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Abstract

Let w(z) be a finite-order meromorphic solution of the second-order difference equation

w(z + 1) + w(z − 1) = R(z, w(z)) (†)

where R(z, w(z)) is rational in w(z) and meromorphic in z. Then either w(z) satisfies a difference
linear or Riccati equation or else equation (†) can be transformed to one of a list of canonical
difference equations. This list consists of all known difference Painleve equation of the form (†),
together with their autonomous versions. This suggests that the existence of finite-order mero-
morphic solutions is a good detector of integrable difference equations.

1. Introduction

A century ago Painlevé [25, 26], Fuchs [10] and Gambier [11] classified a large
class of second order differential equations in terms of a characteristic which is now
known as the Painlevé property. An ordinary differential equation is said to possess
the Painlevé property if all of its solutions are single-valued about all movable
singularities (see, for example, [1].) Painlevé and his colleagues looked at a class

w′′ = F (z, w, w′)

rejecting those equations which did not have the Painlevé property. They singled
out a list of 50 equations out of which there were six which could not be integrated
in terms of known functions. These equations are now known as the Painlevé differ-
ential equations. During the twentieth century it was confirmed by different authors
(and by different methods) that these equations indeed possess the Painlevé prop-
erty [25, 22, 23, 14].

The Painlevé property is a good detector of integrability. For instance, the six
Painlevé differential equations are proven to be integrable by the inverse scattering
techniques based on an associated isomonodromy problem, see, for instance, [3]. It
is widely believed that all ordinary differential equations possessing the Painlevé
property are integrable, although there are examples of equations which are solvable
via an evolving monodromy problem but do not have the Painlevé property [6].

It is clear that when trying to distinguish discrete integrable equations from the
non-integrable ones, a discrete analogue of the Painlevé property would be useful.
Several candidates for the discrete Painlevé property has already been proposed.
Ablowitz, Halburd and Herbst [2] considered discrete equations as delay equations
in the complex plane which allowed them to analyze the equations with methods
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from complex analysis. The equations they consider to be of “Painlevé type” possess
two properties: they are of finite order of growth in the sense of Nevanlinna theory,
and they have no digamma functions in their series expansions. Ablowitz, Halburd
and Herbst looked at, for instance, difference equations of the type

w + w = R(z, w), (1.1)

where R is rational in both of its arguments, and the z-dependence is suppressed by
writing w ≡ w(z), w ≡ w(z+1) and w ≡ w(z−1). They showed that if equation (1.1)
has at least one non-rational finite-order meromorphic solution, then the degree of
R(z, w) in w is less or equal to two. Indeed, a number of equations widely considered
to be of Painlevé type lie within this class of equations. On the other hand, many
equations within the class (1.1) with degw(R) ≤ 2 are generally considered to be
non-integrable.

Also Costin and Kruskal [7] applied complex analytic methods to detect inte-
grability in discrete equations. Their idea of integrability is related to whether the
sequence of iterates of solutions can be imbedded in the complex plane as an ana-
lyzable function.

Another method which has proved to be a good detector of integrability in dis-
crete equations is the singularity confinement test by Grammaticos, Ramani and
Papageorgiou [13]. The basic idea is to choose suitable initial conditions so that
an iterate will become infinite at a certain point. The singularity is said to be con-
fined if the iterates become finite after a certain finite number of steps and still
contain information about the initial conditions. The singularity confinement has
been a successful test. With it many important discrete equations, which are widely
believed to be integrable, have been discovered [29].

However, implementation of the singularity confinement test is not without dif-
ficulty. In particular, how do we decide whether a given singularity sequence is
truly confined and what exactly is the property for which we are testing? Also,
an example of a numerically chaotic discrete equation possessing the singularity
confinement property was found by Hietarinta and Viallet [19]. They suggest that
singularity confinement needs to be augmented by a condition that a sequence of
iterates possesses zero algebraic entropy. This is related to a number of approaches
to the integrability of discrete equations or maps in which one considers the growth
of the degree of the nth iterate as a rational function of the initial conditions [36,
8, 5, 30].

In this paper we consider the equation (1.1) where the coefficients of R(z, w)
have slow growth with respect to a meromorphic solution w in the sense of Nevan-
linna theory. This type of solution is called admissible. For instance, all non-rational
meromorphic solutions of an equation with rational coefficients are admissible. We
show that if (1.1) has one meromorphic solution of finite order, then either w sat-
isfies a difference Riccati equation, or (1.1) must be transformable into a difference
Painlevé or a linear difference equation. This indicates that the existence of a fi-
nite order meromorphic solution of a difference equation is a strong indicator of
integrability of the equation.

An important subcase where equation (1.1) has rational coefficients will be an-
alyzed in [16]. Choosing the subclass of rational coefficients as a starting point
enables us to bypass a large number of technical details which may not be omit-
ted in the analysis of the full case. However, the field of rational functions do not
contain all coefficients of the difference Painlevé equations in their full generality.
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In what follows S(w) denotes the field of small functions with respect to w in
terms of Nevanlinna theory. For example all rational functions are small with respect
to any non-rational meromorphic function. (See (2.4) in Section 2 for the exact
definitions of “admissible” and “small”.)

Theorem 1.1. If equation

w + w = R(z, w), (1.1)

where R(z, w) is rational and irreducible in w and meromorphic in z, has an ad-
missible meromorphic solution of finite order, then either w satisfies a difference
Riccati equation

w =
p w + q

w + p
, (1.2)

where p, q ∈ S(w), or equation (1.1) can be transformed to one of the following
equations:

w + w + w =
π1z + π2

w
+ κ1 (1.3)

w − w + w =
π1z + π2

w
+ (−1)zκ1 (1.4)

w + w =
π1z + π3

w
+ π2 (1.5)

w + w =
π1z + κ1

w
+

π2

w2
(1.6)

w + w =
(π1z + κ1)w + π2

(−1)−z − w2
(1.7)

w + w =
(π1z + κ1)w + π2

1− w2
(1.8)

ww + ww = p (1.9)
w + w = p w + q (1.10)

where πk, κk ∈ S(w) are arbitrary finite-order periodic functions with period k.

Equations (1.3), (1.5) and (1.6) are known discretizations of the differential
Painlevé I equation, while equation (1.8) is often referred to as the difference
Painlevé II. Equation (1.2) is a difference Riccati equation, and (1.10) a linear
difference equation. All of these equations have been studied extensively in the lit-
erature and they are considered to be integrable [12, 9, 27, 28]. Equations (1.4)
and (1.7) are slight variations of (1.3) and (1.8), respectively. They are of “Painlevé
type” since in addition to being singled out by Theorem 1.1 they pass the singu-
larity confinement test. Equation (1.9) is linear in ww and at least its autonomous
form possesses finite-order meromorphic solutions expressed in terms of period two
elliptic functions. Therefore the list of equations (1.2) – (1.10) is complete in the
sense that it contains all known integrable equations of the form (1.1) and no non-
integrable equations.

Although the notion of singularity confinement does not appear in the statement
of Theorem 1.1, we have used ideas related to confinement in its proof. We use
Nevanlinna theory to demonstrate that if generically we cannot associate a certain
number (one or two, depending on the degree of R) of nearby poles of w+w to each
pole of w, then the order of the meromorphic solution w is infinite. Demanding that
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we can always associate enough poles of w + w to each pole of w gives a number of
possible constraints for the coefficients of (1.1) which lead to one of the difference
Painlevé equations. The difference Riccati equation appears when the solution has
a certain degenerate singularity structure.

The singularity patterns of solutions of the chaotic difference equation studied in
[19] are, although confined, not of the type allowed for a finite-order solution.

2. Tools from Nevanlinna theory

Nevanlinna theory is an efficient tool for studying the density of points in the
complex plane at which a meromorphic function takes a prescribed value. It also
provides a natural way to describe the growth of a meromorphic function. In this
section we briefly recall some of the basic definitions and elementary results of
Nevanlinna theory, and give some auxiliary results we need to prove Theorem 1.1.
For a more comprehensive description of Nevanlinna theory we refer to [17].

2.1. Basic definitions and notation

The growth of a meromorphic function is described by the Nevanlinna charac-
teristic T (r, y), which can be understood as an analogue of the logarithm of the
maximum modulus of an entire function. It is defined by

T (r, y) := N(r, y) + m(r, y),

where m(r, y) is the proximity function

m(r, y) :=
1
2π

∫2π

0

log+ |y(reiθ)|dθ, log+ x := max(0, log x),

and N(r, y) is the counting function

N(r, y) :=
∫ r

0

n(t, y)− n(0, y)
t

dt + n(0, y) log r,

where n(r, y) is the number of poles (counting multiplicities) of y in the disc {z :
|z| ≤ r}. The proximity function describes the average “closeness” of y to any poles
on a circle of radius r, while the counting function is a measure of the number of
poles in the disc of radius r centered in the origin. Similarly we may consider the
proximity of y to any finite value a and the number of a-points by denoting

m

(
r,

1
y − a

)
=

1
2π

∫2π

0

log+

∣∣∣∣ 1
y(reiθ)− a

∣∣∣∣ dθ,

and

N

(
r,

1
y − a

)
=

∫ r

0

n
(
t, 1

y−a

)
− n

(
0, 1

y−a

)
t

dt + n

(
0,

1
y − a

)
log r,

where n(r, 1
y−a ) counts a-points (i.e. the points z ∈ C such that y(z) = a) of y,

counting multiplicities, in the disc of radius r centered in the origin.
The characteristic function T (r, y) has many properties which are often useful

in the analysis of meromorphic functions. For example, given two meromorphic
functions y and w, we have

T (r, y + w) ≤ T (r, y) + T (r, w) + log 2 (2.1)
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and

T (r, yw) ≤ T (r, y) + T (r, w). (2.2)

These inequalities hold also for the proximity function and for the counting function,
and they are applied in the proofs below without further mention.

Also, the function T (r, y) is an increasing function of r and a convex increasing
function of log r. This enables to define the order of growth of a meromorphic
function in a natural way as follows:

ρ(y) := lim sup
r−→∞

log T (r, y)
log r

.

We remark that for entire functions ρ(y) is equal to the classical growth order

σ(y) := lim sup
r−→∞

log log M(r, y)
log r

,

where M(r, y) is the maximum modulus of y in the disc of radius r.
One of the deep results in Nevanlinna theory is the First Main Theorem, which

states that

T (r, y) = T

(
r,

1
y − a

)
+ O(1) (2.3)

for all complex numbers a. This implies that if y takes the value a less often than
average so that N(r, 1

y−a ) is relatively small, then the proximity function m(r, 1
y−a )

must be relatively large. And vice versa. Consider the exponential function as an
explicit example. Since ez 6= 0,∞ for all z ∈ C, the counting functions N(r, 1

ez )
and N(r, ez) must be both identically zero. Therefore, by the First Main Theorem,
m(r, 1

ez ) and m(r, ez) must be large, which means that on any large circle there
must be a large part on which ez is close to zero and another large part on which ez

is close to infinity. And certainly the exponential function is very small in most of
the negative half plane Re(z) < 0, and very large in most of the positive half plane
Re(z) > 0. The fact that zero and pole proximity functions are indeed large can be
verified by a direct computation, which results in T (r, ez) = m(r, ez) = m(r, 1

ez ) =
r/π.

