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SUSPENSIONS
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IPTME, Loughborough University, Loughborough, LE11 3TU Leicestershire, UK

Abstract

A new colloidal route leading to the production of ~99% dense 3 mol% yttria 

stabilized zirconia nanostructured ceramics, whilst retaining a final average grain size of 

~75 nm, has been developed. The process was based on the production of stable, 

homogeneous nanosuspensions with solids contents of up to 28 vol% (70 wt%) but 

viscosities less than 0.05 Pa s at any shear rate in the range of study were obtained. The 

suspensions were formed by the concentration and optimization of precursor, dilute (5.0 

vol%) commercial nanosuspensions, the approach requiring a change of pH, from the 

2.4 of the as-received suspension to 11.5, and the use of an appropriate anionic 

dispersant. Exposure of the nanosuspensions to ultrasound also helped to reduce the 

viscosity further, though it only worked when the dispersant was optimized. The 

nanosuspension was slip cast to form homogenous green bodies with densities of ~55% 

of theoretical without agglomeration in the nanostructure; these were subsequently 

densified using a two-step sintering technique.

* Author to whom correspondence should be addressed. e-mail: cruz@icv.csic.es
† Currently at the Instituto de Cerámica y Vidrio (CSIC), Madrid, Spain
‡ Member, American Ceramic Society.

Supported by Rolls Royce Fuel Cell Systems Ltd., the PowdermatriX Faraday and the Engineering and 
Physical Science Research Council (EPSRC), UK, under grant No. GR/S84477/01 and the Spanish 
Education and Science Ministry under postdoctoral grant No. EX2004-1012.

Page 1 of 34

Journal of the American Ceramic Society

Journal of the American Ceramic Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

I. Introduction

The recent interest in nanocrystalline materials arises from their potential to display 

unusual properties, including higher hardness and strength in both metals and 

ceramics,1,2 and also lower sintering temperatures, offering the ability to save energy

and allowing metals and ceramics to be co-fired to a greater extent. If powders can be 

consolidated into fully dense engineering parts without loosing the nanostructure, there 

is the potential to use the materials for structural, thermal, magnetic, electric or 

electronic applications such as capacitors, varistors, electronic substrates, wear, thermal 

barrier and net shape parts, magnets and tools.2 Conventional, submicron zirconia 

ceramics are widely used for their excellent mechanical3 and electrical properties4 and 

hence there is considerable interest in investigating the properties of nanostructured 

yttria stabilized zirconia (YSZ) ceramics.

Commercial nanopowders can now be produced in relatively large quantities, 

although to date they are generally strongly agglomerated and/or show large amounts of 

organics derived from their synthesis.5 However, a major obstacle to the formation of 

genuinely nanostructured ceramics (average grain size <100 nm) is in the preparation of 

homogeneous green bodies. Whilst dry forming via die or isostatic pressing is industry’s 

generally preferred route, the strong agglomerates that readily form in dry nanopowders, 

plus the latter’s inability to flow, means that wet forming routes are likely to lead to 

greater success. Colloidal processing generally allows the production of complex-

shaped parts with reduced size and number of pores and higher reliability,6 however the 

majority of wet forming routes,7-11 such as slip casting, in-situ coagulation molding, gel

casting and tape casting, require stable slurries with a high solids loading and a low

viscosity and this is difficult to achieve with particles in the sub 100 nm range.12,13

Colloidally stable nanopowder suspensions are known to display a markedly lower 
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volume loading at the same viscosity compared to suspensions with larger particle 

sizes.13 

The dispersion of ceramic powders in either an aqueous or a non-aqueous medium 

has received considerable attention,14,15 the nature and strength of the interparticle 

forces and also the quantity, shape, and size of the particles determining the rheological 

properties of a suspension.16-18 To achieve adequate distance between the particles in 

ceramic suspensions generally requires the use of surfactants that modify the particle 

surface. This can be achieved by changing the surface charge, coating the particles with 

an organic barrier layer or the combination of the two, i.e. the use of polyelectrolytes,19-

22 although the saturation adsorption and dissociation of the latter in aqueous solution 

are strongly dependent on the pH of the solution.23,24

It is known that tetramethylammonium hydroxide (TMAH), tetraethylammonium 

hydroxide (TEAH) and tetrapropylammonium hydroxide (TPAH) are all quaternary 

ammonium surfactants for which the positively charged nitrogen atom can be adsorbed 

onto particle surfaces, enhancing stabilization in some systems25-28 and also acting as a 

strong base. The length of the alkyl chain affects the rheology of the suspension, with 

viscosity, yield stress and thixotropy all increasing with increasing chain length.27 As a

result, the green density decreases as the chain length increases. As a result of these 

properties, TMAH was studied as basic agent in the present work.

