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Abstract

The disintegration of a first-mode internal tide into shorter solitary-like waves is considered.

Because observations frequently show both tides and waves with amplitudes beyond the re-

strictions of weakly nonlinear theory, the evolution is studied using a fully-nonlinear, weakly

nonhydrostatic two-layer theory that included the effects of rotation. In the hydrostatic limit,

the governing equations have periodic, nonlinear inertia-gravity solutions that are explored as

models of the nonlinear internal tide. These are shown to be robust to weak nonhydrostatic

effects. Numerical solutions show that the disintegration of an initially sinusoidal, linear in-

ternal tide is closely linked to the presence of these periodic waves. The initial tide steepens

due to nonlinearity and sheds energy into short solitary waves. The disintegration is halted

as the longwave part of the solution settles onto a state close to one of the nonlinear, hy-

drostatic solutions, with the short solitary waves superimposed. The degree of disintegration

depends upon the initial amplitude of the tide and the properties of the underlying nonlinear

solutions, which, depending on stratification and tidal frequency, exist only for a finite range

of amplitudes (or energies). There is a lower threshold below which no short solitary waves

are produced. However, for initial amplitudes above another threshold, given approximately

by the energy of the limiting nonlinear inertia-gravity wave, most of the initial tidal energy

goes into solitary waves. Recent observations of large amplitude solitary waves in the South

China Sea are discussed in the context of these model results.

1. Introduction

The generation of long internal solitary waves from barotropic tidal flow over localized

topography has received much attention over the last few decades due to the ubiquity of

these waves in coastal seas and over continental shelves. The usual description involves a

downstream lee wave that is released from the topography as the tide turns (e.g. Maxworthy,

1979). Nonlinearity leeds to steepening. Breaking is prevented by nonhydrostatic dispersion

and the balance between nonlinearity and dispersion results in the generation of a rank-ordered
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packet of solitary waves. Other possible mechanisms include upstream blocking instead of lee

wave formation (Lee and Beardsley, 1974), transcritical generation (Grimshaw and Smyth,

1986; Melville and Helfrich, 1987), and the scattering of an internal tide beam at the surface

mixed layer (Gerkema, 2001). Which occurs depends on the details of the barotropic flow,

stratification, and topography. However, the lee wave release, or more generally the radiation

of a low-mode internal tide, that subsequently steepens and disintegrates appears to be the

most common mechanism.

A timescale for the emergence of the lead solitary wave from a localized disturbance

has been developed by Hammack and Segur (1978) for single layer flows (see Helfrich and

Melville (2006) for the two-layer extension) based on weakly-nonlinear Korteweg-de Vries

(KdV) theory. The emergence timescale depends on the initial amplitude and lengthscale of

the disturbance. Provided that the lengthscale is short compared to the internal deformation

radius and that the amplitude is not too large, this estimate should be valid. However, when

the initial disturbance lengthscale is comparable to the internal deformation radius, as is

the case when the disturbance in a radiating internal tide, or if the emergence timescale is

comparable to the local inertial period, the neglected effects of rotation will be important.

Individual solitary waves, because they are short compared to the deformation radius,

are typically considered to be unaffected by rotation. However, even weak rotation eliminates

permanent form solitary wave solutions in KdV-type theories (Leonov, 1981). An initial

solitary wave will decay by radiation damping due to resonance with long inertia-gravity

(Poincaré) waves (Melville et al., 1989; Grimshaw et al., 1998a,b). The damping can be

significant if the solitary wave propagates for time comparable to the local inertia period.

Continued propagation may result in the steepening of the inertia-gravity wave to produce

a secondary, growing solitary-like wave behind the original one and the formation of “quasi-

cnoidal” wave packets (Helfrich, 2007a).

One the other hand, the propagation of an internal tide, from which the solitary waves

may emerge, is fundamentally affected by rotation at all times. The role of rotation in the
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disintegration an internal tide into weakly nonlinear solitary waves has been considered by

Gerkema and Zimmerman (1995), Gerkema (1996), Holloway et al. (1999), and New and Es-

taban (1999). The first two are the most relevant. They undertook numerical studies based

on the weakly nonlinear Boussinesq equations with rotation (bidirectional propagation ver-

sions of KdV). The numerical results showed that unless the barotropic tidal flow over the

topography produced an initial disturbance with sufficient nonlinearity, the disintegration of

the internal tide into higher frequency solitary waves was inhibited. The radiated internal

tide remained a coherent long tide. They argued that the coherence was due to the presence

of long, weakly-nonlinear periodic inertia-gravity wave solutions to the hydrostatic limit of

the model. In contrast to solitary waves, which require a balance between nonlinearity and

nonhydrostatic dispersion, the periodic inertia-gravity waves arise from the balance of non-

linearity with rotational dispersion. These nonlinear solutions were first found by Ostrovsky

(1978) in a study of the rotationally modified KdV equation. These hydrostatic solutions

exist only up to a limiting amplitude, beyond which the rotational dispersion is not able to

balance the nonlinearity. This led Gerkema (1996) to propose a threshold argument for the

disintegration of the tide based on the nonlinearity of the initial tide (given by a measure of

the forcing strength related to the barotropic tide, stratification, and topographic slope). If

the amplitude (i.e. nonlinearity) was above the limiting amplitude, the long tide solutions

were not generated. Instead, the tide would disintegrate with most of the initial tide evolving

rapidly into shorter solitary waves. If less than the threshold, then disintegration was strongly

inhibited. They also noted that for a given forcing amplitude and frequency, increasing rota-

tion (i.e. latitude) inhibited the disintegration of the internal tide. New and Estaban (1999)

noted that increasing the tidal frequency had the same effect as a decrease in latitude.

The goal of this paper is to explore further the role of rotation in the evolution of the

low-mode nonlinear internal tide and the production of shorter, nonhydrostatic solitary waves.

This process can be viewed as a competition between high-frequency nonhydrostatic dispersion

and low-frequency rotational to balance the nonlinear steepening of the propagating tide.

However, numerous recent observations show that both the tides and solitary waves are in
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many places quite large (e.g. Stanton and Ostrovsky, 1998; Ramp et al., 2005) so that a

weakly nonlinear theory may be inadequate. Thus the restriction to weak nonlinearity will be

eliminated, while retaining the assumption of weak nonhydrostatic effects. The inclusion of

full nonlinearity has the added benefit that the properties of the hydrostatic, nonlinear inertia-

gravity waves that appear to play a substantial role the disintegration of the internal tide can

be significantly different when compared to the weakly nonlinear models. Furthermore, no

assumption about the strength of the rotation effects, as is required by unidirectional KdV-

type theories, is necessary.

The paper is organized as follows. Section 2 introduces the mathematical model for a

rotating, two-layer flows with O(1) nonlinearity and weak nonhydrostatic effects. Properties

of the solitary wave solutions to these equations in the absence of rotation are given. The

nonlinear, hydrostatic inertial-gravity waves solutions are then found. This part builds upon

work by Shrira (1986) for a single layer and Plougonven and Zeitlin (2003) for a two-layer

flow. In Section 3 numerical solutions to the full equations are explored for sinusoidal linear

inertia-gravity wave (e.g. tide) initial conditions. In Section 4 the results are summarized

and then discussed in the context of recent observations of large amplitude internal tides and

solitary waves in the South China Sea.