A quantity which is of the growth o(T (r, y)) as r →∞ outside of a set with finite
logarithmic measure is denoted by S(r, y). Then

S(y) := {w meromorphic : T (r, w) = S(r, y)} (2.4)

is a field with respect to the usual addition and multiplication. In other words, a
meromorphic function g is in S(y) if

lim
r→∞

T (r, g)
T (r, y)

= 0

where r runs to infinity anywhere outside of a set E satisfying
∫

E
dt
t < ∞. The field

S(y) is often referred to as the field of small functions with respect to y. A non-
rational meromorphic solution y of a difference (or differential) equation is called
admissible if all coefficients of the equation are in S(y). For example, if a difference
equation has only rational coefficients then all non-rational meromorphic solutions
are admissible. This is due to the fact that a meromorphic function y is rational
if and only if T (r, y) = O(log r). We often omit the expression “with respect to y”
when we talk about small functions with respect to an admissible solution of (1.1).
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When applying Nevanlinna theory to consider differential and functional equa-
tions an identity due to Valiron [35] and Mohon’ko [24] has proved to be useful.
It states that given a function R(z, y) which is rational and irreducible in y and
meromorphic in z, we have

T (r, R(z, y)) = degy(R)T (r, y) + S(r, y) (2.5)

whenever all coefficients of R(z, y) are small compared to y. For the proof see
also [21].

In what follows we often say that there are S(r, y) points zj with a certain
property. By this we mean that the integrated counting function N(r, · ) measuring
the points with the property in question is at most of the growth S(r, y). We also
use the expressions like: “There are more than S(r, y) points such that...” This
means in precise terms that

lim sup
r→∞

N(r, · )
T (r, y)

= c > 0,

where c ∈ R+ ∪ {+∞}, and r runs to infinity in a set with infinite logarithmic
measure. For instance, if a meromorphic function g has more than S(r, y) poles,
then g 6∈ S(y).

On several occasions we will encounter inequalities of the type

n(r, · ) ≤ α n(r + k, y) + S′(r, y), (2.6)

where by S′(r, y) we mean a quantity which is at most of the growth S(r, y) after
a logarithmic integration. In exact terms, the quantity on the right side of (2.6) is
α n(r + k, y) + ñ(r) where ñ(r) is a piecewise continuous increasing function of r
such that

Ñ(r) :=
∫ r

0

ñ(t)− ñ(0)
t

dt + ñ(0) log r = S(r, y).

In other words, the (integrated) counting function Ñ(r) counting the number of
exceptional points in (2.6) is small with respect to y.

While we only consider meromorphic solutions of difference equations in this pa-
per, we sometimes end up in a situation where the coefficients of a considered equa-
tion may have some finite sheeted branching. The classical version of Nevanlinna
theory we introduced earlier in this section deals only with meromorphic functions,
and so it is unable to handle this kind of situations. However, there is a version of
the theory introduced by Selberg [31, 32, 33], Ullrich [34] and Valiron [35] called
the algebroid Nevanlinna theory which studies meromorphic functions on a finite
sheeted Riemann surface. Such functions are called algebroid and they are allowed
to have isolated branch points with finite branching. To make the proof of Theo-
rem 1.1 watertight we have to assume that whenever the coefficients of a difference
equation may have branching, T (r, · ) denotes the Nevanlinna characteristic of a 2-
sheeted algebroid function. Since all branched functions we consider are small with
respect to the meromorphic solution of (1.1), the change in notation only effects
the error term which needs to be redefined in terms of the algebroid characteristic.
The “algebroid error term” will still be denoted by S(r, · ) and it remains small
with respect to the meromorphic solution of (1.1). An interested reader may refer,
for instance, to [20] for more details on algebroid Nevanlinna theory. Also, in the
special case when the coefficients of (1.1) are rational in the first place, algebroid
Nevanlinna theory is not required [16].
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2.2. Nevanlinna theory and difference equations

Assume that w is an admissible meromorphic solution of (1.1). In other words,
the coefficients of (1.1) are all small with respect to w, and in particular they are in
the field S(w). Following the reasoning used by Yanagihara [37] and by Ablowitz,
Halburd and Herbst [2], which combines the Valiron-Mohon’ko identity (2.5) and
the fact that

T (r, w(z ± 1)) ≤ (1 + ε)T (r + 1, w) + O(1)

holds for ε > 0 when r is sufficiently large, see [37], we have

T (r, w) ≤ degw(R)
2(1 + ε)

T (r + 1, w) + S(r, w).

If the degree of R(z, w) with respect to w is at least three, there is an α < 1 such
that

T (r, w) ≤ αT (r + 1, w) (2.7)

outside of a possible set E of r-values with finite logarithmic measure. Intuitively
speaking the iteration of (2.7) gives T (r + j, w) ≥ (1/α)jT (r, w) which seems to
imply that w is of infinite order by letting j →∞ similarly as in [2]. However, we
need to be very careful here due to the exceptional set E. Namely, if r + j ∈ E for
any j ∈ N then the iteration process is terminated after a finite number of steps,
and no conclusion about the order of w can be made by this argument.

Nevertheless it turns out that it is sufficient that (2.7) holds in a set R+ \E with
infinite logarithmic measure, as the following lemma shows. In its proof we show
that (2.7) implies that w is of infinite order by a careful choice of a sequence (rn) in
R+ \ E. We conclude that if (1.1) has a meromorphic solution of finite order then
degw(R) ≤ 2. The rest of the proof of Theorem 1.1 can be found in Section 3.

Lemma 2.1. Let f be a non-constant meromorphic function, s > 0, α < 1, and
let F ⊂ R+ be the set of all r such that

T (r, f) ≤ αT (r + s, f). (2.8)

If the logarithmic measure of F is infinite, that is,
∫

F
dt
t = ∞, then f is of infinite

order of growth.

Proof. Suppose that
∫

F
dt
t = ∞. By the definition (2.8) the set F is closed and

so it has a smallest element. We define a sequence (rn) ⊂ F inductively as follows:
(i) Let r0 be the smallest element of F and choose the smallest possible r1 ≥

r0 + s such that r1 ∈ F .
(ii) Assume that rk ∈ F and rk − rk−1 ≥ s for all k = 1, . . . , n.
(iii) Choose the smallest possible rn+1 ≥ rn + s such that rn+1 ∈ F .

Then (rn) satisfies rn+1 − rn ≥ s for all n ∈ N, and moreover

F ⊂
∞⋃

n=0

[rn, rn + s]

and
T (rn, f) ≤ αT (rn+1, f) (2.9)

for all n ∈ N.
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We show next that (rn) has a subsequence (rnk
) such that rnk

≤ n2
k for all k ∈ N.

To this end, assume conversely that rn ≥ n2 for all rn ≥ m, where m is a sufficiently
large constant. This implies that∫

F

dt

t
≤

∞∑
n=0

∫ rn+s

rn

dt

t

≤
∫m

1

dt

t
+

∞∑
n=1

∫n2+s

n2

dt

t

= log m + log
∞∏

n=1

(
1 +

s

n2

)
= log m + log(sinh(

√
sπ))− 1

2
log s− log π < ∞,

which is a contradiction since F was assumed to be of infinite logarithmic measure.
Therefore there is (rnk

) such that rnk
≤ n2

k for all k ∈ N. By iterating (2.9) we then
have

T (rn, f) ≥ 1
αn

T (r0, f)

for all n ∈ N. In particular,

T (rnk
, f) ≥ 1

αnk
T (r0, f)

for all k ∈ N , and so

ρ(y) ≥ lim sup
k→∞

log T (rnk
, f)

log rnk

≥ lim sup
k→∞

nk log(1/α) + log T (r0, f)
log rnk

≥ lim sup
k→∞

nk log(1/α) + log T (r0, f)
2 log nk

= ∞

since rnk
≤ n2

k for all k ∈ N.

In the remainder of this subsection we state a number of recent results on dif-
ference equations and Nevanlinna theory [15]. They are concerned with functions
which are polynomials in f(z+cj), where cj ∈ C, with coefficients in the field S(f).
Such functions are called difference polynomials in f(z). We also denote

|c| := max{|cj |}.

The first result is an analogue of the Lemma on the Logarithmic Derivative.

Theorem 2.2. Let f be a non-constant meromorphic function of finite order,
c ∈ C and µ < 1. Then

m

(
r,

f(z + c)
f(z)

)
= o

(
T (r + |c|, f)

rµ

)
for all r outside of a possible exceptional set with finite logarithmic measure.

The second auxiliary result is about meromorphic solutions of non-linear differ-
ence equations.
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Theorem 2.3. Let f(z) be a non-constant finite-order meromorphic solution
of

f(z)nP (z, f) = Q(z, f),

where P (z, f) and Q(z, f) are difference polynomials in f(z), and let µ < 1. If the
degree of Q(z, f) as a polynomial in f(z) and its shifts is at most n, then

m
(
r, P (z, f)

)
= o

(
T (r + |c|, f)

rµ

)
+ o(T (r, f)) (2.10)

for all r outside of a possible exceptional set with finite logarithmic measure.

The final auxiliary result is a difference analogue on a result due to Mohon’ko on
algebraic differential equations.

Theorem 2.4. Let f(z) be a non-constant finite-order meromorphic solution
of

P (z, f) = 0

where P (z, f) is difference polynomial in f(z), and let µ < 1. If P (z, a) 6≡ 0 for a
meromorphic function a ∈ S(f), then

m

(
r,

1
f − a

)
= o

(
T (r + |c|, f)

rµ

)
+ o(T (r, f))

for all r outside of a possible exceptional set with finite logarithmic measure.

2.3. The counting function and the order of solutions

We conclude this section with a theorem on the order of meromorphic solutions
of certain difference equations within the class (1.1). It will be frequently applied
in the proof of Theorem 1.1 in Section 3.

Theorem 2.5. Let w be an admissible meromorphic solution of one of the
equations

w + σw =
c2w

2 + c1w + c0

w2 + aw + b
(2.11)

w + w − c2w =
c1w + c0

w
(2.12)

where the right sides are irreducible, σ := ±1, and all coefficients cj, a and b are
in S(w). If w satisfies (2.11) and there exist k ≥ 1 and α < 2 such that

n(r, w + σw) ≤ α n(r + k,w) + S′(r, w), (2.13)

then w is of infinite order of growth. Similarly, if w satisfies (2.12) and there exist
k ≥ 1 and α < 1 such that

n(r, w + w − c2w) ≤ α n(r + k,w) + S′(r, w), (2.14)

then w is of infinite order of growth.
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Proof. Assume first that w is a solution of (2.11). By integrating (2.13) we
obtain

N(r, w + σw) ≤ α

∫ r+k

r0

t

t− k

n(t, w)
t

dt + S(r, w)

≤ α(1 + ε) N(r + k, w) + S(r, w),
(2.15)

where ε > 0 is chosen so that α̃ := α(1 + ε) < 2 and r0 is a sufficiently large
constant. By the Valiron-Mo’honko theorem (2.5), we have

2T (r, w) = T (r, w + σw) + S(r, w)
= N(r, w + σw) + m(r, w + σw) + S(r, w).

