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Abstract 

The acoustic transmission loss of a finite periodic array of long rigid cylinders, 

without and with porous absorbent covering, is studied both theoretically and in the 

laboratory. A multiple scattering model is extended to allow for the covering and its 

acoustical properties are described by a single parameter semi-empirical model. Data 

from laboratory measurements and numerical results are found to be in reasonable 

agreement. These data and predictions show that porous covering reduces the 

variation of transmission loss with frequency due to the stop/pass band structure 

observed with an array of rigid cylinders with similar overall radius and improves the 

overall attenuation in the higher frequency range.  The predicted sensitivities to 

covering thickness and effective flow resistivity are explored. It is predicted that a 

random covered array also gives better attenuation than a random array of rigid 

cylinders with the same overall radius and volume fraction. 
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1. Introduction 

Interest in applications of periodic arrays of cylinders for noise control has increased 

since publication of the measured transmission spectra of a minimalistic sculpture1. 

When the density of scattering elements is large enough, the structure does not 

support sound propagation through it at the frequencies of the stop-bands that appear 

in its transmission spectrum. Measurements on periodic arrays of cylinders2 have 

shown the potential of using these kinds of structures for noise control. One possible 

advantage in using such periodic arrays instead of conventional noise barriers is that 

the structures are relatively transparent. Another possibility is that they could be 

formed from trees, since trees can be arranged in periodic arrays. Hence useful noise 

control could be achieved by natural means3.  

A 7.2m long, 11m wide periodic (triangular) array of hollow cylindrical PVC rods 

with diameter 16cm and with an array filling fraction, i.e. the volume fraction of 

cylinders in the array, of 47%, has been shown2 to give a maximum attenuation close 

to 25dB at some frequencies in the range between 800Hz and 4kHz. However the 

transmission loss spectrum was found to have a peaky character and there were 

frequencies at which measured attenuation minima were less than 7dB. For noise 

control applications, the problem arises of how to reduce the frequency dependence of 

the attenuation without reducing the overall value. It has been suggested2 that the 

effect of covering the elements by the sound absorptive materials should be 

investigated. This study is the main subject of the present paper. 

Previous publications devoted to the study of the properties of sonic crystals refer to 

two theoretical approaches for predicting the transmission and reflection properties of 

the periodic arrays: the infinite array ‘sonic crystal’ approach, which involves the 

computation of the dispersion bands using a plane-wave expansion method4,5 and the 
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multiple scattering approach6,7. The second approach is more useful for practical 

applications as it allows computations for finite arrays and direct comparisons with 

data. 

Section 2 presents a review of the model used to describe multiple scattering by 

regular arrays and the modifications necessary to allow for porous coverings on the 

array elements. In Section 3, laboratory measurements on arrays of rigid and covered 

cylinders are described. Data for the insertion loss at different frequencies are 

compared with model predictions for the arrays of rigid and covered cylinders.  

Section 4 presents conclusions and suggestions for further research. 

 

 

 

2. The model 

In this paper we follow a previously-published multiple scattering approach8. 

However, we assume that a line source is located at the origin of the coordinate 

system instead of a source of plane wave excitation.  Suppose that there are N 

cylinders of radius out

j
a  and that the location of each cylinder center in the plane 

normal to the cylinder axes is described by one of N+1 polar coordinate systems in 

the (x,y) plane: ),( !r  centred at the origin and ),(
jj

r ! , Nj ,...,1= , centred at 

),(
jj
yx , the center of the thj  cylinder (Figure 1). The center-to-center spacing 

between the thj  and pth cylinders is denoted by Rjp and the distance of the center of the 

thj  cylinder from the origin is denoted by Sj. 

Exterior to the cylinders the pressure field is! , where  
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and 
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0
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!
=  is the wave number in air. 

Each cylinder scatters the waves which are incident upon it. To take account of all 

such scattering we express the total field as the sum of the incident wave ( )rkH
i 00
=!  

and a general outgoing wave emanating from each cylinder. Thus the total field 

exterior to the cylinders can be written 
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for some set of unknown coefficients j

nA .  

The factors j

nZ  are introduced for later convenience and determined by the boundary 

conditions on the cylinder surface.  

If the cylinders are rigid 

 
( )
( )out

jn

out

jnj

n
akH

akJ
Z

0

)1(

0

'

'
= .        (2) 

Using Graf’s addition theorem for Bessel functions we can show that, as long as 
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The geometrical restriction implies that this expression is only valid if the point 

( )
pp

r !,  is closer to the center of cylinder p than to the centers of any of the other 

cylinders or the source. 