2. The Model

The situation under consideration is an inviscid, two-layer fluid with layer depths hi and

velocity vectors ui. Here i = 1 and 2 refer to the upper and lower layers, respectively. The

layer densities are ρ1 and ρ2 = ρ1 +∆ρ. The system is rotating about the z-axis with constant

Coriolis frequency f (> 0). The gravitational acceleration g is directed in the negative z-

direction. In the absence of motion h1 = h0 and h2 = H − h0, where H is the total depth.

The bottom is flat and the upper surface is rigid.

The propagation of nonlinear interfacial waves in this system will be studied in the limit

of fully nonlinear, α = a/hs = O(1), and weakly nonhydrostatic long waves, β = (hs/l)
2 �
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1. Here α and β are the usual parameters describing nonlinear and nonhydrostatic effects,

respectively. hs is a depth scale, and a and l are, respectively, scales for the amplitude and

length of the waves. KdV theory requires β = O(α) � 1. No restriction is placed on the

relative magnitude of the rotational effects. In the absence of rotation a set of equations for

fully nonlinear, weakly nonhydrostatic interfacial waves has been developed Miyata (1987) and

Choi and Camassa (1999) (denoted here as the MCC equations for brevity). The extension

of the MCC theory to include rotation is discussed in (Helfrich, 2007a), so only the resulting

equations are given below.

The waves will be taken to propagate in the x-direction. With rotation, motion in the

transverse y-direction will occur; however, the flow will be taken to be independent of y so

that ∂/∂y = 0. The continuity and vertically averaged x and y momentum equations for each

layer, including the Coriolis terms, are respectively

hit + [hiūi]x = 0 (1)

ūit + ūiūix − fv̄i = −gηx +
1

ρi
Px + Di + O(β2) (2)

v̄it + ūiv̄ix + fūi = O(β2). (3)

Here the overbar indicates a vertical average over a layer, ui and vi are, respectively, the

velocities in the x and y-directions, η(x, t) = h0−h1 is the interface displacement, and P (x, t)

is the pressure at the interface. The subscripts t and x indicate differentiation. The O(β)

nonhydrostatic effects are given by (Choi and Camassa, 1999)

Di = h−1
i

[
1
3
h2

i

(
ūixt + ūiūixx − (ūix)

2
)]

x
. (4)

In the weakly nonlinear limit (α � 1)

D2 −D1 = 1
3
(h0 − h2

0)sxxt + O(αβ). (5)

Equations (1), (2), and (3) are nondimensionalized using
√

g′H, H, l, and l/
√

g′H for

(ūi, v̄i), hi, x, and t, respectively. The reduced gravity g′ = g∆ρ/ρ1. The equations are

simplified by eliminating Px between (2) and (3). The Boussinesq approximation ∆ρ/ρ1 � 1
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is also employed since it is reasonable in the oceanic context and consistent with the rigid-lid

assumption. The nondimensional, rotating MCC equations (referred to as MCC-f) are

h1t + [sh1(h1 − 1)]x = 0 (6)

st +
[

1
2
s2(2h1 − 1) − h1

]
x
− γv = β(D2 − D1) (7)

vt + svh1x + s(2h1 − 1)vx + sVx + γs = 0 (8)

Vt + [svh1(1 − h1)]x = 0. (9)

Here s = ū2 − ū1 and v = v̄2 − v̄1. Note that η (= h0 − h1) has been eliminated in favor of h1

and h2 = 1 − h1. The barotropic transports in the x and y- directions are, respectively,

U = ū1h1 + ū2h2, V = v̄1h1 + v̄2h2. (10)

With the rigid lid U = U(t) and must be specified. In (6)-(9) it has been set to U = 0. The

nonhydrostatic terms Di are given by (4) with ū1 = s(h1 − 1) and ū2 = sh1.

The two parameters that appear in (6)-(9) are

γ =
l

LR
, β = (

H

l
)2 (11)

where the scaling depth hs is set to H in β. The internal deformation radius LR =
√

g′H/f .

The parameter γ, essentially the inverse of a Rossby number, measures the relative effects

of rotation. Unlike most weakly nonlinear theories (e.g. Ostrovsky, 1978; Gerkema, 1996), γ

is not restricted to be small. This is particularly important in the present context since the

internal tide has l ≈ LR (or ω/f = O(1), where ω is the frequency).

The MCC-f equations can be manipulated to obtain an energy equation (following Choi

and Camassa, 1999; Helfrich, 2007a). The total energy between x1 and x2 is

E =

∫ x2

x1

[
1

2
η2 +

2∑

i=1

1

2

(
hi(ū

2
i + v̄2

i ) +
1

3
βh3

i ū
2
ix

)]
dx. (12)
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a. γ = 0: non-rotating internal solitary waves

With no rotation, γ = 0, and β finite, (6) and (7) reduce to the (non-rotating) MCC

equations. If v = V = 0 at t = 0, they remain zero from (8) and (9). Solitary waves solutions

to (6) and (7) for the form η = η(ξ), where ξ = x− ct, can then be found from (Miyata, 1987;

Choi and Camassa, 1999; Miyata, 1985)
(

dη

dξ

)2

= β−13η2

[
1 − c−2(h0 − η)(1 − h0 + η)

h2
0(1 − h0 + η) + (1 − h0)2(h0 − η)

]
, (13)

with the shear s(ξ) given by

s =
cη

(h0 − η)(1 − h0 + η)
. (14)

The solitary wave phase speed

c = ±[(h0 − η0)(1 − h0 + η0)]
1/2 (15)

and η0 is the wave amplitude. For η0 → 0, c → ±c0 where

c0 = (h0 − h2
0)

1/2 (16)

is the linear two-layer longwave phase speed.

As in weakly nonlinear theory, the solitary waves point into the deeper layer so that η0 < 0

(> 0) for h0 < 0.5 (> 0.5 ). There are no solitary wave solutions for h0 = 0.5. Solitary waves

are limited to a maximum amplitude η0max = h0 − 0.5 that reaches mid-depth. This limiting

wave has infinite wavelength and is a smooth, dissipationless transition between two uniform

(conjugate) states. These “thick” solitary waves and conjugate states do not occur in the

KdV equation, but do appear when the cubic nonlinearity is included in the KdV-type models

(Kakutani and Yamasaki, 1978; Helfrich and Melville, 2006). These MCC solitary waves agree

quite well with full nonhydrostatic numerical calculations, laboratory experiments, and oceanic

observations (e.g. Choi and Camassa, 1999; Michallet and Barthelemy, 1998; Ostrovsky and

Grue, 2003; Camassa et al., 2006).