Therefore, by (2.15) and by Theorem 2.3 where we have chosen P (z, w) = w + σw
and Q(z, w) = c2w

2 + c1w + c0 − (aw + b)(w + σw), we obtain

2T (r, w) ≤ α̃N(r + k, w) + o

(
T (r + 1, w)

rµ

)
+ S(r, w),

outside a set E of finite logarithmic measure, where µ < 1. Hence

T (r, w) ≤
(

α̃

2
+ ε

)
T (r + k,w)

holds for any ε > 0 in a set with infinite logarithmic measure. The assertion follows
by choosing ε such that α̃

2 + ε < 1 and applying Lemma 2.1.
Suppose now that w satisfies (2.12). By integrating (2.14) we obtain

N(r, w + w − c2w) ≤ α(1 + ε) N(r + k, w) + S(r, w), (2.16)

where ε > 0 is chosen so that α̃ := α(1 + ε) < 1. By (2.5), we obtain

T (r, w) = N(r, w + w − c2w) + m(r, w + w − c2w) + S(r, w).

Therefore, by (2.16) and applying Theorem 2.3 with P (z, w) = w + w − c2w and
Q(z, w) = c1w + c0, we have

T (r, w) ≤ (α̃ + ε) T (r + k,w)

where ε > 0 and r is in a set with infinite logarithmic measure. The assertion follows
by choosing ε such that α̃ + ε < 1 and applying Lemma 2.1.

3. Analysis of solutions near singularities

In Section 2.2 we showed that if equation (1.1) has an admissible meromorphic
solution of finite order, then degw(R) ≤ 2. In this section we complete the proof of
Theorem 1.1 by a careful consideration of a number of subcases depending on the
exact form of R(z, w).

Since we allow the coefficients of (1.1) to be non-rational meromorphic functions,
they may in general have infinitely many zeros and poles. Therefore, even though we
demand that all coefficients of (1.1) are small compared to a meromorphic solution
w with a large number of poles, counting multiplicities, it may happen that w has in
fact fewer poles than some of the coefficients if we ignore multiplicities. In particular,
this means there might not be a point z0 such that w(z0) = ∞ and no coefficient
of (1.1) has a pole or zero at z0. However, at most points the multiplicity of a pole
of w is much greater than the multiplicities of poles and zeros of the coefficients,
which is enough for our purposes.
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Notation: In what follows we use the notation D(z0, τ) to denote an open disc
of radius τ centered at z0 ∈ C. Also, ∞k denotes a pole of w with multiplicity k.
Similarly, 0k and a + 0k denote a zero and an a-point of w, respectively, with the
multiplicity k. For instance, w(z0) = a + 0k is a short notation for

w(z) = a + c0(z − z0)k + O
(
(z − z0)k+1

)
for all z ∈ D(z0, τ0), where c0 6= 0 and τ0 is a sufficiently small constant.

Lemma 3.1. Let w be a meromorphic function with more than S(r, w) poles,
and let functions ai, i = 1, . . . , n, be meromorphic and small with respect to w. Let

mj := max
i=1,...,n

{li ∈ N : ai(zj) = 0li or ai(zj) = ∞li}

be the maximal order of zeros and poles of the functions ai at zj. Then for any
ε > 0 there are at most S(r, w) points zj such that

w(zj) = ∞kj (3.1)

where mj ≥ εkj.

Proof. Assume on the contrary that there are more than S(r, w) points zj such
that (3.1) holds and mj ≥ εkj . Let Nzj

(r, w) denote the counting function for those
poles of w which are in the set {zj}, and let NΣ(r, ai) be the counting function for
the poles and zeros of all ai. Then by assumption

lim sup
r→∞

NΣ(r, ai)
T (r, w)

≥ lim sup
r→∞

εNzj (r, w)
T (r, w)

> 0,

where r runs to infinity in a set with infinite logarithmic measure. This implies
that at least one of the functions ai has more than S(r, w) poles or zeros, which
contradicts the fact that all ai are small with respect to w. We conclude that
Nzj

(r, w) = S(r, w).

For instance, the gamma function Γ(z) has a simple pole at each of the points
{−n + 1 : n ∈ N}, and the order of growth of Γ is one. We may construct a
meromorphic function G which has a pole of order n2 at the points {−n2 : n ∈ N}
[17]. Then the order of G is at least three, and so Γ is small with respect to G.
Also, G has much fewer poles than Γ when we ignore multiplicities, and in particular
there are no points where G has a pole and Γ does not. However, G has much more
poles than Γ when we take the multiplicities into account.

In an attempt to make the somewhat awkward notation involved in dealing with
this issue more readable, we have made the following division. Whenever a small
quantity arises from reasoning related to Lemma 3.1, we use the notation ε > 0,
rather than the usual ε > 0. Note that if the multiplicities of the poles of a solution
w of (1.1) have a uniform upper bound, or if the coefficients have only finitely many
zeros and poles, then each ε in the below reasoning may be replaced by zero. In
the treatment of (1.1) with rational coefficients [16] the technicalities with ε are
avoided.



12 r. g. halburd and r. j. korhonen

3.1. The Difference Painlevé II Equation

Assume that the denominator of R(z, w) has exactly two distinct roots, which
implies that the degree of R(z, w) is also two. Then equation (1.1) takes the form

w + w =
u2w

2 + u1w + u0

w2 + aw + b
, (3.2)

where the coefficients of the right side belong to S(w), and a2 6≡ 4b. The transfor-
mation w → w − a/2 takes (3.2) into the form

w + w =
c2w

2 + c1w + c0

w2 − p2
=:

P (z, w)
Q(z, w)

, (3.3)

where the coefficients cj are in S(w) and p2 = a2/4 − b 6≡ 0. Theorem 2.5 states
that if

n(r, w + w) ≤ α n(r + k,w) + S′(r, w) (3.4)

for α < 2, k ≥ 1 and for all r sufficiently large, then w is of infinite order. (Recall
the exact definition of S′(r, w) from Section 2.1.) Roughly speaking this means that
to avoid infinite order of w, we need to ensure that for most poles of w there are
two nearby points (counting multiplicities) where w(z) = ±p(z).

Assume first that a meromorphic solution of equation (3.3) has at most S(r, w)
poles. Then Valiron-Mohon’ko identity (2.5), Theorem 2.3 and equation (3.3) yield

2T (r, w) = T (r, w + w) + S(r, w)
≤ 2N(r + 1, w) + m(r, w + w) + S(r, w)

= o

(
T (r + 1, w)

rµ

)
+ S(r + 1, w),

(3.5)

where µ < 1 and r lies outside of an exceptional set E with finite logarithmic
measure. Therefore

T (r, w) ≤ εT (r + 1, w),

where 0 < ε < 1, holds in a set with infinite logarithmic measure. Hence w is of
infinite order by Lemma 2.1, which is a contradiction. We conclude that w has more
than S(r, w) poles. Therefore also w + w has more than S(r, w) poles (which are
the ±p(z) -points of w) since otherwise (2.13) holds with any α > 0 and w would
be of infinite order by Theorem 2.5.

We have shown that both w and w+w have more than S(r, w) poles. In addition,
the number of points z′ where Q(z′, w(z′)) = P (z′, w(z′)) = 0 is at most S(r, w),
since otherwise it would follow that c2p

2 ± c1p + c0 = 0, which is impossible due
to irreducibility of R(z, w). Also, since the coefficients of R(z, w) are in S(w), they
have altogether at most S(r, w) poles. Hence there are more than S(r, w) points zj

such that Q(zj−1, w(zj−1)) = 0 and w has a pole at either zj or zj−2. We assume,
without loss of generality, that w(zj) = ∞. Moreover, denoting the multiplicity of
Q(zj −1, w(zj −1)) = 0 by kj , Lemma 3.1 implies that there are more than S(r, w)
points such that the multiplicity of w(zj) = ∞ is at least (1−ε)kj for an arbitrarily
small ε ≥ 0. If for all but S(r, w) many such zj we have Q(zj + 1, w(zj + 1)) = 0
with the multiplicity less than 1

3kj (this includes the case Q(zj + 1, w(zj + 1)) 6= 0)
then there are more than S(r, w) poles of w + w at zj ± 1 with multiplicities kj

and < 1
3kj , respectively, which can be associated with the pole of w at zj with

multiplicity at least (1 − ε)kj , and only S(r, w) poles of w + w which cannot be
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associated to a pole of w in this way. Therefore inequality (3.4) is satisfied with
α = 4

3 + 2ε/(1− ε), and so Theorem 2.5 implies that w is of infinite order.
Recall that D(z0, τ) denotes the open disc of radius τ centered at z0 ∈ C. Since

we assumed that w is of finite order, there must be more than S(r, w) points zj

such that w(zj) = ∞ with multiplicity kj and

Q(z ± 1, w(z ± 1)) = O
(
(z − zj)

1
3 kj

)
(3.6)

for both choices of the ± sign and for all z ∈ D(zj , τj) with sufficiently small
constants τj . Then by equation (3.3) and Lemma 3.1 there are more than S(r, w)
points zj for an arbitrarily small ε ≥ 0 such that

w(z + 1) + w(z − 1) = c2(z) + O
(
(z − zj)(1−ε)kj

)
for all z ∈ D(zj , τj) where τj is small enough. Hence, by taking (3.6) into account,
we obtain

(c2(z)− w(z − 1))2 = p(z + 1)2 + O
(
(z − zj)

1
3 kj

)
(3.7)

for all z ∈ D(zj , τj). Since also

w(z − 1)2 = p(z − 1)2 + O
(
(z − zj)

1
3 kj

)
, (3.8)

we obtain

2c2(z)w(z − 1) + p(z + 1)2 − p(z − 1)2 − c2(z)2 = O
(
(z − zj)

1
3 kj

)
(3.9)

for all z ∈ D(zj , τj) at more than S(r, w) points zj .
We now consider two cases depending on whether or not c2 is identically zero. If

c2 ≡ 0 then equation (3.9) yields

p(z − 1)2 − p(z + 1)2 = h(z), (3.10)

where h is a small meromorphic function with respect to w such that

h(z) = O
(
(z − zj)

1
3 kj

)
for all z ∈ D(zj , τj) at more than S(r, w) points zj . Hence h has more than S(r, w)
zeros counting multiplicities, which implies that h ≡ 0 since T (r, h) = S(r, w). We
conclude that

p(z − 1)2 − p(z + 1)2 = 0. (3.11)

In other words p(z)2 6≡ 0 is an arbitrary finite order periodic function with period
two. Therefore, by making the transformation w → p w, equation (3.3) takes the
form

w + σw =
a1w + a0

1− w2
, (3.12)

where σ := ±1, and a0, a1 are small functions compared to w depending on p and
on the coefficients cj . One should keep in mind that the coefficients aj may, at least
in principle, have some square root type branching. An explanation of how to deal
with branched coefficients was given in Section 2.1.

The dependence between the multiplicity of the pole of w at the points zj and
the multiplicity of zeros of h in (3.10) is important. If no information about the
multiplicities of the zeros of h would be available we could not rule out the possibility
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that N(r, 1
h ) = N̄(r, 1

h ) = S(r, w) in the case when w has more than S(r, w) poles
at points zj counting multiplicities, but only S(r, w) poles ignoring multiplicities.

We continue by a closer analysis of the singularity structure of meromorphic
solutions of (3.12). (Recall the notation used below in (3.14) from the beginning of
Section 3.)