This is certainly true on the surface of cylinder p and so (2) can be used to apply the 

boundary conditions on each cylinder. 
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The cross section of the single element of the array with porous covering is shown in 

Figure 2. The field in the region out

pp

in

p
ara <<  can be represented by 
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where ( )!k is complex wave number in the porous material and factors p

nX  and p

nY  

are again introduced for the later convenience. 

We apply boundary conditions of continuity of pressure and particle velocity on the 

outer surface of the cylinder p: 
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where ( )!"  is complex density of porous material and !  is its porosity. 

At the interface between porous covering and the rigid core of the cylinder the 

condition of zero velocity is applied: 
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After using the orthogonality of the functions pim
e

! , ,...2,1,0 ±±=m , these boundary 

conditions lead to an infinite system of equations for coefficients p

mA . 
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which can be solved by truncation. These equations differ from those for rigid 

cylinders only by the factors j

nZ  which are determined from boundary conditions and 

are given by 
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normalized characteristic impedance of porous material. 

In principle, the model could be used for arrays of cylinders with different outer radii 

and different thickness of porous covering. However, since the measurements 

reported later have used arrays of identical cylinders, the simplified version of the 

model has been used for computations.  

Equation (5) is expressed in terms of characteristic impedance ( )!Z  and propagation 

constant ( )!k , so, effectively, these quantities replace the porosity and the complex 

density function introduced by the boundary conditions (3). Although various models 

are available to provide ( )!k  and ( )!Z  as a function of frequency, since a fibrous 

woollen felt has been used in the measurements, the single parameter empirical 

Delany and Bazley model 9, derived from data for fibrous materials, has been found 

suitable. According to this model, 
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where σ represents the flow resistivity of the material. 

The numerical procedure for finding the total field at a certain point requires solving 

the system of equations (4) by truncation and finding the pressure by summation 
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using expression (1). For rigid cylinders, factors j

nZ  are determined from (2). If the 

cylinders are covered by porous material, the factors j

nZ  are determined from (5) and 

(6).   

 

3. Measurements and comparisons of numerical results with data 

Measurements have been carried out in a semi-anechoic chamber and far from any 

reflecting surfaces.  

A free field ¼ inch B&K microphone was positioned centrally behind the array 

and orientated towards the source (Figure 3). The distance between the array and the 

microphone was varied between 3cm and 11.5 cm.  

Sparks associated with air breakdown between high voltage electrodes have been used 

to provide acoustic pulses. The spark source was positioned 1.5 m away from the 

scattering array and 1m above the ground. The acoustic pulses had a duration of about 

60µs and a central frequency of approximately15kHz (Figures 4a and 4b). Most of the 

acoustic energy of the pulse was contained between 1 kHz and 50 kHz. Outside this 

range the signal/noise ratio was too low for reliable results. Consequently the 

transmission loss measurements were limited to the range between 1 kHz and 50 kHz. 

Pressure measurements were made in the free field and then in the presence of the 

array. The spectral content of the signals was determined by Fourier transform. The 

insertion loss due to the array has been obtained from the ratio of the spectral density 

of the transmitted field in the presence of the array and that measured in the free field. 

The free field pressure data at various distances from the source are consistent with 

spherically spreading waves. However, since the model (equations (1) to (5)) is valid 

only for two dimensional geometry, the cylinders were sufficiently long (2 meters) 

that the receiver/ array distance (maximum 11.5 cm) was always much shorter than 
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the cylinder length. The rigid cylinders were aluminum rods with a diameter of 3/8 

inch (0.953 cm) mounted between two rectangular supporting plates. Each absorbing 

cylinder had a ¼ inch (0.635cm)) diameter aluminum rod as a core and this was 

covered by a layer of woollen felt. The thickness of the felt was close to 1.7 cm so 

that the diameter of the covered cylinders (0.975cm) was close to that of the rigid 

cylinders used for the data comparison.  

The cylinders were arranged in a square lattice, i.e. they were placed in identical rows 

so that the inter row distance was equal to the inter-cylinder distance within a row. 

This distance (2d) was chosen to be 1.5cm. The filling fraction of the rigid cylinder 

array was approximately 32% whereas the filling fraction of the corresponding square 

array of covered cylinders was 33%. Since the filling fractions of both arrays were 

more or less the same, any measured differences in their acoustical performance could 

be attributed exclusively to the presence of covering. The filling fraction of the rigid 

cylinder array was high enough for a stop/pass band structure to be noticeable in the 

attenuation spectrum. The arrays consisted of 3 rows with 7 cylinders in each row. 