The MCC equations, unlike their weakly nonlinear counterparts, do not filter out Kelvin-

Helmholtz instability (Jo and Choi, 2002). As a consequence, the solitary waves can be
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unstable at high wave numbers. Numerical solutions of the MCC equations show that if

the grid resolution is too fine, unstable short waves first emerge near the wave crest and

ultimately overwhelm the calculations (Jo and Choi, 2002). This instability is enhanced for

large amplitude waves, especially as h0 becomes small (or approaches one). The instability

can be controlled by filtering out wavenumbers above the linear stability threshold (W. Choi,

pers. comm.).

b. β = 0: nonlinear internal inertia-gravity (tidal) waves

In the limit β = 0 with γ finite, (6)-(9) are simply the two-layer shallow-water equations.

The absence of nonhydrostatic dispersion eliminates solitary wave solutions. However, peri-

odic, finite-amplitude inertia-gravity wave solutions can be found (Plougonven and Zeitlin,

2003). These solutions are the two-layer extensions of the exact, fully nonlinear single-layer

inertia-gravity wave solutions found by Shrira (1986). As in the weakly nonlinear limit, these

periodic solutions arise from a balance between nonlinearity and low-frequency rotational

dispersion. Here we examine these periodic two-layer solutions. The analysis below follows

Plougonven and Zeitlin (2003); however, some new features of the solutions are discussed with

an emphasis on their properties as models of the internal tide.

We seek steadily propagating periodic solutions of (6)-(9) the form h1(ξ), where ξ = x−ct,

and c is the phase speed. Thus the continuity equation (6) gives, after integration in x and

requiring that s → 0 as h1 → h0,

s =
c(h0 − h)

h(1 − h)
.

Note that for simplicity the subscript 1 has been dropped from h1 (= h). Using this result in

the x-momentum equation (7) (with β = 0) gives after simplification

dF

dξ
= γv, (17)

where

F (h) =
c2

2

{
(1 − h0)

2

(1 − h)2
− h2

0

h2

}
− h. (18)
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The shallow water equations, (1)-(3) with β = 0, conserve the potential vorticity in each

layer,

qi =
1 + γv̄ix

hi

. (19)

This equation has been nondimensionalized as described above so that qi is scaled by f/H.

The requirement that ∂/∂y = 0 has also been used. With the potential vorticity set to the

resting value in each layer, q1 = h−1
0 and q2 = (1 − h0)

−1, (19) can be used to find

vx = γ
h0 − h

h0 − h2
0

. (20)

These values of the potential vorticity are not arbitrary. The same result is obtained directly

from (8) and (9).

Using (20) to eliminate v in (17) gives

d2F

dξ2
= γ2 h0 − h

h0 − h2
0

.

Multiplication by Fξ and integration gives

(
dh

dξ

)2

=

(
2γ2

c2
0

)
D − g(h)

(F ′)2
, (21)

where D is a constant of integration, F ′ = dF/dh, and

g(h) =
1

2
(h − h0)

2(c2φ(h) − 1), φ(h) =
c2
0 + (h − h0)

2

h2(1 − h)2
. (22)

For periodic waves, continuity requires

∫ λ

0

hdξ = 0,

where λ is the wavelength. This then implies that h oscillates between hm and hM , where

0 ≤ hm < h0 < hM ≤ 1. Without loss of generality we will limit discussion of solutions of

(21) to h0 ≤ 0.5. Because of the symmetry inherent in the equations with the Boussinesq

approximation, solutions for h0 ≥ 0.5 can be obtained by taking h0 to be the mean depth of

the lower layer and h2 given by the solution h(ξ) of (21). We will refer to the point where
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h = hm as the trough of the wave and hM as the crest even though for h0 < 0.5 these points

correspond to the maximum and minimum interfacial displacement η = h0 − h, respectively.

Similarly, we will refer to hM − h0 as the wave amplitude since, as will be shown below,

hM − h0 ≥ h0 − hm.

The nature of periodic solutions to (21) depends critically on the denominator F ′(h).

Smooth solutions require that F ′(h) 6= 0 in hm ≤ h ≤ hM . Should F ′(h) = 0 in this range,

then hx → ∞. We will for the moment suppose that this does not occur. For a smooth,

periodic solution hx = 0 at h = hm and hM . This sets the constant of integration

D = g(hm) = g(hM),

from which a relation for c can be found using (22),

c2 =
(hM − h0)

2 − (hm − h0)
2

(hM − h0)2φ(hM ) − (hm − h0)2φ(hm)
. (23)

It follows from (21) that D − g(h) ≥ 0 for hm ≤ h ≤ hM . For smooth solutions F ′(h) > 0,

and since hm ≤ h0 ≤ hM , F ′(h0) > 0. From (18), F ′(h0) = c2/c2
0 − 1, therefore c2 > c2

0.

If, on the other hand, F ′(h) = 0, then the first zero of this function sets the upper bound

for hM . As solutions approach this limit, they take on a “corner wave” shape similar to what

is found in the weakly-nonlinear theory (Ostrovsky, 1978; Grimshaw et al., 1998b) and the

fully nonlinear single-layer model (Shrira, 1986).

Whether this limiting corner wave occurs (for a given h0) depends on c. From (18)

F ′(h) = c2

[
h2

0

h3
+

(1 − h0)
2

(1 − h)3

]
− 1. (24)

The minimum of F ′ occurs at

h = ĥ =
h

1/2
0

(1 − h0)1/2 + h
1/2
0

,

and F ′(ĥ) = 0 for c = c∗, where

c∗ =

[
(1 − h0)

2

(1 − ĥ)3
+

h2
0

ĥ
3

]−1/2

. (25)
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The behavior of F ′(h) is illustrated in Figure 1. F ′(ĥ) > 0 (≤ 0) for c > c∗ (≤ c∗). Thus for

c ≤ c∗ a limiting corner wave occurs with the upper bound on hM given by the first zero of

F ′(h).

These two types of waves are illustrated in Figure 2. The upper panel shows the interface

η(ξ) = h0 −h over one wavelength for waves with h0 = 0.25 and frequency ω = 1.4 (= ω/f in

dimensional variables), found by numerical integration of (21). The parameter γ = 1. As the

waves amplitude increases the profiles take on a square, or lobate, shape, but remain smooth.

The maximum wave for this frequency is hM = 0.5504. The wave profiles are asymmetric

with hM − h0 ≥ h0 − hm. The corner wave class is illustrated in the lower panel where ω = 2.

The crest becomes increasingly peaked until the limiting wave, at hM = 0.3061, is reached.

The solution can then be constructed as a sequence of arcs in analogy with the sequence

of parabolic arcs found in the weakly-nonlinear theory (Ostrovsky, 1978; Grimshaw et al.,

1998b). We discuss below how these families with fixed ω are found.

A convenient way to illustrate the solutions is to consider where hm-hM plane, for a given

h0, periodic solutions occur. An example is shown in Figure 3a for h0 = 0.25. Periodic waves

can be found everywhere within the indicated lines, which represent different limits of the

possible wave speeds c. These boundaries are determined as follows. The limit c → ∞ is

found by setting the denominator of (23) to zero. This gives a relation between hm and hM

that is shown by the lowest curve in Figure 3a and provides a lower bound on hM given hm.