Lemma 3.2. Let w be an admissible meromorphic solution of equation (3.12).
Then either,

n(r, w + σw) ≤
(

8
5

+ ε

)
n(r + 1, w) + S′(r, w) (3.13)

for any ε > 0, or there are more than S(r, w) points zj such that

w(zj − 2) = ∞lj , w(zj − 1) = δ + 0kj , w(zj) = ∞kj ,

w(zj + 1) = −σδ + 0kj , w(zj + 2) = ∞mj ,
(3.14)

where δ = ±1, and lj and mj are strictly less than 3
4kj.

Proof. By Lemma 3.1, given ε > 0, there are at most S(r, w) points zj where
w(zj)2 = 1 with the multiplicity kj , but where w +σw has a pole with order higher
than (1 + ε)kj . We include all such points in the error term, and in what follows
consider the rest of the δ-points of w.

We will next associate each δ-point of w with a certain number of nearby poles
of w. To this end, we look at sequences of iterates(

w(zj + n)
)m
n=l

l,m ∈ Z ∪ {±∞}

of (3.12) consisting of poles and δ-points of w such that all iterates within a sequence
have the same constant multiplicity. If the multiplicity of w(zj +n) is different than
the multiplicity of w(zj +n+1) we say that the iterates w(zj +n) and w(zj +n+1)
are in different sequences. For example, the iterates w(zj − 1), w(zj) and w(zj + 1)
in (3.14) are in a same sequence, but w(zj + 1) and w(zj + 2) are not. We will
systematically go through all different possible types of sequences containing δ-
points of w.

Consider first a sequence with only one iterate, say w(zj). By assumption w(zj) =
δ + 0kj for some kj ∈ N. From (3.12) it follows that either w(zj − 1) = ∞ or
w(zj +1) = ∞. Since the sequence contains only one iterate w(zj), the multiplicity
of the neighboring pole is not equal to the multiplicity of the δ-point at zj . The
only way this is possible without contradicting (3.12) is when w(zj − 1) = ∞lj and
w(zj + 1) = ∞lj where lj > kj . Then by (3.12) we have w(zj ± 2) = −σδ + 0kj and
w(zj±3) = ∞lj . Hence any δ-point of w in a length one sequence can be associated
with at most one pole of w, with the possible exception of at most S(r, w) points
where certain coefficients of (3.12) have zeros or poles.

By iteration of (3.12) we see that poles and δ-points of w alternate in each
sequence which consists of two or more iterates. Therefore, in a sequence with n
δ-points of w there are n − 1, n or n + 1 points where w has a pole. If a sequence
consists of even number of iterates, then exactly half of them are poles of w and
the other half are δ-points of w. Therefore those δ-points of w which are part of a
sequence with even or infinite length can be associated with exactly one pole of w.

For a sequence with an odd number of iterates, say j, the number of δ-points of
w is at most (j + 1)/2, and the number of poles of w at least (j − 1)/2. Therefore
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the number of δ-points of w divided by the number of poles w within the sequence
is at most

j + 1
j − 1

≤ 3
2

when j is at least five. If j = 3 there are two possibilities: the sequence can have
either one or two δ-points of w. In the former case the ratio is 1/2, and the latter
case is (3.14).

It remains to be shown that either there are more than S(r, w) points zj such
that (3.14) holds with the multiplicities lj and mj strictly less than 3

4kj , or (3.13) is
true. Assume that mj ≥ 3

4kj . Within the five points in (3.14) there is one complete
sequence consisting the points w(zj), w(zj±1), and two starting points w(zj±2) of
other sequences. The sequence starting from w(zj + 2) = ∞mj ends (at least from
one end) to a pole. The number of δ-points of w divided by the number of poles
of w within such sequence is at most one. We “remove” one third (worth mj/3) of
the iterate w(zj + 2) = ∞mj from its original sequence and associate it with the
three central points of (3.14) instead. The pole and δ-point ratio in the remaining
part of the sequence containing w(zj + 2) is at most 3/2 even if the removal has
to be done from both of its ends. Since we assumed mj ≥ 3

4kj and the sequence
consisting of the three central points in (3.14) contains exactly kj poles of w and
2kj δ-points of w, the combined pole and δ-point ratio for the middle sequence in
(3.14) and the extra third of a point (with the multiplicity at least 1

4kj) is at most
8/5. If also lj ≥ 3

4kj we may similarly attach a third of a point from the other end
into (3.14). In this case the combined pole and δ-point ratio is at most 4/3. We
illustrate the situation in Table 1.

Table 1. The multiplicities lj and mj in (3.14). The values of w which are to be grouped
together are marked by “∗”. The notation “†” means that only a third of the multiplicity

of the point is associated with the other points in the group.

lj , mj < 3
4
kj ∞lj δ + 0kj ∞kj −σδ + 0kj ∞kj (3.14)

lj < 3
4
kj , mj ≥ 3

4
kj ∞lj δ + 0kj∗ ∞kj∗ −σδ + 0kj∗ ∞mj† ratio ≤ 8/5

lj ≥ 3
4
kj , mj < 3

4
kj ∞lj† δ + 0kj∗ ∞kj∗ −σδ + 0kj∗ ∞mj ratio ≤ 8/5

lj , mj ≥ 3
4
kj ∞lj† δ + 0kj∗ ∞kj∗ −σδ + 0kj∗ ∞mj† ratio ≤ 4/3

We have shown that the only type of sequence where each δ-points of w cannot
be associated with at most 8/5 poles of w is of the type (3.14). Therefore, if the
number of δ-points of w which are part of a (3.14) is at most S(r, w), we have the
inequality (3.13) by Lemma 3.1.

We now return back to the proof of Theorem 1.1. By manipulating equation
(3.12), we obtain

(1− w2)(w − w) = a0 + a1w − σ(a0 + a1w)

− (w + σw)

[
2w(a0 + a1w)

1− w2
− σ

(
a0 + a1w

1− w2

)2
]

.
(3.15)

If inequality (3.13) holds the meromorphic solution w of (3.12) is of infinite order
by Theorem 2.5. On the other hand, if (3.14) is true for more than S(r, w) points



16 r. g. halburd and r. j. korhonen

zj , we have by (3.15)

σa1(zj + 1)− 2a1(zj) + σa1(zj − 1)− δ [a0(zj + 1)− σa0(zj − 1)] = 0, (3.16)

where δ = ±1. Also, if the multiplicity of the pole of w at zj is kj , then (3.16) holds
with the multiplicity at least 1

4kj . Hence also (3.16) holds at more than S(r, w)
points. Since T (r, aj) = S(r, w) for j = 0, 1 by assumption, it follows that (3.16)
holds for all z, so that

σa1(z + 1)− 2a1(z) + σa1(z − 1)− δ [a0(z + 1)− σa0(z − 1)] = 0. (3.17)

Equation (3.12) with σ = −1

Denote by nfin(r, w) the counting function for those poles of w which are one
of the three middle iterates of a sequence of the type (3.14), and by ninf (r, w) the
counting function for the rest of the poles of w. From the proof of Lemma 3.2 it
can be seen that

ninf (r, w + σw) ≤
(

8
5

+
ε

2

)
ninf (r + 1, w) + S′(r, w)

for any ε > 0, and so by integrating, we obtain

Ninf (r, w + σw) ≤
(

8
5

+ ε

)
Ninf (r + 1, w) + S(r, w). (3.18)

Assuming that σ = −1, sequence (3.14) becomes

(∞lj , δ + 0kj ,∞kj , δ + 0kj ,∞kj) (3.19)

where lj ,mj < 3
4kj . Suppose that there are more than S(r, w) δ-points of w which

are not part of a sequence (3.19). Then by (3.18) there is a constant c > 0 and a
set F with infinite logarithmic measure such that

Ninf (r + 1, w)
T (r, w)

≥ c (3.20)

for all r ∈ F . By Theorem 2.3, the Valiron-Mohon’ko identity (2.5), and inequalities
(3.18) and (3.20), we have

2T (r, w) = T (r, w − w) + S(r, w)
= m(r, w − w) + N(r, w − w) + S(r, w)

≤ 2Nfin(r + 1, w) +
(

8
5

+ ε

)
Ninf (r + 1, w) + S(r + 1, w)

≤ 2N(r + 1, w)−
(

2
5
− ε

)
Ninf (r + 1, w) + S(r + 1, w)

≤ 2T (r + 1, w)− c

(
2
5
− ε

)
T (r, w) + S(r + 1, w)

for all r ∈ F . Hence,

T (r, w) ≤

(
2

2 + c
(

2
5 − ε

) + ε

)
T (r + 1, w)

holds in a set with infinite logarithmic measure. Therefore w is of infinite order
by Lemma 2.1. So if w is of finite order then almost all δ-points of w belong to a
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sequence of the type (3.19). More precisely, the number of δ-points which are not
part of (3.19) is at most S(r, w).

Since a0 6≡ ±a1 due to the irreducibility of the right side of (3.12), Theorem 2.4
yields

N

(
r,

1
w − 1

)
= T (r, w) + S(r + 1, w) (3.21)

and

N

(
r,

1
w + 1

)
= T (r, w) + S(r + 1, w). (3.22)

If N(r, 1
w±1 ) = S(r, w) it follows by (3.21) or (3.22) that T (r, w) = S(r + 1, w). In

this case w is of infinite order by Lemma 2.1. Therefore w has more than S(r, w)
δ-points for both choices of δ = ±1. Since all except possibly at most S(r, w)-many
δ-points of w are in a sequence of the type (3.19) we conclude that (3.19) holds for
more than S(r, w) points for δ = 1 and δ = −1. Thus also equation (3.17) holds
with both choices of δ = ±1. Hence,

a1(z + 1) + 2a1(z) + a1(z − 1) = 0

and

a0(z + 1) + a0(z − 1) = 0.

By solving these equations we obtain a1(z) = (λz + µ)(−1)z and a0(z) = ν iz +
γ(−i)z where λ, µ, ν, γ ∈ S(w) are arbitrary finite order periodic functions with
period one. Therefore, (3.12) becomes

w − w =
(λz + µ)(−1)zw + ν iz + γ(−i)z

1− w2
. (3.23)

By the transformation w → izw equation (3.23) takes the form (1.7).

Equation (3.12) with σ = 1

We will now look at the case σ = 1. If (3.14) holds for both choices of δ = ±1
for more than S(r, w) points, then so does (3.17). In this case (3.17) can be solved
to obtain a1(z) = π1z + κ1 and a0(z) = π2, where πk and κk are arbitrary small
periodic functions of finite order with period k. Therefore equation (3.12) reduces
to the difference Painlevé II equation (1.8). In Section 3.2 we will show that the
case where (3.14) holds for only one choice of ±1, with the possible exception of
S(r, w) points, leads to a difference Riccati equation.

Equation (3.3) with c2 6≡ 0

Let us now return back to relation (3.9). If c2 6≡ 0 then by (3.8) and (3.9), we
have

c2(z)4 − 2
(
p(z + 1)2 + p(z − 1)2

)
c2(z)2 +

(
p(z + 1)2 − p(z − 1)2

)2 = 0,

which can be solved for c2 to obtain

c2(z) = ±(p(z + 1)± p(z − 1)), (3.24)

where p(z) is meromorphic on a suitable Riemann surface (recall from (3.3) that p =√
a2/4− b where a and b are small meromorphic functions.) Since c2 is meromorphic
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by assumption, the right side of (3.24) cannot have any branching, although p can.
Equation (3.3) takes the form

w + w =
(σ1p + σ2p)w2 + c1w + c0

w2 − p2
, (3.25)

where σ2
j = 1 for j = 1, 2. This equation will also lead to a difference Riccati

equation, and it will be dealt with in Section 3.2.