The aim of the present work was to investigate the potential for preparing fully 

dense, 3 mol% yttria stabilized zirconia nanostructured ceramics whilst retaining a final 

average grain size of <100 nm. In order to avoid the drawbacks of dry nanopowders, 

which include uncontrolled agglomeration, the presence of organics (from their 

synthesis) and potential toxicity due to their ultrafine size, a dilute commercial nano 

suspension was used to prepare low viscosity, high solid content nanosuspensions. 
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Optimization of the basic agent required to modify the suspension pH, the dispersant 

and the use of ultrasound were all performed. The most promising nanosuspensions 

were slip cast into green bodies that were subsequently sintered, both the green and 

sintered bodies being thoroughly characterized in terms of their density and 

nanostructure, the latter in terms of their homogeneity and grain size.

II. Experimental Procedure

The precursor, as-received, nanosuspension (MEL Chemicals Ltd, Manchester, UK) 

contained 5.0 vol% of 3 mol% yttria stabilized zirconia nanoparticles (3YSZ) in 

deionised water. The solids loading was calculated after drying the suspension in an 

oven at 60ºC overnight, followed by calcination at 500oC for 2 h. The density of the 

dried and calcined powder was measured by He pycnometry (Quantachrome, Fleet, 

UK), resulting in values of 4.88 g cm-3 and 5.55 g cm-3 respectively. All calculations 

were performed with the powder crystallographic density, 6 g cm-3.

A tetragonal/cubic phase content of 92% was observed in the dried nanopowder 

using XRD, the balance being monoclinic. The as-received suspension, which had a pH 

of 2.4±0.1, was also characterized in terms of particle size using an AcoustoSizer II 

(Colloidal Dynamics, Sydney, Australia) and the dried nanoparticles were examined 

using transmission electron microscopy, TEM, (JEOL 2000FX, Jeol, Tokyo, Japan).

The effect of both cationic and anionic dispersants were examined. The former,

poly(ethylenimine), PEI, (BDH Chemicals Ltd., Poole, UK), was appropriate for the as-

received acidic suspension,24 whilst the anionic dispersants required that the pH be 

modified to the basic region.20,23,24 This was achieved using both 35% ammonia solution 

(Fisher Scientific, Loughborough, UK) and solid tetramethylammonium hydroxide, 
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TMAH (Aldrich Chemicals Ltd, Dorset, UK), the latter having the advantage of not 

involving the initial further dilution of the precursor nanosuspension. When the 

ammonia solution was used, the solids content of the nanosuspension fell from 5.0 to 

3.3 vol%; with the TMAH, it remained at 5.0 vol% and the suspension displayed 

superior stability. Additions of 6.7 wt% of TMAH, as a function of the suspension 

solids content, were found to be required to modify the as-received suspension’s pH 

from 2.4 up to 11.5±0.1. The anionic dispersants investigated were Dispex A40, an 

ammonium polyacrylate-based surfactant, NH4PAA, (Ciba Speciality Chemicals, 

Bradford, UK), and triammonium citrate, TAC, (FSA Laboratory, Loughborough, UK).

The latter was studied because it is a relatively short molecule that was considered to be 

less likely to be broken by the application of ultrasound, which was used to break down 

any agglomerates present.

The suspensions involving PEI were prepared by mixing 2.0 and 4.0 wt% directly 

into the as-received suspension; the presence of the strong acid neutralized its basic –

NH– groups and conferred a positive charge on the polymer skeleton.19 For the anionic

dispersants, 1 to 4.5 wt% additions of Dispex and TAC were introduced to the pH-

modified nanosuspension, preliminary work indicating that 2.5 wt% was the optimum 

addition. The adsorption of dispersants was achieved by shaking the suspensions, on an 

automatic shaker (KS 260 basic, IKA, Staufen, Germany), in closed plastic bottles for 

20 h. Note: in all cases, the amount of the deflocculant addition is expressed in terms of 

the active matter present in the dispersant with respect to suspension solids loading. 

Zeta potential and particle/agglomerate size measurements as a function of pH were 

performed using an AcoustoSizer II. The as-received suspension was diluted to 1.8 

vol% using deionised water due to the difficulties found in performing a continuous 

titration at higher solids loading in the equipment. Titration was performed from acid to 
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base, using 1M NaOH solution (automatic titration) or by manual addition of TMAH. 

Similar measurements were made on the basic diluted suspension (achieved using 

ammonia solution) containing 2.5 wt% Dispex A40 or TAC using 1M NaOH and HCl 

solutions for pH adjustments.

The dilute nanosuspensions were subsequently concentrated in a water bath at 50ºC 

for between 1 and 4 days, depending on the required final solids loading and, for the 

anionically-dispersed suspensions, whether ammonia solution or TMAH was used. For 

example, to achieve a solids content of 17 vol% required 4 days for the ammonia 

solution-based suspension and only 2 days for that produced using TMAH due to the 

higher solids content at the starting point. Throughout the process, the pH was 

controlled every two hours, keeping it at 9.5±0.1, and the suspension was stirred 

constantly.

