critical forcing. The analysis in terms of global and local contributions is similar to

that case, except that the upper limit of integration here is Qf rather than 1/4 (but

with Qf close to 1/4 as given by (A.20)).

A.8 Descending plumes: minimum width

Equations (5.1) and (5.2) give the volume flux Qm and plume half-width Bm at the

neck, and the distance from the virtual source to the neck is

Zm =

∫ Qm

Q0

Q

M
dQ (A.57)

(a) Large negative M0

As M0 → −∞:

Qm ∼ 21/3|M0|+
1

6
+

2−7/3

9
|M0|−1 +

2−8/3

81
|M0|−2 +O(|M0|−4) (A.58)

Zm ∼ 2−4/3(2− C1) |M0|+
1

24
(21/3 + C4(2))

+
19

1152
|M0|−1 +O(|M0|−2) (A.59)

Bm ∼ 22/3|M0|+ 2−5/3 +
1

24
|M0|−1 +O(|M0|−2) (A.60)

where C1 is given by (A.17) and

C4(k) =

∫ k

1

t−2/3(t− 1)−1/3 dt (A.61)
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with C4(2) ≈ 1.2290. There are local contributions to the integral for Zm at O(1) and

higher orders due to the terms in the upper limit of integration Qm at these orders.

(b) Small (positive or negative) M0

As M0 → 0:

Qm ∼ 1

2
− 8M 3

0 − 256M 6
0 +O(M 9

0 ) (A.62)

Zm ∼
(

2−7/3 +
1

8
C4

(
4

3

))
+

220/323

15
M 6

0 +O(M 9
0 ) (A.63)

Bm ∼ 2−1/3 − 214/3

3
M 3

0 −
226/3 5

9
M 6

0 +O(M 9
0 ) (A.64)

with C4(
4
3
) ≈ 0.6662. At O(M 3

0 ) in the integral for Zm there is exact cancellation

between global and local contributions: as M0 increases above zero, the plume tem-

peratures at the source and the neck move towards the temperature of zero buoyancy;

thus buoyancy forces are smaller throughout its trajectory from source to neck, lead-

ing to smaller velocity, less entrainment, and hence an increase in Zm with M0 in the

global contribution; but this is balanced by a decrease in Zm in the local contribution

from the upper limit of integration, due to the neck occurring at a lower value of

volume flux when M0 is greater.

(c) Critically forced plumes

For M0 = Mc:

Qm =
1 +

√
5

8
≈ 0.4045 (A.65)

Zm = 2−13/3
(√

5 + 1
)5/3

+
1

8

∫ (
√

5−1)/3

0

t−2/3(1 + t)−1/3 dt

≈ 0.6219 (A.66)

Bm = 2−10/3(
√

5 + 1)5/3 ≈ 0.7024 (A.67)
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(d) Strongly forced plumes

The above Zm values are measured from finite-temperature sources, so there

is no meaningful comparison with distances from the infinite-temperature sources

for strongly forced plumes. However, the volume flux and width at the neck vary

smoothly through the critical value M0 = 2−7/3. At M0 = 2−2/3/3, the greatest value

of M0 for which a neck exists, we find Qm = 1
3

and Bm = 2
3
, which are the minimum

values of volume flux and half-width at a neck for any descending plumes.
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