3.2. Difference Riccati Equation

In the previous section we considered equation (1.1) in the case when the de-
nominator of R(z, w) has two distinct roots. In this section we finish this case by
showing that in all remaining subcases which were not dealt with in Section 3.1 the
meromorphic solution w of (3.3) satisfies a difference Riccati equation.

Equation (3.12)

In Section 3.1 we have shown that if w has more than S(r, w) singularities of the
two types (∞lj , 1+0kj ,∞kj ,−1+0kj ,∞mj) and (∞lj ,−1+0kj ,∞kj , 1+0kj ,∞mj),
the equation (3.12) reduces into the difference Painlevé II equation (1.8). If there
are only S(r, w) singularities of the types (3.14) altogether, then w is of infinite
order by Lemma 3.2. For equation (3.12), the only remaining case to be considered
is the one where w has more than S(r, w) singularities of only one type, say (∞lj , 1+
0kj ,∞kj ,−1 + 0kj ,∞mj), and at most S(r, w) of the other type. (The reasoning in
the case where there are more than S(r, w) singularities of the other type is almost
identical to the following one, and will not be repeated.) By making a substitution

U = (w − 1)(w + 1), (3.26)

we have

(U + U + a1)w = U − U − a0. (3.27)

Note that for the three middle points in the sequence (∞lj , 1 + 0kj ,∞kj ,−1 +
0kj ,∞mj) the function U is finite and non-zero. The possible poles and zeros of U
arise from the S(r, w) many singularities of the other type (∞lj ,−1 + 0kj ,∞kj , 1 +
0kj ,∞mj), and from singularities in certain other type of sequences.

If U + U + a1 ≡ 0, then also U − U − a0 ≡ 0. In this case U is a small function
with respect to w,

U = −1
2
(a0 + a1), (3.28)

and

a1(z + 1)− a1(z) = a0(z + 1) + a0(z). (3.29)

Hence w satisfies the difference Riccati equation (1.2).
Suppose now on the contrary U + U + a1 6≡ 0, and assume first that

Ninf (r, w) = o(T (r, w)) (3.30)

in a set E of r-values with infinite logarithmic measure (recall the definitions of
Ninf (r, w) and Nfin(r, w) from Section 3.1.) By substituting (3.27) into (3.26), we
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have

U3

(
U

U
+

UU

U2
+

U

U
+ 1
)

+ U2

(
a1(z + 1)

U

U
+ a1(z)

U

U
+ a1(z + 1) + a1(z) + 4

)
+U (a1(z)a1(z + 1) + 2a1(z + 1)− 2a0(z + 1) + 2a1(z) + 2a0(z))
+ (a0(z) + a1(z)) (a1(z + 1)− a0(z + 1)) = 0

which we denote by

A3(z)U3 + A2(z)U2 + A1(z)U + A0 = 0 (3.31)

for brevity. By the construction of U and relation (3.30), we obtain

N(r, Aj) = O

(
N

(
r + 1,

1
U

)
+ N(r + 1, U)

)
+ S(r + 1, w)

= O (Ninf (r + 2, w)) + S(r + 1, w)
= o(T (r + 2, w))

(3.32)

in a set with infinite logarithmic measure for all j = 0, . . . , 3. Also, given µ < 1,
Theorem 2.2 and equation (3.26) imply that

m(r, Aj) = o

(
T (r + 1, U)

rµ

)
+ S(r + 1, w)

= o

(
T (r + 2, w)

rµ

)
+ S(r + 1, w)

= S(r + 2, w)

(3.33)

for all j = 0, . . . , 3. By combining equations (3.27) and (3.31)–(3.33), we have

T (r, w) ≤ 5T (r + 1, U) + S(r, w)

= O

 3∑
j=1

T (r + 1, Aj)

+ S(r, w)

= o(T (r + 2, w))

(3.34)

in a set with infinite logarithmic measure unless all Aj(z), j = 0, . . . , 3, vanish
identically. If (3.34) holds we obtain

T (r, w) ≤ εT (r + 3, w),

where 0 < ε < 1 and r is in a set with infinite logarithmic measure. Therefore w
is of infinite order by Lemma 2.1. In the case where all coefficients of (3.31) vanish
identically we have

A0(z) = (a0(z) + a1(z)) (a1(z + 1)− a0(z + 1)) = 0,

which implies that a0 = ±a1 contradicting the irreducibility of (1.1).
Assume now that U + U + a1 6≡ 0, and that (3.30) holds only for a set of finite

logarithmic measure. In this case

Ninf (r, w) ≥ cT (r, w) (3.35)

outside of a set with finite logarithmic measure and for an absolute constant c > 0.
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Combining (3.2), (3.18) and (3.35) with Theorem 2.3, we obtain

2T (r, w) = T (r, w + w) + S(r, w)
= m(r, w + w) + N(r, w + w) + S(r, w)

≤ K
T (r + 1, w)

rµ
+ 2N(r + 1, w)

−
(

2
5
− ε

)
Ninf (r + 1, w) + S(r, w)

≤
(

K

rµ
+ 2− c

(
2
5
− ε

))
T (r + 1, w) + S(r, w),

(3.36)

where ε > 0, K > 0, µ < 1 and c > 0. Hence there exists an absolute constant
ε′ > 0 such that

T (r, w) ≤ (1− ε′)T (r + 1, w)

outside of a set with finite logarithmic measure. Thus w is of infinite order by
Lemma 2.1.

Equation (3.25) with σ2 = −1

We conclude this part of the proof by looking at the equation (3.25). First, assume
that w is a solution of

w + w =
σ(p− p)w2 + c1w + c0

w2 − p2
, (3.37)

where σ = ±1 and σ(p − p) 6≡ 0. We redefine the counting function Nfin(r, w) to
count the singularities of a meromorphic solution of equation (3.37) appearing as
part of a sequence

(∞lj , δp + 0kj ,∞kj ,±δp + 0kj ,∞mj), (3.38)

where δ = ±1, and lj and mj are strictly less than 3
4kj . Ninf (r, w) is the counting

function for the rest of the singularities.
Similarly as for (3.21) and (3.22), we obtain by Theorem 2.4 that a finite-order

meromorphic solution w of (3.37) has more than S(r, w) p and −p points. Therefore,
by Lemma 3.1 we may choose more than S(r, w) points zj for an arbitrarily small
ε ≥ 0 such that w(z − 1) = −σp(z − 1) + O((z − zj)kj ) for all z ∈ D(zj , τj) and w
has a pole of order at least (1− ε)kj at either zj or zj − 2. Say, w(zj) = ∞. Then
w(z + 1) = σp(z + 1) + O((z− zj)(1−ε′)kj ) again by using Lemma 3.1. On the other
hand if w(z − 1) = σp(z − 1) + O((z − zj)kj ) and w(zj) = ∞ with the multiplicity
at least (1 − ε)kj , then w(z + 1) = σ(p(z + 1) − 2p(z − 1)) + O((z − zj)(1−ε′)kj ).
Therefore there can be only S(r, w) points zj such that

w(z − 1) = σp(z − 1) + O
(
(z − zj)kj

)
,

w(z) = β(z − zj)−kj + O
(
(z − zj)1−kj

)
, β 6= 0,

w(z + 1) = ±σp(z + 1) + O
(
(z − zj)kj

)
,

(3.39)

since otherwise σ(p(z + 1) − 2p(z − 1)) = ±σp(z + 1) + O((z − zj)(1−ε′)kj ) in
neighborhoods of more than S(r, w) points, and p would either be identically zero
or a periodic function with period two. In either case σ(p− p) would vanish which
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is a contradiction. Similarly there can be only S(r, w) points such that

w(z − 1) = −σp(z − 1) + O
(
(z − zj)kj

)
,

w(z) = β(z − zj)−kj + O
(
(z − zj)1−kj

)
, β 6= 0,

w(z + 1) = −σp(z + 1) + O
(
(z − zj)kj

)
.

(3.40)

Therefore, if w has more than S(r, w) singularities in sequences of the type (3.38),
then there are more than S(r, w) sequences of the type

(∞lj ,−σp + 0kj ,∞kj , σp + 0kj ,∞mj), (3.41)

and only S(r, w) of the types (3.39) and (3.40).
Since all except possibly S(r, w) sequences of the type (3.38) are in fact of the

form (3.41) we make a change of variable

U = (w + σp)(w − σp) (3.42)

which takes equation (3.37) to the form

(U + U − c1)w = σp(U − U) + c0 + σ(p− p)p2. (3.43)

If the left and the right side of (3.43) both vanish, we obtain

U =
1
2

(
c1 −

σc0

p
− (p− p)p

)
, (3.44)

and so (3.42) is a difference Riccati equation (1.2). If not, then by combining (3.42)
and (3.43), we have

B3(z)U3 + B2(z)U2 + B1(z)U + B0(z) = 0,

where

B0(z) =
(
σ(p− p)p2 + c0 − σp c1

) (
σ(p− p)p2 + c0 + σp c1

)
,

B1(z) = 2σp
(
σ(p− p)p2 + c0 − σp c1

)
− 2σp

(
σ(p− p)p2 + c0 + σp c1

)
,

B2(z) = 4pp− c1

(
1 +

U

U

)
− c1

(
1 +

U

U

)
,

B3(z) =
U

U
+

UU

U2
+

U

U
+ 1.

If Ninf (r, w) = S(r, w) then, by a similar reasoning as for the equation (3.12),
either w is of infinite order, or all coefficients Bj(z) must vanish identically. In
particular, since B0(z) ≡ B1(z) ≡ 0, we have

σ(p− p)p2 + c0 − σp c1 = 0

and

σ(p− p)p2 + c0 + σp c1 = 0.

But this means that there is a drop of two in the degree of the right side of (3.37),
which contradicts the irreducibility of the equation. We therefore conclude that w
satisfies the Riccati equation

w =
σpw + pp + U

w + σp
,
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where U is as in (3.44). Conversely, any meromorphic solution of

w =
σpw + c

w + σp

is also a solution of

w + w =
σ(p− p)w2 + (c + c− p(p + p))w + σp(c− c)

w2 − p2
. (3.45)

Note that when p is a non-zero periodic function, equation (3.45) reduces into (3.12).
If Ninf (r, w) 6= S(r, w) then w is of infinite order by a similar calculation to that

of (3.36).

Equation (3.25) with σ2 = 1

Suppose now that w is a solution of

w + w =
σ(p + p)w2 + c1w + c0

w2 − p2
. (3.46)

The functions ±σp (which may have square root type branching) cannot satisfy
σ(p + p)p2 ± σc1p + c0 ≡ 0, since otherwise the right side of (3.46) would not be
irreducible. Therefore, by Theorem 2.4 we have

m

(
r,

1
w ± σp

)
= S(r + 1, w) (3.47)

for both choices of ±σp. Hence w has more than S(r, w) σp points and −σp points
(in other words w ± σp has more than S(r, w) zeros for both choices of the sign),
since otherwise by (3.47) we would have T (r, w) = S(r + 1, w) which implies that
w is of infinite order by Lemma 2.1.