A portion of the upper bound can be deduced from Figure 1. To find solutions with hM ≥ ĥ

requires c ≥ c∗. Thus setting c = c∗ in (23) and solving the resulting equation for hM (hm)

gives the curve extending from hM = 1 to the small solid circle where hM = ĥM = ĥ. The

associated value of hm = ĥm. No solutions with c < c∗ and hm < ĥm are possible since

then the first zero of F ′(h) occurs for h < ĥM . So for hm ≤ ĥm (hM ≥ ĥM) the wave speed

c∗ ≤ c ≤ ∞.

The c∗ curve extends to hm = h0; however, for hm > ĥm this curve no longer defines the

upper bound on hM . In this range the upper bound on the wave speed, clim (c0 ≤ clim ≤ c∗)
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is given by the first zero of F ′(h) from (24). These zeros give hM = hM(c) and (23) gives

the corresponding hm. This curve is indicated by c = clim(hm) in Figure 3a. Thus for a fixed

hm > ĥm, the waves approach limiting corner-wave shape as hM increases.

Figure 3b shows lower right portion of the hm-hM plane for h0 = 0.25 with the loci of

waves with several values of frequency ω = ck, where k = 2π/λ is the wavenumber. For

ω = 2 (the semi-diurnal tide at 30◦) the maximum amplitude wave is a corner wave with

c = 0.5088 at (hm, hM ) = (0.2274, 0.3061). For the lower frequency ω = 1.4 (the semi-diurnal

tide at 44◦) the amplitude is limited by the approach to c = c∗ = 0.5359 at (hm, hM) =

(0.1475, 0.5504). Here the waves take on the lobate shape. The division between the cases

occurs for ω = 1.796. The waves shown in Figure 2 fall along these two lines. It is interesting

that sub-inertial, ω < 1, waves can be found. They are in the lobate class and have large

amplitudes. The dashed line shows the solutions with λ = 2.78, the wavelength of linear waves

with ω = 1.4 from the linear inertia-gravity dispersion relation ω2 = γ2 + c2
0k

2 with γ = 1.

The wavelength is found from the integration of (21)

λ

2
=

∫ λ/2

0

dξ =
c0

21/2γ

∫ hM

hm

F ′(h)

[D − g(h)]1/2
dh. (26)

The denominator is zero at both limits, so numerical integration employs a Taylor expansion

at each end. Waves of a particular frequency or wavelength are found from tabulating the

properties of solutions within the allowable hM range.

The effect of changing h0 is shown in Figure 4 where the regions of periodic solutions

are plotted for several values of h0. Also shown for each case is the range of solutions with

ω = 1.4. As h0 decreases, the range of solutions with ω = 1.4 decreases and the limiting wave

changes from a lobate class to the corner wave. As in Figure 3b, all solutions with ω > 1.4

fall to the right (with smaller amplitudes) of this curve. It is also interesting to note that for

h0 = 0.5 the waves are symmetric. They all fall along the line hm = hM , and are in the lobate

class. The maximum amplitude wave with ω = 1.4 is indicated by the square.

Lastly, dispersion curves c versus amplitude hM − h0 for ω = 1.4 are plotted in Figure

5. The speed is scaled by c0f = c0(1 − ω−2)−1/2, the linear inertia-gravity wave phase speed.
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Finite amplitude can either increase or decrease c compared to the linear speed c0f , and the

amplitude dispersion does not have to be monotonic.

c. Finite β and γ

When both nonhydrostatic and rotation are present there are no known analytical solu-

tions to the MCC-f equations (6)-(9). Numerical solutions have so far only examined the effect

of rotation on the evolution of an initial non-rotating MCC solitary wave from (13) (Helfrich,

2007a). As in earlier weakly-nonlinear studies (Grimshaw et al., 1998a) it was found that the

solitary wave decayed by radiation of a longer inertia-gravity wave. On longer time scales, the

inertia-gravity wave itself steepened to produce a secondary, growing solitary -like wave. This

decay and re-emergence process repeated until a nearly localized wave packet consisting of a

long envelop through which a train of faster solitary-like, or quasi-cnoidal, waves propagate.

The situation of an initial condition given by a long, hydrostatic inertia-gravity wave,

either a linear sinusoidal wave, or one of the fully nonlinear solutions just described, has

not been explored and is the focus of this study. In particular, parameters relevant for the

propagation and possible disintegration of an internal tide will be considered.

3. Numerical solutions

To organize the presentation of results the lengthscale l will be set to LR in (11), giving

γ = 1 and β = (H/LR)2 = Hf2/g′ in (6)-(9). This choice is arbitrary and it is possible to

take l = H, giving β = 1 and γ = H/LR. In either case, the sole remaining parameter is

H/LR. Conversion between them amounts to a rescaling of x and t. In the former scaling

the long inertia-gravity waves have lengths of O(1) and the nonhydrostatic waves are an

order-of-magnitude shorter. Typical mid-latitude values of H = 100 − 3000 m (coastal to

deep ocean), f ≈ 10−4 s−1, and g′ ≈ 0.01-0.05 m s−2 give β ≈ [0.2 − 30] × 10−4. Thus,

β1/2 = H/LR = [0.5− 5] × 10−2 is representative of oceanic conditions.
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a. Methods

The MCC-f equations, (6)-(9), are solved with the numerical method developed by Wei

et al. (1995) for a set of wave equations that are closely related to the non-rotating single-layer

version of the MCC equations. The method uses centered, fourth-order finite differences for all

x derivatives except those in Di, which are differenced using centered, second- order stencils.

Temporal integration is a fourth-order Adams-Bashforth-Moulton predictor-corrector scheme

with iteration on the corrector step. Only minor modifications of the scheme are necessary

for the MCC-f equations. The scheme was successfully tested by checking solitary wave

propagation in the absence of rotation. The solitary wave instability (Jo and Choi, 2002) was

found in some cases, and could be controlled by the periodic removal of high wavenumbers

(W. Choi, personal communication).

Solutions of the nonhydrostatic MCC-f equations are compared to solutions in the hy-

drostatic limit β = 0. In this limit, though, the numerical scheme above fails if wave breaking

occurs. Thus for the hydrostatic runs the non-oscillatory-central shock-capturing scheme of

Jiang and Tadmor (1998) is used.

The numerical domain is periodic in x. The resolution in x varies from 600 to over 1000

grid points to insure that any short solitary-like waves are properly resolved.

b. Results

The hydrostatic nonlinear inertia-gravity waves (nonlinear tides) are quite robust to weak

nonhydrostatic effects. Figure 6a shows the evolution of a large-amplitude nonlinear tide

solution of the lobate class for h0 = 0.25 and λ = 2.8 with hm = 0.18 (hM = 0.4229 and

c = 0.6162) after eight periods of propagation for β1/2 = 0.02 and 0.04. The only appreciable

effect of the nonhydrostatic terms is a weak decrease of the phase speed with increasing β.