This was the minimum number of rows needed for the stop/ pass bands to be observed 

when using rigid cylinders. 

Figure 5 compares the measured insertion losses of the arrays of rigid and covered 

rods at 3 cm from the array. The presence of covering is seen to destroy the pass/stop 

band structure and to make the attenuation more uniform in frequency. In addition the 

sound absorbing nature of the porous covering provides stronger attenuation for most 

of the frequencies except in the first stop band. Between 10 kHz and 50kHz the 

minimum attenuation for the array of covered rods is 6.6 dB (at 10864Hz) and the 

mean value for the attenuation is 13.9dB. In the same frequency range the minimum 
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attenuation of the array of rigid cylinders is –2.2dB (at 17212Hz) and the mean 

attenuation is 6.9dB. 

Figure 6 compares data and predictions for the array of rigid cylinders. To make 

similar comparisons for the array of covered cylinders the acoustical characteristics of 

the porous covering material are required. Surface impedance values have been 

deduced from measurements of the complex excess attenuation, i.e. the ratio between 

the pressures measured by the receiver arranged above the felt layer and in the free 

field 10. The complex excess attenuation is related to the spherical wave reflection 

coefficient Q by 
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length through the specular reflection point respectively. The relationship between the 

spherical wave reflection coefficient Q and the surface impedance Z of the porous 

layer is obtained from:  
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Hence the surface impedance Zs can be deduced from the excess attenuation data 

using a numerical method to search for complex roots. 

The surface impedance of the hard-backed porous layer is related to the propagation 

constant ( )!k  and the characteristic impedance of the material ( )!Z : 
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Using (6) and (7) and a least squares method, the value of the flow resistivity 

parameter !  in the Delany and Bazley model has been adjusted to fit the surface 

impedance data for both single and double layers of felt. Figure 7 shows the surface 

impedance data and the best-fit predictions. It appears that the Delany and Bazley 

model (6) with ! =23 kPa s m−2 provides a good approximation to the characteristic 

impedance and the propagation constant in the frequency range of interest. The results 

presented here are limited by the extent to which the Delany and Bazley model is 

applicable. For example, other work 11 has shown that this model overestimates the 

attenuation constant within a rigid-porous material for a given flow resistivity. 

Moreover, since the felt used for the covering does not correspond to the type of 

fibrous material (e.e. glass fiber) for which the Delany and Bazley model was 

intended, the best fit flow resistivity represents an effective value. 

Comparisons between predictions and data for the insertion loss of the array of 

covered cylinders are shown in Figure 8 for the microphone was positioned either 3 

cm from the array or 11.5 cm from the array. This change in distance from the array 

does not appear to affect the attenuation significantly. The mean attenuation between 

10 kHz and 50kHz is 14.0dB with the receiver 11.5 cm from the array. This is very 

close to that (13.9 dB) observed with the receiver 3cm from the array. 

 The sensitivity of the results to the thickness of the porous covering has been studied 

numerically by performing computations for various covering thickness while 

keeping the outer radius of the cylinder constant, thus keeping the filling fraction of 

the array constant. According to the predictions in Figure 9, increase in the covering 
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thickness does not necessarily mean improved attenuation. A covering thickness 

increased to 5/2 of its original value (0.438 cm), corresponding to nearly all of the 

cylinders consisting of porous material, does not show the best performance in any 

frequency range. This suggests that there is an optimum thickness for a given flow 

resistivity. 

Figure 10 shows predictions for !  = 11.5, 23 and 69 kPa s m−2. The largest mean 

attenuation corresponds to the highest flow resistivity value. On the other hand, when 

the flow resistivity and hence the surface impedance of the covering are sufficiently 

high the results should be comparable with those for acoustically-hard cylinders. 

Indeed, for the given array, it has been found that the hard cylinders prediction is 

recovered when ! =104 kPa s m−2. However the Delany and Bazley model is only 

applicable when 1
2

10
2

<<
!

"#

$  (
!"

#

2
 measured in SI units).  This means that, 

strictly speaking, the model can only be applied for frequencies higher than 100kHz 

which is well outside the measured range. Consequently a more sophisticated model 

for the acoustical properties of the porous covering would be needed to find the 

optimum flow resistivity value.  