Assuming that w(zj) = −σp(zj), either w(zj + 1) = ∞ or w(zj − 1) = ∞, and
we have by Lemma 3.1, provided that w(zj + 2) 6= ±σp(zj + 2),

w(z) = −σp(z) + O
(
(z − zj)kj

)
w(z + 1) = β1(z − zj)−(1−ε1)kj + O

(
(z − zj)1−(1−ε1)kj

)
w(z + 2) = 2σp(z) + σp(z + 2) + O

(
(z − zj)(1−ε2)kj

)
w(z + 3) = β3(z − zj)−(1−ε3)kj + O

(
(z − zj)1−(1−ε3)kj

)
w(z + 4) = −2σp(z) + σp(z + 4) + O

(
(z − zj)(1−ε4)kj

)
,

(3.48)

where β1β3 6= 0 and ε4 ≥ ε3 ≥ ε2 ≥ ε1 ≥ 0 are arbitrarily small constants such that
by construction (1 − εi)kj ∈ N for all i = 1, . . . , 4. If there are more than S(r, w)
points counting multiplicities such that w(zj + 2) = ±σp(zj + 2), then either p ≡ 0
or p satisfies the equation p(z +2) = −p(z). But in both cases p+ p ≡ 0, which is a
contradiction. Therefore, with the possible exception of S(r, w) points, for each kj

points zj such that w(zj) = −σp(zj) there are at least (1 − ε)kj poles of w which
may be uniquely associated to the point w(zj) = −σp(zj). Similarly, assuming that
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w(zj) = σp(zj), we obtain

w(z) = σp(z) + O
(
(z − zj)kj

)
w(z + 1) = β1(z − zj)−(1−ε1)kj + O

(
(z − zj)1−(1−ε1)kj

)
w(z + 2) = σp(z + 2) + O

(
(z − zj)(1−ε2)kj

)
w(z + 3) = β3(z − zj)−(1−ε3)kj + O

(
(z − zj)1−(1−ε3)kj

)
w(z + 4) = σp(z + 4) + O

(
(z − zj)(1−ε4)kj

)
.

If there are more than S(r, w) points such that w(zj + 2) = −σp(zj + 2), then
p + p ≡ 0 which is a contradiction. Hence, excluding at most S(r, w) points, for
each kj points zj such that w(zj) = σp(zj) there are at least (1/2− ε)kj poles of w
which may be uniquely associated to the point w(zj) = σp(zj). We conclude that

N(r + 1, w) ≥ (1− ε)
(

N

(
r,

1
w + σp

)
+

1
2
N

(
r,

1
w − σp

))
+ S(r, w) (3.49)

for any ε > 0. Since by (3.47)

N

(
r,

1
w ± σp

)
= T (r, w) + S(r + 1, w)

for both choices of ±σp, (3.49) yields

3
2
T (r, w) = N

(
r,

1
w + σp

)
+

1
2
N

(
r,

1
w − σp

)
+ S(r + 1, w)

≤ 1
1− ε

T (r + 1, w) + S(r + 1, w).

Hence

T (r, w) ≤
(

2
3

+ ε′
)

T (r + 1, w)

for any ε′ > 0 and for all r outside of a set of finite logarithmic measure. Thus w is
of infinite order by Lemma 2.1.

3.3. The Difference Painlevé I Equation

We now assume that the denominator of R(z, w) in (1.1) has only one root or no
root at all. Then equation (1.1) is

w + w =
u2w

2 + u1w + u0

(w + a)q
, (3.50)

where the coefficients of the right side are small meromorphic functions, and q ∈
{0, 1, 2}. The transformation w → w − a takes (3.50) into the form

w + w =
a2w

2 + a1w + a0

wq
, (3.51)

where the coefficients aj are meromorphic and small with respect to w. In [2]
and [18] it was proven that if the coefficients aj are rational functions, then all
meromorphic solutions of (3.51) where q = 0 are of infinite order, provided that
a2 6≡ 0. On the other hand if q = 0 and a2 ≡ 0 equation (3.51) is the linear equation
(1.10). In the remainder of this paper we consider the three cases q ∈ {0, 1, 2}
separately, where the coefficients are small with respect to w.
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Equation (3.51) with q = 0

Suppose that a2 6≡ 0 and q = 0 in equation (3.51). Assume first that N(r, w) =
S(r, w). Since by Theorem 2.3 we have m(r, w) = S(r + 1, w) it follows that

T (r, w) ≤ εT (r + 1, w)

with any ε > 0 in a set with infinite logarithmic measure. Therefore w is of infinite
order in this case by Lemma 2.1.

Assume now that w has more than S(r, w) poles. By Lemma 3.1 there are more
than S(r, w) points zj such that the multiplicity of w(zj) = ∞ is greater than K
times the multiplicity of a2(zj) = 0 for any K > 1. Suppose that w has such a
pole at zj , say of multiplicity kj . Then either w(zj + 1) = ∞ or w(zj − 1) = ∞,
at least with the multiplicity (2 − 1/K)kj . Without loss of generality we assume
that w(zj + 1) = ∞(2-1/K)kj . Then either w(zj + 2) = ∞ with the multiplicity at
least (4− 3/K)kj , or a2 has a zero with multiplicity greater than kj/K at zj + 1.
In the former case w(zj + 3) = ∞(8-7/K)kj (at least), which implies that either
w(zj + 4) = ∞(16-15/K)kj (at least), or there is a zero of a2 at zj + 2 with the
multiplicity greater than kj/K. And so on. Not all sequences of iterates of this
type can have a zero of a2 with the multiplicity greater than kj/K in them, since
otherwise a2 would have more than S(r, w) zeros (counting multiplicities) which
implies a2 ≡ 0 contradicting the assumption. Hence there is at least one infinite
sequence, say (z0 + n), n ∈ N, such that the multiplicities of a2(z0 + n) = 0 are all
less that k0/K for all n ∈ N, and so

n(r, w) ≥
(

1− 1
K

)
2r−r0

for some r0 ≥ 0 and for any K > 1. Therefore w is of infinite order.
We conclude that if w is of finite order then a2 ≡ 0, and (3.51) with q = 0 reduces

into the linear difference equation (1.10).

Equation (3.51) with q = 2

The subcase we consider in this section is very similar to the derivation of the
difference Painlevé II in the beginning of Section 3.1, and so the details are kept in
the minimum.

Similarly as in (3.5) we conclude that w has more than S(r, w) poles. Also,
Theorem 2.4 implies that all admissible finite-order solutions of (3.51) with q = 2
also have more than S(r, w) zeros, provided that a0(z) 6≡ 0. On the other hand if
a0(z) ≡ 0 the degree of the right side of (3.51) drops contradicting irreducibility of
the rational expression.

Choose a point zj such that w(zj−1) = 0 with the multiplicity kj . Then by (3.51)
and Lemma 3.1 w has a pole of multiplicity (1−ε)kj , with an arbitrarily small ε ≥ 0,
at either zj or zj − 2. We assume, without loss of generality, that w(zj) = ∞. If
w(zj + 1) = 0 with the multiplicity less that 1

3kj for all but S(r, w) points zj , then
inequality (3.4) is satisfied with α = 4

3 +2ε/(1−ε). In this case Theorem 2.5 implies
that w is of infinite order. Hence there must be more than S(r, w) points zj such
that w(zj) = ∞ with the multiplicity kj and w(zj ± 1) = 0 with multiplicities at
least 1

3kj for both choices of the sign. For such points equation (3.51) shows that

w(z + 1) + w(z − 1) = a2(z) + O((z − zj)
1
3 kj )
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in a small enough neighborhood D(zj , τj) of zj . Since w(zj + 1) = w(zj − 1) = 0,
at least with multiplicity 1

3kj , and a2 is small with respect to w, we have a2(z) ≡ 0
and so (3.51) (with q = 2) reduces into

w + w =
a1w + a0

w2
. (3.52)

To reduce the equation further we need the following analogue of Lemma 3.2:

Lemma 3.3. Let w be an admissible meromorphic solution of equation (3.52).
Then either,

n(r, w + w) ≤
(

16
9

+ ε

)
n(r + 1, w) + S′(r, w) (3.53)

for any ε > 0, or there are more than S(r, w) points zj such that

w(zj − 2) = ∞lj , w(zj − 1) = 0kj , w(zj) = ∞2kj ,

w(zj + 1) = 0kj , w(zj + 2) = ∞mj ,
(3.54)

where lj and mj are strictly less than 3
4kj.

The proof of Lemma 3.3 is almost identical to that of Lemma 3.2, and hence will
not be repeated. The essential difference between the proofs of these lemmas can
be seen by comparing Table 2 with Table 1.

Table 2. The multiplicity lj and mj in (3.54). The poles and zeros of w which are to be
grouped together are marked by “∗”. The notation “†” means that only a third of the

multiplicity of the point is associated with the other points in the group.

lj , mj < 3
4
kj ∞lj 0kj ∞2kj 0kj ∞mj (3.54)

lj < 3
4
kj , mj ≥ 3

4
kj ∞lj 0kj∗ ∞2kj∗ 0kj∗ ∞mj† ratio ≤ 16/9

lj ≥ 3
4
kj , mj < 3

4
kj ∞lj† 0kj∗ ∞2kj∗ 0kj∗ ∞mj ratio ≤ 16/9

lj , mj ≥ 3
4
kj ∞lj† 0kj∗ ∞2kj∗ 0kj∗ ∞mj† ratio ≤ 8/5

Now, by manipulating equation (3.52), we obtain

w2(w − w) = a0 + a1w − a0 − a1w

+ (w + w)

[
2w(a0 + a1w)

w2
−
(

a0 + a1w

w2

)2
]

.
(3.55)

If inequality (3.53) holds the solution w of (3.52) is of infinite order by Theorem 2.5.
On the other hand, if (3.54) is true for more than S(r, w) points zj , we have by (3.55)

a0(z + 1)− a0(z − 1) = 0. (3.56)

Equation (3.55) may then be written as

w(w − w) = a1 + a1

(
1− a1w + a0

ww2

)
+ (w + w)

[
2(a0 + a1w)

w2

(
−1 +

a1w + a0

ww2

)
− 1

w

(
a0 + a1w

w2

)2
]

,
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and so

a1(z + 1)− 2a1(z) + a1(z − 1) = 0. (3.57)

By solving equations (3.56) and (3.57) we obtain a1(z) = π1z + κ1 and a0(z) = π2,
where πk and κk are arbitrary finite order periodic functions with period k, and
small compared to w. Therefore equation (3.52) reduces to the difference Painlevé I
equation (1.6).

3.4. The first-degree case, and related equations

So far we have considered equations of the form (1.1) where the degree of rational
expression of w on the right side have been exactly two. We have shown that unless
for each pole of w there are at most two nearby poles of the left side of the equation,
the solution is of infinite order. By a singularity analysis of solutions, the only
equations of the form (1.1) satisfying this condition are (1.6), (1.7), (1.8) and (1.2).

In this section we will look at the case degw R(z, w) = 1, and some equations
with degw R(z, w) = 2 which behave similarly in the sense of Nevanlinna theory.
Now the solution may be of finite order if for each pole of w there is at most one
nearby pole of the left side, instead of two. This means that we will have to be more
careful in the singularity analysis to get to the difference Painlevé equations.