The wave shapes and amplitudes are essentially unchanged. A similar calculation for an

initial wave of the corner class is shown in Figure 6b with h0 = 0.1, λ = 2.024, hm = 0.085,

hM = 0.139, and c = 0.4513. This initial wave is quite close to the limiting corner wave at
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hM = 0.1401 for these values of h0, hm, and λ. Again, the weak nonhydrostatic dispersion

leads to a decrease in waves speed that is slightly more pronounced than the previous example.

The wave amplitude is affected with increasing β leading to a smoothing of the wave crest

and a small reduction of the amplitude. The corner shape of the wave induces the enhanced

sensitivity to nonhydrostatic effects. Still, the overall wave shape is stable. The balance

between nonlinearity and rotational dispersion that gives the nonlinear inertia-gravity wave

solutions is not broken by weak nonhydrostatic effects. These two examples are representative

of other cases with similarly small, oceanographically realistic values of β.

Because of their stability to weak nonhydrostatic effects, the fully nonlinear hydrostatic

inertia-gravity waves likely play an important role in the evolution of more general initial

conditions as suggested by the weakly nonlinear studies of Gerkema and Zimmerman (1995)

and Gerkema (1996). We explore this by considering the behavior of an initial condition given

by a linear inertia-gravity wave solution to (6)-(9) with β = 0,

h = h0 + a0 sin(kx− ωt)

s = −ωa0

kc2
0

cos(kx − ωt)

v = −γa0

kc2
0

sin(kx − ωt)

and V = 0. The amplitude is a0 and ω2 = γ2 + c2
0k

2. While very idealized, this initial

condition is representative of a low-mode internal tide radiated from some localized topogra-

phy. Using the MCC-f model we can follow disintegration of this sinusoidal internal tide into

nonhydrostatic nonlinear waves and explore the role of the nonlinear inertia-gravity waves.

An example of the evolution of a linear sinusoidal disturbance with amplitude a0 = 0.06

and wavelength λ = 2.8 with h0 = 0.25 and β1/2 = 0.02 is shown in Figure 7. The linear

internal tide has a frequency ω = 1.394. Nonlinear inertia-gravity waves for these values of

h0 and λ are of the lobate class (c.f. Figure 3b). The interface η is shown over four periods,

λ/c0f , of the linear inertia-gravity wave in a frame moving with the linear wave speed c0f (> 0).

Also shown in the figure is the evolution of the same initial condition from the hydrostatic

(β = 0) model. The initial sine wave steepens and by tc0f/λ = 1 the hydrostatic solution
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goes to breaking (shock formation). The nonhydrostatic dispersion of the MCC- f solution

prevents breaking and gives rise to an undular bore. For longer times the disintegration of the

initial wave into short nonlinear waves is inhibited and for tc0f/λ ≥ 2.5 the MCC-f solution

consists of a spreading packet of short waves riding on a long, nonlinear tide that is very

close to the hydrostatic solution. By the end of the calculation one small solitary-like wave

(at x − c0ft ≈ 2.3) has separated from the packet. The short waves are not phase locked to

the long wave and in this example they propagate slower than the long wave. The leading

solitary-like wave remains close to the shock in the hydrostatic solution.

Another example for the same parameters except for a larger initial amplitude, a0 = 0.1,

is shown in Figure 8. The larger amplitude leads to generation of many more and larger short

nonhydrostatic waves. However, the qualitative behavior is the same. The disintegration of

the initial condition into short waves is ultimately inhibited, leaving behind a long nonlinear

tide underneath the shortwave packet. Again the longwave part of the MCC-f solution is very

close to the hydrostatic solution.

Recall that these “short” waves are still dynamically long and only weakly nonhydrostatic.

We use the terms short and long to distinguish the relative scales of waves that emerge.

The short waves depend fundamentally on the nonhydrostatic dispersion and typically only

weakly on the rotation. The long waves are essentially hydrostatic and are strongly controlled

by rotation. This dynamical separation is highlighted by examining the transverse shear, v,

which may act as a low-pass filter since the short solitary-like waves will typically have a

weak expression in v (Gerkema, 1996; Gilman et al., 1996). The v fields for the MCC-f and

hydrostatic solutions at tc0f/λ = 4 of the previous two figures are shown in Figure 9. The

hydrostatic and nonhydrostatic solutions are nearly identical for the a0 = 0.06 runs and quite

close for the a0 = 0.1 case.

The initiation of breaking in the hydrostatic solutions leads to the continual loss of energy

until that solution settles onto a long wave. The total energy (given by (12) with β = 0,

integrated over the wavelength) in the two hydrostatic solutions is shown in Figure 10. By
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the end of each run the energy reaches a new equilibrium. This new wave is very close to the

“longwave” part of the MCC-f solutions. This is particularly clear for in Figure 7, but also

true for the other example.

Also shown in Figures 7 and 8 at tc0f/λ = 4 are the nonlinear inertia-gravity wave

solutions with the same energy and wavelength as in the hydrostatic solution at this point.

They are reasonably close to the long wave portion of the MCC-f and hydrostatic solutions,

and suggest that the two solutions have settled onto a nonlinear inertia-gravity wave with

the short nonhydrostatic waves superimposed. There will be nonlinear interaction between

the short and long waves (Gilman et al., 1995, 1996; Helfrich, 2007a), and this may explain

the differences between the exact nonlinear solution and the longwave part of the MCC-f

and hydrostatic model solutions. Furthermore, at a given wavelength there is a continuum

of nonlinear inertia-gravity wave solutions up to the limiting amplitude (c.f. Figure 3b for

λ = 2.78). So it is quite possible that two or more of these solutions have been generated.

By inference, the energy in the short waves in the MCC-f solutions is given approximately

by the loss of energy in the hydrostatic solutions. For a0 = 0.06 and 0.1, about 2.6% and 10.2%,

respectively, of the initial energy is goes into the short nonhydrostatic waves. The energy loss

from the hydrostatic solutions, or conversely, the energy transfer to the short nonhydrostatic

nonlinear waves, as a function of amplitude of the initial linear inertia-gravity wave, a0, for

h0 = 0.25 and λ = 2.8 is summarized in Figure 11. Substantial loss of energy from the initial

tide due to breaking (or into short nonhydrostatic waves) does not occur until a threshold

amplitude a0 ≈ 0.04 is exceeded. Below the threshold, solutions from the hydrostatic model

and the MCC-f equations are nearly identical. This threshold is an important result and is

the consequence of the low-frequency rotational dispersion. It shows that not all internal tides

will steepen and produce short solitary-like waves. Calculations were not continued beyond

a0 = 0.1 due to the appearance of finite wavenumber shear instability of both the emerging

solitary waves and the long inertia-gravity wave (Jo and Choi, 2002). The degree of numerical

filtering required to keep the instability from overwhelming the calculations began to influence

the evolution.
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Changes in the nonhydrostatic parameter β do not change these basic results as might be

expected from stability of the nonlinear inertia-gravity waves to β. However, the properties of

short waves produced from the steepening are affected. Figure 6 shows the MCC-f solutions

for β1/2 = 0.01, 0.02, and 0.04 with the initial conditions of Figure 7 at tc0f/λ = 4. The

amplitudes of the short waves increase with decreasing β and, as expected from the properties

of MCC solitary waves in this amplitude range, the wave width decreases. The underlying long

inertia-gravity wave is essentially the same. The high wavenumber wiggles on the β1/2 = 0.04

solution near x−c0ft = 1.2 are the beginnings of the Kelvin-Helmholtz shear instability which

is enhanced with increasing β.