To predict the effect of randomizing the array, each cylinder centre has been moved at 

random from its location in regular array (xj, yj) 12. Hence the coordinates of each 

cylinder in the perturbed array are: 
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where j
!  and j

!  are random numbers from the interval [0,1] and parameter 

! determines the proportion of the maximum permissible displacement )( out
ad ! of 

the cylinders. In the computations it was assumed that 9.0=!  so that the imposed 
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order of disorder was relatively high. Since different results are obtained for each 

‘random’ array, computations of the transmitted field have been carried out for 10 

arrays and the results have been averaged. Figure 11 shows that a random array of 

cylinders covered by single layer of felt is predicted to provide better attenuation than 

a similarly random array of hard cylinders. The difference in averaged attenuation is 

approximately 4.5dB. 

 

4. Conclusions 

Laboratory measurements and numerical simulations of the transmission loss of 

regular cylinder arrays, using a multiple scattering model modified to allow for the 

porous r covering, have shown that covering the cylinders with a porous material 

makes the array insertion loss more uniform in frequency. Moreover arrays with 

covered elements provide higher averaged attenuation than similar arrays of rigid 

cylinders. Numerical simulations have shown that the insertion loss depends strongly 

on the covering thickness and that a thicker porous covering does not necessarily 

means better attenuation. On the other hand increasing the flow resistivity of the 

covering material by a factor of three is predicted to improve the array performance. 

These results suggest that it might be possible to optimize the array attenuation 

through choice of covering material and its thickness. It might be worthwhile to 

explore the use of multiple layers for impedance matching in the porous covering 

also. 

In the laboratory measurements considerable attenuation has been achieved in the 

frequency range between 10kHz and 50kHz by the array with a filling fraction of 

33%. To achieve a similar attenuation in noise control applications that would involve 

a lower frequency range, the geometry of the cylinder arrays would have to be scaled 
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accordingly. If it is supposed that lowering the frequencies by a certain factor will 

mean that the distances should be increased by the same factor, to offer a useful 

attenuation in the frequency range between 300Hz and 1.5kHz the distance between 

cylinders and rows should be approximately 45 cm and the cylinders diameter would 

have to be approximately 30cm. In an artificial array intended for outdoor use the 

choice of porous material would be limited by the ability to withstand weathering and 

fibrous materials may not be suitable. Consequently simulations and measurements 

using more robust materials such as porous concrete are needed. The potential for use 

of periodic arrays of trees has been demonstrated already 3 but there may be 

possibilities for exploiting species with high porosity and/or roughness of bark. 

Finally, the performance of arrays in which trees are surrounded by foliage might be 

simulated through a covered cylinder model of the kind presented here. 
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Figure captions. 

Figure 1.  Plan view of two cylinders and corresponding Cartesian and polar 

coordinates 

Figure 2.  Cross section of the cylinder covered with porous material. 

Figure 3.  Measurement arrangement and geometry 

Figure 4.  Waveform (A) and spectrum (B) of the pulse generated by the spark source, 

distance from the source 150cm. 

Figure 5.  Effect of the porous covering on the attenuation spectrum at 3cm from the 

regular array. The solid line represents data for rigid cylinders; the broken lines 

represents data for rigid cylinders covered with felt. 

Figure 6.  Measurements (solid line) and model predictions for the insertion loss of 

the array of rigid cylinders for a receiver 3cm from the array. 

Figure 7.  Surface impedance of single (a) and double (b) layer of felt. Points – data, 

lines – predictions, using Delany and Bazley model for characteristic impedance and 

propagation constant with 24
/ 103.2 msPa!=" . 

Figure 8.  Data (points) and predictions (broken lines) for the attenuation spectrum of 

the array of covered rods (a) at a receiver 3 cm from the array, (b) at a receiver 11.5 

cm from the array.  

Figure 9.  Predicted insertion losses at 3cm from the array for 33% filling fraction 

regular arrays with different felt covering thickness. The dotted line represents 

predictions with 0.088cm covering thickness; the solid line represents predictions 

with 0.175cm covering thickness; the broken line represents predictions with 0.35cm 

covering thickness; the dashed dotted line represents predictions with 0.438cm 

covering thickness. 
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Figure 10.  Predicted insertion losses at 3 cm from arrays of cylinders covered by 

different flow resistivity materials. All dimensions are as in Figure 6. The solid line - 

23000=! Pa s/m2 (felt), dashed dotted line - 11500=!  Pa s/m2, dashed line - 

69000=!  Pa s/m2. 

Figure 11. Predicted insertion loss of an array with randomised positioning of the 

cylinders, 3cm from the array. Array dimensions as for Figure 6. The solid line 

represents predictions for an array of rigid cylinders. The broken line represents an 

array of cylinders covered with felt. 
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Figure 6. 
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Figure 7.  
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Figure 8.
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Figure 9. 
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Figure 10. 
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Figure 11. 

0 10 20 30 40 50 0

5

10

15

20

25




