
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288386481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Editorial Manager for Journal of Mathematics Teacher Education 

Manuscript Number:  JMTE293R1 

Title:  USING TASKS TO EXPLORE TEACHER KNOWLEDGE IN 
SITUATION-SPECIFIC CONTEXTS  

Article Type:  Special Issue Manuscript 

Section/Category:  Short Research Paper 

Key Words:  teacher knowledge, task, algebra, absolute value 

Corresponding Author:   Elena Nardi 

Corresponding Author’ Institution:  University of East Anglia (Norwich, UK) 

First Author:  Irene Biza 

Order of Authors:  Biza, Nardi, Zachariades 

Corresponding Author’s Address:   School of Education, University of East Anglia, Norwich NR4 
7TJ, UK. 

Corresponding Author’s Email:  e.nardi@uea.ac.uk 

Manuscript Region of Origin:  Greece and UK 

Abstract:  Research often reports an overt discrepancy between 
theoretically / out-of context expressed teacher beliefs about 
mathematics and pedagogy and actual practice. In order to 
explore teacher knowledge in situation-specific contexts we 
have engaged mathematics teachers with classroom scenarios 
(Tasks) which: are hypothetical but grounded on learning and 
teaching issues that previous research and experience have 
highlighted as seminal; are likely to occur in actual practice; 
have purpose and utility; and, can be used both in (pre- and in-
service) teacher education and research through generating 
access to teachers’ views and intended practices. The Tasks 
have the following structure: reflecting upon the learning 
objectives within a mathematical problem (and solving it); 
examining a flawed (fictional) student solution; and, describing, 
in writing, feedback to the student. Here we draw on the written 
responses to one Task (which involved reflecting on solutions 
of 1 0x x+ − = ) of 53 Greek in-service mathematics teachers in 
order to demonstrate the range of teacher knowledge 
(mathematical, didactical and pedagogical) that engagement 
with these tasks allows us to explore. 
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Explorations of teachers' beliefs and their relation to practice (see, for example, (Thompson 1992) for 
a review) acknowledge the overt discrepancy between theoretically and out-of context expressed 
teacher beliefs about mathematics and pedagogy (e.g. in interview-based studies) and actual practice. 
Therefore teacher knowledge is potentially better explored in situation-specific contexts. Within 
professional training courses focusing on situation-specificity, or what Shulman (1986, 1987) calls 
‘case knowledge’, is far from novel: trainee lawyers are typically required to engage with problems 
that concern the application of the law in specific cases (thus exploring gaps in their understanding of 
the law as well as exploring the complexities of applying the law in real cases). Similar requirements 
feature also in the training of doctors and other professionals. In all of these cases the emphasis is on 
transforming theoretical knowledge into theoretically-informed practice. In the context of 
mathematics education, ‘a domain of professional work that makes fundamental use of highly 
specialized kinds of mathematical knowledge, […]  a kind of applied mathematics’ (Bass 2005), this 
transformation – see (Watson & Mason, this volume) – has been described by concepts such as 
Chevallard’s (1985) transposition didactique, Hill and Ball’s (2004) mathematical knowledge for 
teaching and Shulman’s (ibid) pedagogical content knowledge.  
 
In the work we discuss in this paper we engaged mathematics teachers with classroom scenarios 
which are hypothetical but grounded on learning and teaching issues that previous research and 
experience have highlighted as seminal. We thus see these scenarios as likely to occur in actual 
practice. We perceive the type of task we present here as having both purpose and utility (in the 
words of Ainley and Pratt (2002) applied to teachers as learners) and we see the potential of these 
tasks both in terms of research and teacher education. We see these tasks as suitable for engaging 
both pre- and in-service mathematics teachers. We also believe that – in contrast to posing questions 
at a theoretical, decontextualised level – inviting teachers to respond to highly focused 
mathematically and pedagogically specific situations that are likely to occur in the mathematics 
classrooms they are (or will be) operating in can generate significant access to teachers’ views and 
intended practices (Dawson 1999).  
 