The examples with h0 = 0.25 and λ = 2.8 lead to underlying nonlinear inertia-gravity

waves that are in the lobate class. Generally, the lobate class waves for a fixed frequency or

wavelength exist over a larger range of amplitudes then the corner class waves. Thus, in the

corner regime it is more likely that the initial sinusoidal wave may have more energy than the

largest possible nonlinear inertia gravity wave. Figures 3b and 4 show that to move into the

corner class either ω must be increased (or λ decreased) with h0 fixed, or h0 decreased with

ω (or λ) fixed. Taking the latter approach and setting h0 = 0.1 and λ = 1.924 (linear wave

frequency ω = 1.4) puts the limiting inertia-gravity wave in the corner class. The limiting

wave has hm = 0.0862 and hM = 0.1357 and has total energy per wavelength equal to a linear

inertia-gravity wave with amplitude a0 = 0.0194.

Figure 13 shows numerical solutions for a case with h0 = 0.1, λ = 1.924, and a0 = 0.015.

The total energy of the initial wave is within the range of nonlinear inertia-gravity wave

solutions. The solutions of both the MCC-f (with β1/2 = 0.02) and hydrostatic models are

much the same as the previous examples with production of short solitary-like waves in the

MCC-f model inhibited once the solutions settle on underlying long nonlinear wave that is

again almost identical to the hydrostatic solution.

The solution becomes quite different when the initial amplitude is increased. An example

with a0 = 0.025 is shown in Figure 14. The other parameters are unchanged. The initial
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energy is now outside the range of nonlinear inertia-gravity wave solutions. As before, the

hydrostatic solution proceeds to breaking and the MCC-f solution develops an undular bore

that rapidly separates into a train of solitary-like waves. As the evolution progresses, the

breaking in the hydrostatic model diminishes until the solution settles on a nonlinear inertia-

gravity wave with total energy just slightly less than that of the maximum inertia-gravity wave

with this wavelength. The hydrostatic solution at tc0f/λ = 4 is very close to this theoretical,

limiting solution as shown in Figure 14.

The MCC-f solution, on the other hand, continues to disintegrate until it consists primar-

ily of individual solitary waves. There is little indication from the η solution of an underlying

inertia-gravity wave similar to the hydrostatic solution. Thus the rotational dispersion did not

arrest the disintegration of the initial tide. One difference between this case and the others is

the large amplitude of the emerging solitary waves. At tc0f/λ = 2.5 the largest wave has an

amplitude η0 ≈ −0.16. Thus |η0|/h0 ≈ 1.6, compared to |η0|/h0 ≈ 0.4 in Figure 8. With such

large waves a significant fraction of the initial mass of the upper layer (= h0λ) is contained in

the solitary waves. In the hydrostatic solution, all the mass remains in the long wave part of

the solution.

The transverse vertical shear v for the MCC-f and hydrostatic runs in Figure 14 at the

last time shown are plotted in Figure 15. The hydrostatic solution is comparable to those

shown in Figure 9. The MCC-f solution is quite different. It is characterized by a large jump

in v at the location of the largest solitary wave. The magnitude of v is the same order as the

hydrostatic solution. Thus the v field, that in the previous examples effectively filtered out

the short waves to show clearly the underlying inertia-gravity wave, is now affected by the

short solitary wave(s). Indeed, a jump in v is precisely what is predicted by weakly nonlinear

theories for the radiation damping of a solitary wave in a rotating system (Grimshaw et al.,

1998a). This implies a strong, continuing interaction between the solitary waves, or at least

with the largest one, with the inertia-gravity waves. The longwave component of the MCC-f

solution is the result of the solitary wave(s) rather than an underlying long wave that remains

after the disintegration. When the nonhydrostatic calculation is carried further the large
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solitary wave decays and there is some evidence of the emergence of a quasi-periodic wave

packet as found in Helfrich (2007a). However, the large amplitudes of the waves and the

periodic domain make this difficult to identify unambiguously. It does show that the transfer

of energy from the long, hydrostatic part of the solution to the short nonhydrostatic waves

can be, in part, reversed.

This last example shows that the energy loss in the hydrostatic model will not always

provide a good estimate of the energy transfered to the short nonhydrostatic waves. The

hydrostatic model does, however, give an approximate lower bound on the energy transfer.

The energy per wavelength of the hydrostatic solution as a function of time for the two h0 = 0.1

calculations above are shown in Figure 10. The energy lost from the hydrostatic solution as

a function of the initial amplitude a0 is given in Figure 16 for a series of runs with the same

parameters, h0 = 0.1 and λ = 1.924. As before, there is a threshold amplitude, now about

0.01, below which the rotational dispersion prevents breaking in the hydrostatic calculation.

Also shown in the figure by the solid line is the energy of the initial condition in excess of the

energy of the largest, limiting nonlinear inertia-gravity wave solution for these parameters.

Energy loss above this curve for a0 > 0.0194 implies that the final state has less energy than

the limiting wave, and vice versa. MCC-f runs with initial amplitudes a0 . 0.18 behave as

shown in Figure 13, with the disintegration arrested by rotational dispersion and longwave

part of the solution close to the hydrostatic case. Then energy transfered into the short waves

is approximately the same as lost from the hydrostatic solution. When a0 & 0.2 the MCC-f

solutions behave as shown in Figure 14, suggesting that most of the energy goes into the

shorter solitary-like waves. The transition in behavior occurs at a0 = 0.0194 where the initial

wave has more energy than the limiting nonlinear inertial-gravity wave. Calculations with

β1/2 = 0.01 yield the same results, though the solitary wave properties are modified.

Nearly complete disintegration of the initial internal tide does, for the examples in Figures

13 and 14, require an initial energy greater than the energy of the limiting nonlinear inertia-

gravity wave. Whether this is always the case, or depends upon the particular parameters

or the shape of the initial condition (e.g. departure from sinusoidal shape and proximity to
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a nonlinear inertia-gravity wave), will require more study. However, some calculations have

been made for h0 = 0.25 and λ = 1.571 (ω ≈ 2) that put the limiting wave in the corner class.