As already indicated, in order to break up any agglomerates present, the suspensions 

were exposed to ultrasound using a KS150 ultrasound probe (Kerry Ultrasonics Ltd, 

Skipton, UK), with an amplitude of 14 µm and a power of 75 W. In all cases, the 

ultrasound was applied to 50 ml aliquots of the different nanosuspensions. A variety of 

different time periods of ultrasound exposure were investigated, from 0 to 10 minutes. 

Note that the ultrasound exposure was performed in 1 minute steps, with the suspension 

being stirred at room temperature for 10 minutes between each ultrasound application in 

order to avoid excessive heating of the nanosuspension.

A “multi-ultrasound” approach was also applied to selected suspensions, as distinct 

from the simple ultrasound method described above. The “multi-ultrasound” technique 

involved applying ultrasound to the suspension at several different points in the 

concentration process until the required solids loading was achieved. For example, the 

suspension dispersed with Dispex was exposed to ultrasound 3 times during the 
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evaporation process; 2 minutes at a solids loading of 15 vol%, then a further 5 minutes 

when it reached 19 vol% and finally 10 more minutes at 28 vol%. For the TAC-based

suspension, it was found that less ultrasound was required, viz. only two applications, 6 

minutes at 24 vol% followed by a further 2 minutes at 28 vol%. In all cases, the 

suspensions were held in a cold water bath during ultrasonication the suspension 

heating.

The size of any agglomerates present in the nanosuspensions was measured using a 

Mastersizer 2000 (Malvern Instruments Ltd., Malvern, UK). Based on the results, it is 

believed that the agglomerates formed during the evaporation of the suspension were

subsequently broken by the ultrasound, thus allowing more concentrated suspensions to

be prepared. The rheological behavior of the suspensions was determined using a Visco 

88 BV viscometer (Bohlin Instruments, Cirencester, UK) with a C30 concentric 

cylinder sensor and varying the shear rate from 0 to 1000 s-1 in 8 minutes without pre-

shearing; the time taken in obtaining the flow curve being distributed equally across the 

measurement points. After each exposure to ultrasound, all the suspensions were stirred 

for 10 min prior to rheological measurement. To study the effect of ageing on the 

agglomerate size and rheology, the suspensions were left for several days in closed 

plastic bottles on the shaker before additional measurements were made.

To ensure comparisons could be made between the different nanosuspensions, the

agglomerate size and rheological measurements were all made at pH 9.5±0.1 at room 

temperature and the viscosity values presented in the results were all taken from the 

upward flow curves at a shear rate of 100 s-1.

The suspensions with the highest solids content whilst retaining a low viscosity were 

subsequently slip cast in plaster of Paris moulds to form green bodies measuring 9 mm 

diameter by 7 mm thick. The resulting green densities of the bodies formed were 
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measured by the Archimedes’ method using mercury. After the removal of the organic 

dispersants at 500oC for 2 hours, the green samples were sintered in an electrical 

furnace (UAF 16/10, Lenton Thermal Design, Hope Valley, UK) using a two stage 

sintering cycle.29 This involved heating the samples to 1150ºC at 20oC min-1 and 

holding them for one minute before the temperature was dropped as rapidly as possible 

to 1000ºC, where the samples were soaked for 5 or 10 hours. The sintered densities of 

the bodies were measured by the Archimedes’ method using water.

Fracture surfaces of the green and sintered nanozirconia samples were observed by 

field emission gun scanning electron microscopy (LEO 1530VP, LEO 

Elektronenmikroskopie GmbH, Oberkochen, Germany).

III. Results and Discussions

The average particle size of the as-received suspension at pH 2.4±0.1 was 16 nm ±

0.5%, which correlated well with the particle size observed using TEM, figure 1.

When PEI was added to the as-received suspension it resulted in an increase in

viscosity under all conditions. Table I shows the viscosity of the suspension containing 

2.0 wt% PEI, measured at 100 s-1, and compares it with the as-received suspension. For 

this reason, and also because at acidic pH the yttria is dissolved resulting in Y3+

cations,30 which would make the processing of concentrated suspensions difficult by 

promoting coagulation, it was decided to focus on basic pH values.