The mathematically / pedagogically specific situations that we invite teachers to engage with in our 
work are in the form of tasks which have the following structure:  
 

Reflecting upon the learning 
objectives within a 

mathematical problem  
(and solving it) 

Examining a flawed (fictional) 
student solution 

Describing, in writing, 
feedback to the student 

Task Structure 
 
We propose that an examination of teacher responses to this type of task can support the following 
aims: 
 

1. Explore teachers’ subject-matter knowledge – crucially in terms of its gravitation towards 
certain types of mathematical thinking – and identify issues that their preparation for the 



classroom needs to address (for example, in terms of distinctions such as relational and 
instrumental understanding (Skemp 1976), conceptual and procedural knowledge (Hiebert 
1986) etc.).  

2. Explore teachers’ gravitation towards certain types of pedagogy and, crucially, explore how 
their preferences interact and are influenced by 1 (for example, in terms of constructivist 
principles (Freudenthal 1983) such as encouraging student participation in reconstructing 
initially incomplete or flawed solutions to mathematical problems). 

3. Explore teachers’ gravitation towards certain types of didactical practice, crucially, in the 
light of 1 and 2 and through the type of feedback they state they would provide to the student 
(for example, in terms of how they employ exemplification as a means for explanation, 
illustration etc. (Zaslavsky 2005)). 

 
In sum the tasks offer an opportunity to explore and develop teachers’ sensitivity to student difficulty 
and needs (Jaworski 1994) as well as an ability to provide adequate (pedagogically sensitive and 
mathematically precise) feedback to the student. Particularly by asking the teacher to engage with a 
specific (fictional yet plausible) student response that is characterised by a subtle mathematical error 
we can explore not only whether the teacher can identify the error but probe into its causes and grasp 
the didactical opportunity it offers (and the fruitful cognitive conflict it has the potential to generate). 
In this respect in designing these tasks we bear in mind the following: 
 

• The mathematical content of the task concerns a topic or an issue that is known for its 
subtlety or for causing difficulty to students (from literature and/or previous experience). 

• The fictional student response reflects this subtlety (or lack of) or difficulty and provides an 
opportunity for the teacher to reflect on and demonstrate the ways in which s/he would help 
the student achieve subtlety or overcome difficulty. 

• Both mathematical content and fictional student response provide a context in which teachers’ 
choices (mathematical, pedagogical and didactical) are allowed to surface.  

 
In what follows we focus on one of the tasks we have used in the course of an ongoing study1 and as 
part of a selection process for a Masters in Mathematics Education programme. As part of this 
selection process candidates sat an exam. This Task was amongst the exam questions. The 53 
candidates were in-service secondary mathematics teachers: all are mathematics graduates with 
teaching experience that ranges from a few to many years. Most have attended in-service training of 
about 80 hours. 
 

In a mathematics test students were given the problem: 
“Solve the equation: 1 0x x+ − = ” 

a.  What do you think the examiner intended by setting this problem? 
b.  A student responded as follows: 
 “It is true that 
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1 Supported by an EU ERASMUS Programme grant and by the University of Athens (ELKE). The data presented here 
have been translated from Greek. 



 Therefore the solution of the equation is
1
.
2

x = ” 

 What comments would you make to this student with regard to this response? 
The Task 

 
We recognise that in the course of their engagement with the Task the teachers were not in the 
classroom and, for example, they had some time to think about their reaction. However we consider 
that the latter may allow teacher responses to be more representative of their intentions and to be 
more reflective. We see fostering the habit of this type of reflection as a significant by-product of the 
teachers’ engagement with this type of task. 
 
In this paper we aim to demonstrate how our rationale for these tasks is reflected in the design of this 
particular Task and exemplify the type of teacher knowledge that engagement with these tasks allows 
us to explore. We do so by drawing on teacher responses to the Task and we conclude with a brief 
proposition on ways in which this type of task can be integrated in teacher education programmes.  
 