A calculation with a0 = 0.05, shown in Figure 17, has an initial energy well in excess of the

limiting wave. The disintegration is not as complete as the earlier example. The longwave

part of both the η and v fields are close to the hydrostatic solution. The largest solitary wave

does cause the transverse velocity v to depart from the hydrostatic solution in the same sense

as Figure 15. One distinction between these two examples is the nonlinearity of the solitary

waves. In Figure 14 |η0|/h0 ≈ 1.8, and |η0|/h0 ≈ 0.7 in Figure 17. Increasing nonlinearity

of the solitary waves leads to a stronger interaction between the short and long waves. This

apparently prevents the solution from settling into a state in which a packet of short waves is

essentially superimposed on a stable, long inertia-gravity wave.

4. Discussion

The fully nonlinear MCC-f model [(6)-(9)] solutions show that the nonlinear inertial-

gravity waves prevent the total disintegration of the initial internal tide, consistent with earlier

studies of weakly-nonlinear waves. However, the conditions for the disintegration of the initial

internal tide into short solitary waves are further clarified. For the small, oceanographically

reasonable values of the nonhydrostatic parameter β1/2 = H/LR considered, there is a mini-

mum amplitude of the initial tide below which the rotational dispersion is sufficient to prevent

nonlinear steepening and breaking. It is, however, well below the limiting amplitude for the

nonlinear inertia-gravity waves. The initiation of breaking and energy loss in the hydrostatic

model runs (Figures 11 and 16) begins for a0/h0 ≈ 0.12 − 0.16, though it is not clear from

these two choices of h0 and λ that this will always be the case. The degree of disintegration

increases monotonically above this threshold, but is still incomplete. A growing fraction of

the energy in the initial tide is shed into short solitary waves, leaving a long nonlinear tide on

which packets of shorter waves propagate. The properties of the underlying nonlinear tide are

well approximated by solutions of the hydrostatic (shallow water) limit of the governing equa-

tions. Initial internal tide energies above the energy of the limiting nonlinear inertia-gravity

22



wave may lead to a complete disintegration of the internal tide into shorter solitary waves,

though the nonlinearity of the short waves and their interaction with the inertia-gravity waves

appears to be an important aspect of this process. In these cases the hydrostatic model does

not give an accurate representation of the longwave part of the solution. Conditions which give

underlying lobate-class inertia-gravity waves are less likely undergo significant disintegration

since these waves exist over a larger range of amplitudes than the corner-class waves.

Numerical calculations (not shown) with weakly nonlinear versions of the equations (es-

sentially those used by Gerkema (1996)) give similar results. However, the weakly-nonlinear

models can result in substantial quantitative differences for even moderate amplitudes. This

is due largely to the differences in the hydrostatic, nonlinear inertia-gravity waves in each

system. For example, the Boussinesq set of equations from Gerkema and the related unidi-

rectional propagation, rotating KdV equation (Ostrovsky, 1978) have only the corner-class

inertia-gravity waves in the hydrostatic limit. The addition of cubic nonlinearity to the ro-

tating KdV model gives rise to the lobate class hydrostatic wave, but eliminates the corner

class. In addition to expanding the applicability of the model for the short solitary-like waves

to larger amplitudes, the MCC-f equations the advantage of more accurate representation

of the important long nonlinear tides. A cost of using these equations is the presence of

Kelvin-Helmholtz instability at very short scales that can overwhelm the numerical solutions.

This can, however, be eliminated by retaining only the O(β) terms in the dispersion opera-

tor D2 − D1 in (2) (see discussion following (4)). This truncation causes minor changes in

the solitary wave properties and results in equations that are close to those obtained when

cubic nonlinear effects are included in the Gerkema (1996) model. The truncation leaves the

long, hydrostatic waves unaffected and has been shown to give good results for the radiation

damping of solitary waves when compared to the full MCC-f equations (Helfrich, 2007a).

This MCC-f model is limited to two-layers, though extension to multiple layers is possible.

However, the system of governing equations grows and rapidly becomes very cumbersome. It

is probably easier and more accurate to use a continuously stratified, nonhydrostatic numerical

model such as in Lamb (1994). The role of the nonlinear inertia-gravity waves should be qual-

23



itatively unchanged since these wave solutions persist with similar properties for continuous

stratifications (Helfrich, 2007b)

The model results can be applied to recent observations of large amplitude internal waves

in the South China Sea. Ramp et al. (2005) has shown that very large solitary waves with

amplitudes greater than 100 m can be found in the western part of the South China Sea.

From an analysis of the arrival of the packets of solitary waves Ramp et al. (2005) and Zhao

and Alford (2006) have determined that the waves were generated by tidal flow over the

abrupt topography about 400 km to the east in the Luzon Strait near the Batan Islands.

Satellite observations of the area indicate that the solitary waves first appear about 100 km

west of the strait (Zhao et al., 2004), pointing to the emergence of the solitary waves from

the radiating internal tide west of the strait (c.f. Lien et al., 2005). The tidal currents in

generation region are mixed, with both the primary semidiurnal and diurnal constituents of

comparable magnitude (Ramp et al., 2005; Zhao and Alford, 2006). At this latitude, 21◦ N,

the diurnal frequency is 1.4f and the semidiurnal frequency is 2.7f . An estimate of h0 can be

found from the continuously stratified longwave eigenmode solution using density profile in

the mid-basin (from D. Farmer). The lowest eigenmode has a linear, non-rotating longwave

phase speed c0 = 2.85 m s−1 and the zero-crossing of the horizontal velocity about 600 m deep

in 3000 m of water. Thus h0 ≈ 0.2 in the two-layer approximation. For these tidal frequencies

and this stratification, the semidiurnal internal tide is in the corner class and the diurnal tide

is in the lobate class (c.f. Figures 3b and 4). The latter will have nonlinear tide solutions over

a large range of amplitudes (limiting wave at (hm, hM) = (0.125, 0.493)). The semidiurnal

nonlinear internal tide solutions will exist only over a limited range of amplitudes (limiting

wave at (hm, hM ) = (0.1926, 0.2159)).

As a test that the model results are relevant, a simple application to the South China Sea

conditions has been made. The longwave phase speed c0 = 2.85 m s−1 from the density profile

gives g′ = 0.017 m s−2 for a two-layer model with h0 = 0.2 and H = 3000 m. At 21◦ N, the

deformation radius LR =
√

g′H/f = 137 km. The linear diurnal and semidiurnal internal tides

have nondimensional (by LR) wavelengths λ = 2.56 and 1.0, respectively. Figure 18 shows
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two runs with the MCC-f model for these wavelengths with initial amplitudes a0 = 0.0167,

or 50 m in dimensional units. The calculations were made with β1/2 = 3/137 ≈ 0.02. The

diurnal tide (Figure 18a) is shown at t = 6.17 and the semidiurnal tide (Figure 18b) at

t = 8.14. These nondimensional times correspond to propagation at the respective linear

phase speeds c0f of about 480 km, the distance from the Luzon Strait to the western side

of the basin. As expected, the diurnal tide has remained intact, while semidiurnal tide has

begun to disintegrate, producing a lead solitary wave with amplitude η0 ≈ 0.05, or 150 m.