Equation (3.51) with q = 1

We write (3.51) with q = 1 in the form

w + w − a2w =
a1w + a0

w
. (3.58)

There can be at most S(r, w) points zj such that

w(zj) = a1(z0)w(zj) + a0(zj) = 0 (3.59)

since otherwise the right side of (3.58) (and so also of (3.51)) would be reducible.
Like before, we include all such points in the error term S(r, w), as well as all points
where a coefficient of (3.51) has a high multiplicity zero in the sense of Lemma 3.1.

Also, all finite order solutions of (3.58) have more than S(r, w) poles and zeros.
This can be seen by using Lemma 2.1 together with Theorems 2.3 and 2.4.

Choose a point zj such that w(zj − 1) = 0 with multiplicity kj . Then by
Lemma 3.1 and (3.58) w has a pole of order at least (1 − ε)kj at either zj or
zj−2 for an arbitrarily small constant ε ≥ 0. We assume, without loss of generality,
that w(zj) = ∞. Then

w(z − 1) = α(z − zj)kj + O
(
(z − zj)kj+1

)
, α 6= 0

w(z) = β(z − zj)−(1−ε1)kj + O
(
(z − zj)1−(1−ε1)kj

)
, β 6= 0

w(z + 1) = a2(z)β(z − zj)−(1−ε1)kj + O
(
(z − zj)1−(1−ε2)kj

)
w(z + 2) = β(a2(z + 1)a2(z)− 1)(z − zj)−(1−ε1)kj + O

(
(z − zj)1−(1−ε3)kj

)
(3.60)

for all z ∈ D(zj , τj), where ε3 ≥ ε2 ≥ ε1 ≥ 0 are arbitrarily small constants
satisfying, by construction, (1− εi)kj ∈ N for i = 1, 2, 3.

Since w has more than S(r, w) zeros, it also has more than S(r, w) iteration
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sequences of the type (3.60). Assume that within these sequences only S(r, w) points
zj satisfy

a2(zj) = 0 (3.61)

or
a2(zj + 1)a2(zj) = 1. (3.62)

If w(zj +3) = 0 with the multiplicity less or equal to kj we may associate the zero at
zj +3 with the other iterates in (3.60) and so for these iterates the inequality (2.14)
holds with α = 2/3 + ε, ε ≥ 0. If the multiplicity of w(zj + 3) = 0 is strictly greater
than kj then the inequality (2.14) holds for the iterates in (3.60) with α = 1/3 + ε,
and zj + 3 is a starting point for another sequence of the type (3.60). Therefore we
have (2.14) with α = 2/3 + ε and so w is of infinite order by Theorem 2.5.

Thus either (3.61) or (3.62) holds at more than S(r, w) points zj and since a2 is
of finite order we have a2 ≡ 0 or a2 ≡ ±1. We consider the equations

w + w =
a1w + a0

w
(3.63)

and

w + w + σw =
a1w + a0

w
, σ = ±1, (3.64)

separately.

Equation (3.63)

Equation (3.63) with a1 ≡ 0 is just (1.9), and so assume from now on that a1 6≡ 0.
We will show that each pole of w + w in (3.63) (i.e. the zero of w) may be

grouped together with a finite number of nearby poles of w in such a manner that
the number of poles of w + w divided by the number of poles of w (both counting
multiplicities) is less than 4/5 + ε, unless (3.63) is the equation (1.5).

By equation (3.63), Theorem 2.3 and Lemma 3.1 there are more than S(r, w)
points zj such that w has a pole of order at least kj at zj + 1 or zj − 1 whenever
w has a zero of multiplicity (1 + ε)kj ∈ N at zj , where ε ≥ 0 is an arbitrarily small
constant, and there are only S(r, w) other points where w has a pole.

We begin by considering the case in which both w(zj + 1) and w(zj − 1) are
poles of the same order kj . Denote δ = ±1. Since w is meromorphic there is a disc
D(zj , τj) centered at zj with a suitably small radius τj such that

w(z) = α (z − zj)(1+ε)kj + O
(
(z − zj)(1+ε)kj+1

)
w(z + δ) = βδ (z − zj)−kj + O

(
(z − zj)1−kj

) (3.65)

for all z ∈ D(zj , τj) where α and β±1 are non-zero. By iteration of equation (3.63),
we obtain

w(z + 2δ) = a1(z + δ) + O
(
(z − zj)(1−ε1)kj

)
w(z + 3δ) = −βδ (z − zj)−kj + O

(
(z − zj)1−kj

)
w(z + 4δ) = a1(z + 3δ)− a1(z + δ) + O

(
(z − zj)(1−ε2)kj

)
w(z + 5δ) = βδ(z − zj)−kj +

a0(z + 4δ)
a1(z + 3δ)− a1(z + δ) + O

(
(z − z0)(1−ε2)kj

)
+ O

(
(z − z0)1−kj

)
(3.66)
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for all z ∈ D(zj , τj), where ε2 ≥ ε1 ≥ 0 are arbitrarily small constants. Some of this
information is summarised in the second row of Table 3.

Since a1 has at most S(r, w) poles we may include all cases where a1(z) has a
pole with multiplicity greater than εkj at zj + 3δ or at zj + δ into the error term of
(2.13). Otherwise w(zj + 4δ) is finite or has a pole with multiplicity at most εkj .
If w(zj + 4δ) is non-zero, or a zero with the multiplicity lj < kj , then w(zj + 5δ)
has a pole of order kj . If w(zj + 4δ) has a zero with the multiplicity Mj > kj then
w(zj +5δ) has a pole of order Mj . If w(zj +4δ) has a zero of order kj then w(zj +5δ)
is either regular at z = zj or it has a pole of order at most kj . This information is
summarised in Table 3.

Table 3. Iteration of equation (3.63). Here Lj and Mj are used to denote any integer
greater than kj, while lj and mj are integers less than kj. The symbol “−” denotes either
a pole of order strictly less than kj or a regular point (i.e. a finite value, including zero.)

The quantity nδ on the first row is a short notation for w(zj + nδ), and f denotes a
finite non-zero value or a pole or zero of a1, not necessarily the same one each time the

symbol is repeated.

−5δ −4δ −3δ −2δ −δ 0 δ 2δ 3δ 4δ 5δ

∞kj 0kj ∞kj f ∞kj∗ 0(1+ε)kj∗ ∞kj∗ f ∞kj 0kj ∞kj

∞kj 0kj ∞kj f ∞kj∗ 0(1+ε)kj∗ ∞kj∗ f ∞kj∗ 0kj∗ −
∞kj 0kj ∞kj f ∞kj∗ 0(1+ε)kj∗ ∞kj∗ f ∞kj 0Mj ∞Mj

∞kj 0kj ∞kj f ∞kj∗ 0(1+ε)kj∗ ∞kj∗ f ∞kj f ∞kj

− 0kj∗ ∞kj∗ f ∞kj∗ 0(1+ε)kj∗ ∞kj∗ f ∞kj∗ 0kj∗ −
− 0kj∗ ∞kj∗ f ∞kj∗ 0(1+ε)kj∗ ∞kj∗ f ∞kj f ∞kj

∞Mj 0Mj ∞kj f ∞kj∗ 0(1+ε)kj∗ ∞kj∗ f ∞kj∗ 0kj∗ −
∞Lj 0Lj ∞kj f ∞kj∗ 0(1+ε)kj∗ ∞kj∗ f ∞kj 0Mj ∞Mj

∞Mj 0Mj ∞kj f ∞kj∗ 0(1+ε)kj∗ ∞kj∗ f ∞kj f ∞kj

∞kj f ∞kj f ∞kj∗ 0(1+ε)kj∗ ∞kj∗ f ∞kj f ∞kj

∞kj 0lj ∞kj f ∞kj∗ 0(1+ε)kj∗ ∞kj∗ f ∞kj f ∞kj

∞kj 0lj ∞kj f ∞kj∗ 0(1+ε)kj∗ ∞kj∗ f ∞kj 0kj ∞kj

∞kj 0lj ∞kj f ∞kj∗ 0(1+ε)kj∗ ∞kj∗ f ∞kj 0Mj ∞Mj

∞kj 0lj ∞kj f ∞kj∗ 0(1+ε)kj∗ ∞kj∗ f ∞kj∗ 0kj∗ −
∞kj 0lj ∞kj f ∞kj∗ 0(1+ε)kj∗ ∞kj∗ f ∞kj 0mj ∞kj

∞Mj f ∞Mj∗ 0(1+ε)kj∗ ∞Mj∗ f ∞Mj

In the last row of Table 3 we have included part of the iteration sequence in the
case where w(zj − δ) has a pole of order greater than kj . In each row of Table 3 we
have indicated with “∗” the zeros and poles of w that are to be grouped together.
Note that in each grouping, the number of zeros divided by the number of poles is
less than 3/4 + ε (counting multiplicities) for any ε > 0.

We still need to examine the case in which w has a zero of order (1 + ε)kj at
zj but does not have a pole of order kj or higher at zj − δ (it could have a zero,
another finite value, or a pole of order less than kj .) In this case

w(z) = α(z − zj)(1+ε)kj + O
(
(z − zj)(1+ε)kj+1

)
w(z + δ) =

a0(z)
α

(z − zj)−(1+ε)kj + O
(
(z − zj)1−(1+ε)kj

)
= β (z − zj)−kj + O

(
(z − zj)1−kj

) (3.67)
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and iteration of equation (3.63) yields

w(z + 2δ) = a1(z + δ) +
(a0(z + δ)− a0(z))α

a0(z)
(z − zj)(1+ε)kj + O

(
(z − zj)(1+ε)kj+1

)
w(z + 3δ) = −a0(z)

α
(z − zj)−(1+ε)kj + O

(
(z − zj)1−(1+ε)kj

)
w(z + 4δ) = a1(z + 3δ)− a1(z + δ)

− α
(a0(z + 3δ) + a0(z + δ)− a0(z))

a0(z)
(z − zj)(1+ε)kj + O

(
(z − zj)(1+ε)kj+1

)
w(z + 5δ) =

a0(z)
α

(z − zj)−(1+ε)kj + O
(
(z − zj)1−(1+ε)kj

)
+

a0(z + 4δ)

a1(z + 3δ)− a1(z + δ)− α
a0(z + 3δ) + a0(z + δ)− a0(z)

a0(z)
(z − zj)(1+ε)kj + · · ·

(3.68)

for all z in a suitably small neighborhood of zj .
Note that w(zj + 4δ) is finite unless a1(z) has a pole at zj + 3δ or at zj + δ in

which case w has a pole of order at most εkj at zj + 4δ. If w(zj + 4δ) is non-zero,
or a zero with the multiplicity lj < kj , then w(zj + 5δ) has a pole of order kj . If
w(zj + 4δ) has a zero with the multiplicity Mj > kj then w(zj + 5δ) has a pole of
order Mj . If w(zj + 4δ) has a zero of order kj then w(zj + 5δ) has a pole of order
kj unless

a1(zj + 3δ) = a1(zj + δ) (3.69)

with the multiplicity at least kj , and w(zj + 5δ) has a pole of order at least 2
3kj

unless
a0(zj)− a0(zj + δ)− a0(zj + 3δ) + a0(zj + 4δ) = 0 (3.70)

with the multiplicity at least 1
3kj . Assuming that equations (3.69) and (3.70) do

not both hold then we can construct the grouping of the zeros of w described in
Table 4.