Analysis of the Task 
 
The mathematical content of this Task – solving equations that involve the absolute value || – is 
central in the Year 10 Algebra syllabus of the Greek national curriculum. The notion of absolute 
value of a rational number appears for the first time in the Year 7 textbook2 but teachers usually 
choose to introduce it a bit later at the beginning of Year 8 (in the textbook of which it appears 
briefly again in a recap chapter). In these textbooks the concept is introduced as follows: ‘The 
absolute value of a positive number is the number itself, of a negative number is the opposite number 
and of zero is zero’. The definition of |a| as distance on the number line is also mentioned but most 
applications and exercises in the Year 7-9 textbooks do not use it. In the Year 10 textbook the section 
on absolute value revisits the distance definition and emphasises that for a real number a: 
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Various properties of |a| are then introduced and are followed by applications and exercises that 
include algebraic expressions, equations and inequalities involving absolute value. Previous research 
has highlighted difficulties that learners encounter with the concept at this stage and especially in an 
algebraic context (Chiarugi et al 1990). 
 
There is a range of approaches to solving the equation in this Task. Two approaches that are 
ubiquitous in the Greek secondary mathematics classroom, both aiming to eliminate ||, are as follows: 
 

• Distinguishing cases according to the sign of x and x-1. This method employs the above 
algebraic definition of absolute value. One requirement of this approach is that the solver 
needs to make sure that the solution emerging in each case is for an acceptable value of x; 

• Squaring both sides of the equation. This method employs the property of ||, |x|2=x2 (itself 
connected to the property 2 2 for 0x y x y xy= ⇔ = ≥ ).  This method requires considerable 
facility with algebraic manipulation (e.g. expansions, employment of algebraic identities such 
as (a+b)2=a2+2ab+b2 etc.).  

 

                                                
2 Teaching of school subjects in Greek state secondary schools typically follows a textbook distributed nationally by the 
Ministry of Education. The information available in this paragraph originates in the editions of the Ministry textbooks 
used at the time of publication for teaching the Year 7-10 mathematics syllabus. 



Both approaches are generalisable and demonstrate substantial ability in algebraic manipulation. We 
will call these two approaches ‘procedural’. 
 
The fictional student response in Part (b) is a combination of both as the student first squares and 
then distinguishes cases. The student’s solution also involves heavy algebraic manipulation. The 
subtle flaw in the student’s solution is that s/he has failed to observe that in the second case ½ is not a 
solution (it does not satisfy x(x-1) ≥ 0) and therefore the equation has no solutions. 
 
Two other, also generalisable, approaches are graphical: sketching the graph of f(x) = |x|+|x-1| and 
finding the intersections with the x-axis; and, sketching the graphs of f(x) = |x| and g(x) = -|x-1| and 
finding their common point(s), if any.  
 
Finally there is an approach based on the observation that |x| and |x-1| must be simultaneously zero 
in order to add to zero (as they are both by definition non-negative quantities). As this is impossible 
the equation has no solutions. This approach relies on selecting a crucial attribute of the entity 
involved, the non-negativity of ||, and taking the logical step that if two non-negative quantities add to 
zero then both have to be zero. This approach is brief, elegant and requires a remarkable degree of 
conceptual understanding of || as well as the application of one subtle logical step. While it is specific 
to this particular equation, it does offer an opportunity for discussing equations more globally (e.g. 
observing that |x|+|x-1|=0 means |x|=-|x-1| and realising the absurdity of the latter: how can 
something non-negative be definitely non-positive at the same time while it cannot be zero?). Also, 
from a didactical point of view, acknowledging this solution offers an opportunity to discuss meta-
cognitive issues such as the benefits from having awareness of the multiple ways in which a problem 
can be approached (e.g. procedural, graphical and conceptual). For the above reasons we will call this 
approach ‘optimum’3. 
 