From these nonhydrostatic modeling results we expect that the internal tide (of a given

amplitude) will remain largely intact at the diurnal frequency and experience significant dis-

integration into short solitary waves at the semidiurnal frequency. This is indeed what is

observed. Figures 8 and 9 in Zhao and Alford (2006) show that the arrival of large inter-

nal solitary waves at the western side of the basin occurs when the generating tides have

maximum western velocity at Luzon (after taking into account a phase shift consistent with

propagation times across the basin) and are dominantly semidiurnal in character. When the

tides in Luzon change to dominantly diurnal, the large solitary waves are eliminated. This

happens even though the magnitude of the barotropic flow in the strait is comparable in both

regimes. Furthermore, Zhao and Alford (2006) (see their Figure 2) find that the amplitude of

the low-pass filtered internal tide at the western slope mooring is smaller by a factor of about

two during the semidiurnal regime than during the diurnal phase. This is in rough agreement

with Figure 18. New measurements by D. Farmer from moorings in the mid-basin, about

200 km west of the generation site show a the same relation between the dominant frequency

of the Luzon barotropic tide and the occurrence of large solitary waves at the moorings (D.

Farmer and C. Jackson, pers. comm.).

This simple comparison with the observational data qualitatively supports the theoretical

and modeling conclusions, though more extensive and direct comparisons with the data are

needed. This should include modeling of the generation of the radiated internal tide since

that sets the initial condition for the disintegration. It will probably be necessary to also
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incorporate variations in topography along the propagation path that influence the evolution

of both the internal tide and any solitary waves produced by the disintegration.
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Figure 1: An example of F ′(h) from (24) for h0 = 0.1. Zeros of F ′(h) occur for c ≤ c∗ = 0.625.

0 0.5 1 1.5 2 2.5
−0.4

−0.2

0

0.2

ξ

η

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.1

−0.05

0

0.05

ξ

η

Figure 2: Examples of the two classes of nonlinear inertia-gravity waves for h0 = 0.2. The

interfacial displacement η = h0 − h is shown over one wavelength. a) Lobate-class waves

for ω = 1.4 and hM = 0.3, 0.375, 0.46, and 0.55. b) Corner-class waves for ω = 2 and

hM = 0.27, 0.29, and 0.306.
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Figure 3: a) Periodic nonlinear inertia-gravity wave solutions for h0 = 0.25 are found every-

where within the region in the hm- hM plane bounded by the labeled curves. The small dot

indicates the transition point between limiting amplitude corner-class waves to lobate-class

waves. b) A close-up showing the loci of nonlinear solutions with frequencies ω = 1, 1.4, and

2, and wavelength λ = 2.78.
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Figure 4: The regions of nonlinear wave solutions for h0 as indicated. The solid line within

each solution domain shows the loci of solutions with ω = 1.4. When h0 = 0.5, the ω = 1.4

solutions extend up to the square.
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Figure 5: The phase speed c of the ω = 1.4 nonlinear inertia-gravity wave solutions in Figure

4 as a function of wave amplitude, hM − h0. The speed has been scaled by the linear inertia-

gravity phase speed c0f .
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Figure 6: Numerical solutions to the MCC-f equations showing the stability of an initial

nonlinear inertia-gravity wave solution to weak nonhydrostatic effects. The solid line shows

the initial wave interface displacement η over one wavelength. The solutions with β1/2 = 0.02

(dashed) and 0.04 (dash-dot) are shown after eight periods of propagation. a) Initial lobate-

class wave with h0 = 0.25, λ = 2.8, hm = 0.18, and hM = 0.4229. b) Initial corner-class wave

with h0 = 0.1, λ = 2.024, hm = 0.085, and hM = 0.139.

33



0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x − c
0f

 t

η 
  a

t  
 t 

c 0f
 / 

λ

Figure 7: The evolution of an initial linear inertia-gravity wave for h0 = 0.25, λ = 2.8 and

a0 = 0.06. The interfacial displacement η is shown over four periods of the linear wave in a

frame moving at the linear phase speed c0f . The MCC-f solution for β1/2 = 0.02 is given by

the solid line and the hydrostatic solution by the dashed line. The dash-dot line at tc0f/λ = 4

is the theoretical nonlinear inertia-gravity wave solution with the wavelength and energy of

the hydrostatic solution at that time.

34



0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x − c
0f

 t

η 
   

at
   

 t 
c 0f

 / 
λ

Figure 8: The same as Figure 7 except a0 = 0.1.
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Figure 9: The transverse vertical shear v of the MCC-f (solid) and hydrostatic (dashed)

solutions at t = 4λ/c0f from a) Figure 7; b) Figure 8. The dash-dot line in (a) is the

theoretical nonlinear inertia-gravity wave solution with the wavelength and energy of the

hydrostatic solution at this time.
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shown by the solid lines. The initial amplitude a0 is indicated and the energy is scaled by the

initial energy E0. The results from Figures 13 and 14 are shown by the dashed lines.
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Figure 11: The energy per wavelength lost from the hydrostatic solution δE = Eend − E0

versus the amplitude a0 of the initial sinusoidal wave for h0 = 0.25 and λ = 2.8. Eend is the

final energy once breaking has stopped.
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Figure 12: The MCC-f solutions at t = 4λ/c0f for h0 = 0.25, λ = 2.8, a0 = 0.06, and β1/2 = 0.1

(dashed), 0.02 (solid), and 0.04 (dash-dot).
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Figure 13: The same as Figure 7 except h0 = 0.1, λ = 1.924, and a0 = 0.015.
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Figure 14: The same as Figure 7 except h0 = 0.1, λ = 1.924, and a0 = 0.025.
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Figure 15: The transverse vertical shear v of the MCC-f (solid) and hydrostatic (dashed) at

t = 4λ/c0f solutions in Figure 14 .
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Figure 16: The energy per wavelength lost from the hydrostatic solution δE = Eend − E0

(circles) versus the amplitude a0 of the initial sinusoidal wave for h0 = 0.1 and λ = 1.924.

Eend is the final energy once breaking has ceased. The solid line is the energy in the initial

condition in excess of the limiting nonlinear inertia-gravity wave.

0 0.5 1 1.5

−0.2

−0.1

0

0.1

(a)

x

η

0 0.5 1 1.5

−0.05

0

0.05

(b)

x

v

Figure 17: The interface η (a) and the transverse vertical shear v (b) at t = 4c0f/λ for an

initial linear inertia-gravity wave for h0 = 0.2, λ = 1.57 and a0 = 0.05. The MCC-f solution

with β1/2 = 0.02 is shown by the solid line and the hydrostatic solution by the dashed line.
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Figure 18: Results from the nonhydrostatic model with conditions approximating the (a)

diurnal and (b) semidiurnal tides in the South China Sea. The panels show the interface η

at times equal to the time for the linear tides to propagate across the basin. See the text for

details. Note that the semidiurnal solution in (b) has been extended in x to a distance equal

to the wavelength of the diurnal tide.
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