Table 4. The rest of the iteration of equation (3.63). Here lj is such that kj > lj ≥ 2
3
kj,

and otherwise the notation is as in Table 3.

−δ 0 δ 2δ 3δ 4δ 5δ Notes:

− 0(1+ε)kj∗ ∞kj∗ f ∞kj∗ f ∞kj

− 0(1+ε)kj∗ ∞kj∗ f ∞kj∗ 0Mj ∞Mj (†)
− 0(1+ε)kj∗ ∞kj∗ f ∞kj∗ 0mj∗ ∞kj∗ Compare with the

last row of Table 3

− 0(1+ε)kj∗ ∞kj∗ f ∞kj∗ 0kj∗ ∞lj∗ (‡)
− 0(1+ε)kj ∞kj f ∞kj 0kj ∞kj Apply rules from Table 3

to the zero of w(zj + 4δ)

The only case in Tables 3 and 4 where there may be some overlap when a pole
of w is associated to a zero of w is with the rows (†) and (‡) in Table 4. Combining
them together we obtain

− 0(1+ε1)lj∗∞lj∗ f ∞lj∗ 0kj∗∞kj∗ f ∞kj∗ 0(1+ε2)kj∗ −
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where lj ≥ 2
3kj , and so the number of zeros divided by the number of poles is less

or equal to 4/5 + ε for any ε > 0.
If equations (3.69) and (3.70) hold for more than S(r, w) points zj then a0(z) =

π1z +π3 and a1(z) = π2 where πk ∈ S(w) are arbitrary periodic functions with pe-
riod k, of finite order. Therefore (3.63) reduces to the difference Painlevé I equation
(1.5). If on the contrary either of equations (3.69) and (3.70) hold for only S(r, w)
points zj , we have been able to associate more than S(r, w) zeros of w at zj (which
are poles of w + w) with an appropriate number of zeros and poles of “nearby”
iterates w(zj + nδ) such that within each grouping the number of zeros divided by
the number of poles is less than 4/5 + ε, and there are at most S(r, w) exceptional
zeros which cannot be grouped in this way. Therefore in this case

n(r, w + w) ≤
(

4
5

+ ε

)
n(r + 1, w) + S′(r, w), (3.71)

where ε > 0 is arbitrary, and so by Theorem 2.5 w is of infinite order.

Equation (3.64)

We will now complete the proof of Theorem 1.1 by looking at the equation (3.64).
This final subcase is very similar to the derivation of (1.5) in the previous section.
We try to avoid any unnecessary repetition.

Similarly as before, w + w has more than S(r, w) poles. If both w(zj + 1) and
w(zj − 1) are poles of order kj , then, similarly as in (3.65) and (3.66), we have

w(z) = α (z − zj)(1+ε)kj + O
(
(z − zj)(1+ε)kj+1

)
w(z + δ) =

kj−1∑
i=−kj

βi,δ (z − zj)i + O
(
(z − zj)kj

)
w(z + 2δ) = −σ

kj−1∑
i=−kj

βi,δ (z − zj)i + a1(z + δ) + O
(
(z − zj)kj

)
w(z + 3δ) = (σ2 − 1)

kj−1∑
i=−kj

βi,δ (z − zj)i + a1(z + 2δ)− σa1(z + δ) + O
(
(z − zj)kj

)
= a1(z + 2)− σa1(z + 1) + O

(
(z − zj)kj

)
w(z + 4δ) = −σβ−kj ,δ(z − zj)−kj +

a0(z + 3δ)
a1(z + 2δ)− σa1(z + δ) + · · ·

+ O
(
(z − zj)1−kj

)
for all z in a small enough neighborhood of zj , where α and β−kj ,δ are non-zero.
The information obtained from the iteration above is summarised in Table 5, which
is analogous to Table 3.

In the case where w has a zero of order (1 + ε)kj at zj but does not have a pole
of order kj or higher at zj − δ, we use the fact that (3.64) may be written in the
form

w(z + δ) = σw(z − 2δ) + a1(z)− σa1(z − δ) +
a0(z)
w(z)

− σa0(z − δ)
w(z − δ)
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Table 5. Iteration of equation (3.64). For the explanation of the notation see the caption
of Table 3.

−4δ −3δ −2δ −δ 0 δ 2δ 3δ 4δ

∞kj 0kj ∞kj ∞kj∗ 0(1+ε)kj∗ ∞kj∗ ∞kj 0kj ∞kj

∞kj 0kj ∞kj ∞kj∗ 0(1+ε)kj∗ ∞kj∗ ∞kj∗ 0kj∗ −
∞kj 0kj ∞kj ∞kj∗ 0(1+ε)kj∗ ∞kj∗ ∞kj 0Mj ∞Mj

∞kj 0kj ∞kj ∞kj∗ 0(1+ε)kj∗ ∞kj∗ ∞kj f ∞kj

− 0kj∗ ∞kj∗ ∞kj∗ 0(1+ε)kj∗ ∞kj∗ ∞kj∗ 0kj∗ −
− 0kj∗ ∞kj∗ ∞kj∗ 0(1+ε)kj∗ ∞kj∗ ∞kj f ∞kj

∞Mj 0Mj ∞kj ∞kj∗ 0(1+ε)kj∗ ∞kj∗ ∞kj∗ 0kj∗ −
∞Lj 0Lj ∞kj ∞kj∗ 0(1+ε)kj∗ ∞kj∗ ∞kj 0Mj ∞Mj

∞Mj 0Mj ∞kj ∞kj∗ 0(1+ε)kj∗ ∞kj∗ ∞kj f ∞kj

∞kj f ∞kj ∞kj∗ 0(1+ε)kj∗ ∞kj∗ ∞kj f ∞kj

∞kj 0lj ∞kj ∞kj∗ 0(1+ε)kj∗ ∞kj∗ ∞kj f ∞kj

∞kj 0lj ∞kj ∞kj∗ 0(1+ε)kj∗ ∞kj∗ ∞kj 0kj ∞kj

∞kj 0lj ∞kj ∞kj∗ 0(1+ε)kj∗ ∞kj∗ ∞kj 0Mj ∞Mj

∞kj 0lj ∞kj ∞kj∗ 0(1+ε)kj∗ ∞kj∗ ∞kj∗ 0kj∗ −
∞kj 0lj ∞kj ∞kj∗ 0(1+ε)kj∗ ∞kj∗ ∞kj 0mj ∞kj

∞Mj ∞Mj∗ 0(1+ε)kj∗ ∞Mj∗ ∞Mj

to obtain the following iteration sequence, analogous to (3.67) and (3.68):

w(z) = α(z − zj)(1+ε)kj + O
(
(z − zj)(1+ε)kj+1

)
w(z + δ) =

a0(z)
α

(z − zj)−(1+ε)kj + O
(
(z − zj)1−(1+ε)kj

)
w(z + 2δ) = −σa0(z)

α
(z − zj)−(1+ε)kj + O

(
(z − zj)1−(1+ε)kj

)
w(z + 3δ) = a1(z + 2δ)− σa1(z + δ)

+α

(
σ − σa0(z + δ)

a0(z)
− a0(z + 2δ)

σa0(z)

)
(z − zj)(1+ε)kj + O

(
(z − zj)(1+ε)kj+1

)
w(z + 4δ) =

σa0(z)
α

(z − zj)−(1+ε)kj + O
(
(z − zj)1−(1+ε)kj

)
+

a0(z + 3δ)

a1(z + 2δ)− σa1(z + δ) + α
(
σ − σa0(z+δ)

a0(z) − a0(z+2δ)
σa0(z)

)
(z − zj)(1+ε)kj + · · ·

Therefore, similarly as in Table 4, assuming that

a1(zj + 2δ) = σa1(zj + δ) (3.72)

and
a0(zj)− a0(zj + δ)− a0(zj + 2δ) + a0(zj + 3δ) = 0 (3.73)

do not both hold we can construct the grouping of the zeros of w described in
Table 6.

The only possible overlap in Tables 5 and 6 is with the rows (†) and (‡) in Table 6.
Combining them together we obtain

− 0(1+ε1)lj∗∞lj∗∞lj∗ 0kj∗∞kj∗∞kj∗ 0(1+ε2)kj∗ −

where lj ≥ 2
3kj , and so, the number of zeros divided by the number of poles is less

or equal to 4/5 + ε for any ε > 0.
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Table 6. The rest of the iteration of equation (3.64). Here lj is such that kj > lj ≥ 2
3
kj,

and otherwise the notation is as in Table 3.

−δ 0 δ 2δ 3δ 4δ Notes:

− 0(1+ε)kj∗ ∞kj∗ ∞kj∗ f ∞kj

− 0(1+ε)kj∗ ∞kj∗ ∞kj∗ 0Mj ∞Mj (†)
− 0(1+ε)kj∗ ∞kj∗ ∞kj∗ 0mj∗ ∞kj∗ Compare with the

last row of Table 5

− 0(1+ε)kj∗ ∞kj∗ ∞kj∗ 0kj∗ ∞lj∗ (‡)
− 0(1+ε)kj ∞kj ∞kj 0kj ∞kj Apply rules from Table 5

to the zero of w(zj + 3δ)

Now if equations (3.72) and (3.73) hold for more than S(r, w) points then a0(z) =
π1z + π2 for periodic functions πk ∈ S(w) with period k. Moreover, if σ = 1 we
have that a1(z) is an arbitrary periodic function with period 1, and if σ = −1 it
follows that a1(z) = (−1)zκ1 where κ1 is periodic with period 1. Therefore (3.64)
reduces to the difference Painlevé I equation (1.3) if σ = 1 and to equation (1.4)
if σ = −1. If on the other hand either of equations (3.72) and (3.73) hold for only
S(r, w) points, then (3.71) holds and so by Theorem 2.5 w is of infinite order. This
completes the proof of Theorem 1.1. 2

4. Discussion

We have shown that the existence of one finite-order meromorphic solution is
sufficient to reduce a large class of difference equations into one of the difference
Painlevé equations or to the linear difference equation, provided that the finite-order
solution does not satisfy a difference Riccati equation.

The existence of finite-order meromorphic solutions of the equations (1.2) – (1.10)
is guaranteed in the autonomous case. In this case the each of the difference Painlevé
equations (1.3) – (1.8) are solved by a two periodic function family of elliptic func-
tions, see, e.g., [4]. The autonomous form of (1.9) has finite-order meromorphic
solutions expressed in terms of certain periodic functions with period two. The dif-
ference Riccati and the linear difference equations have large classes of meromorphic
solutions also in the non-autonomous case, but so far the growth order of these so-
lutions is unknown when the coefficients of the equation depend on the independent
variable. In the autonomous case these solutions are also of finite order.

Our method offers an explanation to why singularity confinement indicates the
integrability of the numerically chaotic equation analyzed in [19]: The singularity
patterns of solutions are not of the type allowed for a finite-order solution. A closer
analysis on this matter is given in [16].

We conclude that the existence of a finite-order meromorphic solution of a dif-
ference equation is a strong indicator of integrability. Indeed, it is enough to single
out all known integrable equations out of a large class of difference equations. Al-
though the question of existence of finite-order meromorphic solutions still needs
to addressed in the non-autonomous case, the known existence of a large number
of such solutions in the autonomous case shows that our results are non-vacuous.
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