We envisage responses to the Task as operating at least at three levels: the substantive (algebraic and 
logical manipulations in solving equations; conceptual understanding of absolute value), the meta-
cognitive (acknowledgement of the multiple and qualitatively different ways in which an equation 
can be solved; optimal choice of solution) and the didactical (utilise the opportunity offered by the 
problem to discuss problem-solving skills such as the above mentioned elements of meta-cognitive 
awareness).  
 
More specifically, and with relation to Aims 1-3, we propose that teachers’ responses to the Task 
provide evidence for exploring the following questions:  
 

• Can the teacher identify the underlying pedagogical aim of the equation (which we described 
above as involving a deeper conceptual understanding of absolute value, the application of a 
subtle logical step and the opportunity to discuss a range of solutions)? 

• Can the teacher identify the subtle error, and its cause, in the student’s response? Incorrect 
identification may provide evidence of issues in subject matter knowledge that need to be 
addressed. 

• In the case of correct identification of the student’s error, and its cause, how does the teacher 
choose to help the student cope with the error? Does the teacher simply point at the error and 
its cause? Does the teacher facilitate the student in identifying the error herself? What are the 
didactical benefits the teacher reaps from this error? The choices the teacher makes offer 
starting points for discussion of the rationale that underlies these choices. 

• Does the teacher offer any other solutions to the student or does s/he limit feedback to a 
reconstruction of the student solution? This may be revealing both in mathematical and 
didactical terms. For example, perhaps the teacher does not see any other solution to the 

                                                
3 We note however that, again from a didactical point of view, a valid case for a preference for one of the other 
approaches can be made as well: it may be too confusing to bombard students at the relatively early stages of their 
algebraic learning with alternative solutions when they are still struggling with the standard methods. 



equation (mathematical issue) or, even if s/he does, s/he does not attribute enough 
significance to discussing these other solutions with the student (didactical issue). In the cases 
s/he does discuss them with the student what is then the quality of this discussion? Is it just a 
fragmented citation of these solutions? Or is it a comparative, juxtaposing type of 
presentation that has the capacity to generate reflection on the choices one faces when solving 
equations? 

• Does the teacher attempt to engage the student meta-cognitively? For example does s/he 
attempt to foster the idea that prior to engaging with the application of a standard procedure it 
is worth exploring whether other, potentially simpler approaches are possible in this particular 
case? 

 
In what follows we provide evidence of the types of teacher knowledge that engagement with the 
Task allowed us to explore through reference to the analysis4 of the 53 scripts/written teacher 
responses.  
 
Exploring teacher knowledge: analysis and examples from the data 
 
In sum for each script we produced an Analytical Summary, a narrative of approximately 100-200 
words, in which we described the script’s contents and evaluated the teacher’s response in 
accordance with the above list of questions. Further scrutiny of the scripts and the Analytical 
Summaries led to a three-dimensional taxonomy and all scripts were characterised in terms of the 
mathematical (M), didactical (D) and pedagogical (P) issues they raised (five, nine and five 
categories respectively). Here we exemplify from the first and the second of these5. Numbers in 
brackets indicate number of teacher responses allocated to the category. 
 
The summary lists for the Didactical and the Mathematical Issues are as follows6: 
 

Mathematical Issues Emerging from Teacher Responses to the Task 
1. Regards flaw of the student response to be the squaring in the first line (13). 
2. Regards that, in Case 1, x(x-1)≤0 needs to be solved – this is unnecessary (7). 
3. Does not see the ‘optimum’ solution (6). 
4. Makes technical mathematical mistakes, e.g. in algebraic manipulations (8). 
5. Does not identify any flaw in the student’s response (1). 

 
Didactical Issues Emerging from Teacher Responses to the Task 

1. Does not reconstruct the student response and proceeds directly to presentation of solution (3). 
2. In reconstructing the student’s solution, in particular in order to reject ½ as an acceptable solution, 

proposes the use of standard procedural methods that are unnecessarily convoluted – e.g. solving 
                                                
4 See (Biza, Nardi & Zachariades 2006) for more details on this analysis. 
5 See (Biza, Nardi & Zachariades ibid) for an example of our analysis across M, D and P: there we focused on about a 
fifth of the scripts that demonstrated pedagogical sensitivity but were constrained mathematically (at the substantive or 
meta-cognitive level) and we examined how these constraints may divert teachers from materialising their good 
pedagogical intentions (for example, how insistence on the routine methods (D2 and D3) may have diverted the teachers 
from thinking about and/or suggesting to the student the ‘optimum’ solution (D4)). We identified three types of 
constraints: insistence on standard procedural methods; inappropriate contextualisation of otherwise commendable 
pedagogical practices; and, inadequate reflection on student thinking. 
6 Under P we listed: presenting solution without encouraging participation/discussion (21); no attempt to ‘psychoanalyse’ 
the student response (10); lacking meta-cognitive reflection (21); mere identification and correction of the mathematical 
flaw of the response (13); and, drawing hasty, largely unfounded and clichéd generalisations about the student’s ability 
(3). Overall we hesitated to draw more definitive inferences from P: most P categories highlight the absence of a certain 
reference in the teachers’ response – for example, to encouraging student participation. We feel that we cannot infer a 
teacher’s conscious choice against student participation from this non-reference in their script (even though many 
responses started with ‘I would tell…’). To draw such an inference we would need further and more solid evidence, e.g. 
from observing their classroom practice or interviewing. On the other hand we feel more confident in acknowledging 
commendable pedagogical intent in scripts where there are overt references to encouraging student participation (some 
responses did start off with ‘I would encourage the student to…’ or ‘I would ask him to…’). 
 



inequalities, graphing the intervals in which x needs to belong etc. – instead of simply substituting x 
with ½ in the inequality and seeing it needs to be rejected. (21).  

3. Presents a standard procedural method other than the student’s (2). 
4. Despite identifying the ‘optimum’ solution in part (a), does not refer to it in part (b) – either at all (14) 

or faintly (3). 
5. Describes an overly general and theoretical pedagogical approach (7): offers substantively and meta-

cognitively rich propositions but does not embed them in the specific situation set in the question (5); 
alludes to constructivist ideas such as encouraging the student’s own reconstruction of the solution but 
in fact simply lets the student unguided and possibly lost (1); offers limited feedback based on 
superficial generalisations on student’s ability (1).  

6. Appears to aim at the use of commendable pedagogical practices, such as exemplifying, but employs 
them unsuccessfully – e.g. proposes examples that are incorrect, miss the point or are potentially 
misleading (3). 

7. Uses mathematical (terms, symbolism) or ordinary language problematically (8).  
8. Focuses excessively on insubstantial, trivial aspects of the question (2). 
9. Uses mathematical formalism in an over-the-top and potentially misleading way (1). 

 
A significant number of teachers (13) identified squaring as the source of the student’s error. ‘Raising 
to the power of 2’, says one, ‘we increase the number of solutions, we thus introduce new solutions’. 
This is correct in many cases as 2 2x y=  does not imply that x y= for all real numbers x and y. 
However in our case it is not the source of the problem as the equation is of the f(x)=0 kind and 

20 0x x= ⇔ =  for every real number x. Squaring is therefore not the source of the student’s error. 
 
Three teachers identified the source of the student’s error in the fact that the student allowed x(x-1)=0 
to be examined in both the cases s/he distinguished. One teacher writes:  
 

‘when we distinguish cases we do not allow these cases to have values of x in common (for example the 
student in our case let x(x-1)=0 belong to both cases’.  

 
Only four teachers attempted to highlight the problem to the student by offering simple examples. 
Some of these examples suggest that the teachers perceive the flaw in the student response to be the 
squaring in the first line (M1). For example one teacher asks the student whether the equation x=1 is 
equivalent to x2=1. Another teacher asks: ‘would I be allowed to square |x|+1=0?’. In these cases the 
teachers followed an incorrect diagnosis of the student response with a didactically commendable but 
mathematically flawed employment of examples. 
 
Six teachers also do not ‘see’ the ‘optimum’ solution and seventeen teachers, even though they hint 
at it in Part (a), do not refer to it at all or faintly in Part (b). One issue worthy of further exploration is 
what determines this absence in Part (b). Furthermore, of those who refer to the ‘optimum’ solution 
in Part (b) only one juxtaposes it to the ‘procedural’ solution offered by the student: ‘it requires 
significantly fewer manipulations and the result is easier to check’, this teacher writes. 
 
Twenty-one teachers point out that, in order to find out that ½ needs to be rejected as a solution to the 
equation, the student ‘should have solved the inequality in the second case s/he distinguished’. Some 
even say s/he ‘should have done so in both cases’. But there are far simpler ways for finding out that 
½ needs to be rejected: e.g. by substituting ½ in the initial equation or by observing the limiting 
condition in one of the cases. 
 
Eight teachers use mathematical terms in their writing with insufficient precision, for example 
‘positive number’ as meaning ‘non-negative number’ etc. whereas eight teachers make technical 
mathematical mistakes (e.g. in algebraic manipulations). There is also one teacher who does not 
identify any flaw in the student’s response. 
 
Finally none of the teachers mentioned a graphical solution. We conjecture that this may emanate 
from the fact that graphical approaches are not usual in the Year 10 Algebra course. However this 



remains a potentially interesting revelation as it may reflect a certain unease of the participating 
teachers with graphical approaches. It may also merely reflect the fact that the chapter on the 
graphical representation of |x| appears in the Greek textbook after the chapter on solving this type of 
equation. The fact that it emerged in the course of the teachers’ engagement with the Task points at 
the capacity of this type of task to allow such tendencies to surface. We were to some extent 
surprised by this and by other occurrences in the data (e.g. the substantial number of teachers who 
identified the flaw in the student response to be the squaring in the first line). We welcome this 
element of surprise and credit the Task’s design for allowing such surprise to occur. 
 
Other observations that emerged in the course of our use of the Task (and others of the same type) 
with regard to its capacity to reveal crucial aspects of teacher knowledge include: the need for a  
diversity of tasks (as different kinds of insight into teacher knowledge emerged from teachers’ 
engagement with different tasks); and, the need for evidence of teacher knowledge from a diversity of 
sources (e.g. observation of actual classroom practice, group discussions, interviews etc.). In 
resonance with the section Ways of Working in Teacher Education in (Watson & Mason, this 
volume) we conclude with a brief proposition of how these tasks can be employed in a teacher 
education context in productive ways. 
 
Using this type of task in the context of teacher education 
 
We propose that these tasks can be employed in a teacher education context as follows: as tools for 
the identification and exploration of mathematically, didactically and pedagogically specific issues 
regarding teacher knowledge (that purely theoretical questions on pedagogy or mathematics could 
not have identified); and, as triggers for teacher reflection on these issues. We also note that 
engagement with these tasks can function as a preliminary, preparatory, smoother transitory phase for 
pre-service teachers prior to their exposure to real classroom situations.  
 
Overall we envisage these tasks as offering opportunities for preparing teachers to enter the 
classroom with a heightened ability for reflective practice (Schön 1987). These opportunities may be 
in the form of workshops in which teachers engage with these tasks and reflect/discuss their and 
others’ responses to these tasks; or, in the form of following up engagement with these tasks with 
classroom trials of the mathematical problems in question (and juxtaposing the students’ actual 
responses with the responses discussed during task activity). In sum we see this type of task as part of 
a preparatory environment that raises and develops teacher awareness (Mason 1998). 
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