Figure 2 shows the results of the titration of the 1.8 vol% suspension. Note that since 

1 M NaOH was used there was a negligible reduction in solids content with pH change. 

From the figure it is clear that the isoelectric point (IEP) for the as-received suspension 

was just below pH 10; this is higher than generally observed in the literature31,32 and

may be due to the presence of residual species, e.g. counter ions, from the preparation of 
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the nanosuspension. At pH values from 2 to 6 the suspension was very stable with a zeta 

potential of ~60 mV, however in the basic pH range of 11 to 12, the maximum absolute 

value was found to be quite low, ~20 mV. Despite this, the particle size of the 1.8 vol% 

suspension at pH 11.5 was 31 nm (d50) / 53 nm (d85) ± 1% suggesting that there were no 

significant agglomerates present, even though the zeta potential was low. In the same 

figure, the zeta potential curves as a function of pH for the suspensions with 2.5 wt% of 

both Dispex and TAC are also shown. It can be seen that the suspensions with these 

anionic dispersants had very similar curves with desirably large zeta potential values 

over a wide range of pH, from ~8 to 12.

Figure 3 reveals that the zeta potential of the as-received nanosuspension changed 

smoothly from ~60 mV through to ~-40 mV as the pH was changed from 2.4 to 

11.5±0.1 by the addition of TMAH. The higher absolute value of the zeta potential at 

pH 11.5 after the addition of TMAH compared with that obtained by the addition of 

NaOH, ~-20 mV, confirms that TMAH provides an extra contribution to stability, 

probably related to the adsorption of N+(Me)4 groups27 which are not available from 

bases such as NaOH. The change in pH resulted in the formation of agglomerates as the 

pH passed through the isoelectric point (IEP), which occurred at pH ~9.5 when no 

deflocculants were present. Interestingly, the formation of the agglomerates was 

reversible and hence no significant agglomeration was observed after crossing the IEP, 

figure 3, even though ultrasound was not applied to the suspensions.

The flow curves of the nanosuspensions with 2.5 wt% Dispex A40 prepared using 

TMAH at a solid content of 19.0 vol% and using ammonia solution at a solid loading of 

17.0 vol% are shown in figure 4. In both cases, 2 minutes of ultrasound have been 

applied. Both pH agents allowed the formation of moderately concentrated 

nanosuspensions with low viscosities, although it may be seen that the use of the 
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TMAH allowed slightly higher concentrations to be achieved whilst retaining a very 

similar viscosity. This may be due to 2 reasons: the extra stabilization provided by the 

TMAH27 and/or the longer evaporation time required when ammonia was added due to 

the initial suspension dilution, which may contribute to greater agglomeration thus 

necessitating longer ultrasound times than were studied in the current work. Whatever 

the reason, TMAH was selected as the basic agent for further studies since it avoided 

the initial dilution, hence reducing processing time, and yielded a slightly lower 

viscosity for a given solids content.

The effect of the ultrasound is plotted in figures 5 and 6. These show flow curves for 

15.0 vol% solids content dispersed nanosuspensions after 1 and 2 minutes of ultrasound 

exposure, figure 5, and flow curves of 19.0 vol% nanosuspensions after 1 to 6 minutes 

of ultrasound, figure 6 (a). Dispex A40 was used in both cases. Whilst both curves in 

figure 5 displayed shear thinning behavior without thixotropy, the suspension with two 

minutes of ultrasound treatment exhibited considerably lower viscosity. A similar 

outcome is presented by figure 6, where longer ultrasound times were required with the 

higher solids content suspension. Figure 6 (b) shows the viscosity of the 19.0 vol% 

suspensions at 100 s-1 after ultrasound.

The stability of the viscosity taken at 100 s-1 during ageing of a 16.0 vol% 

suspension prepared using Dispex A40 after 2, 4 and 8 minutes of ultrasound is shown 

in figure 7. Once again, this shows that longer periods of ultrasound exposure result in 

more stable suspensions in the range of study, where samples treated for ≥4 min were 

entirely stable for at least 7 days whilst those treated for only 2 min exhibited a fairly 

steady increase in viscosity over time. No sedimentation was observed in these 

suspensions. Stable suspensions with solids loadings up to 19 vol% could be achieved 

with this approach.
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Figure 8 reveals the effect of ultrasound on the size of the agglomerates present in 

the suspension, the d50 value taken from the volume distribution as measured by laser 

scattering via a Malvern MasterSizer 2000, as a function of solids content. It can be 

seen how the use of ultrasound significantly reduced the size of the agglomerates 

present – and also confirms again how at higher solids loadings, longer ultrasound 

periods were required.

The consequences of the presence of the agglomerates on the microstructure of the 

slip cast green samples are illustrated by the fracture surfaces shown in figure 9. Images

(a) and (b) are both from bodies prepared from a 15.0 vol% suspension after 1 and 2 

minutes of ultrasound respectively (the samples were prepared from the suspensions 

represented in figure 5); it can be seen how the latter is very significantly more 

homogeneous since the action of the ultrasound broke up the agglomerates present. 

Figures 9 (c) and (d) show the nanostructure obtained by slip casting a 19.0 vol% 

suspension after 5 minutes of ultrasound at two different levels of magnification

(prepared from suspensions shown in figure 6). The homogeneity of the structure is 

notable.

All of the results presented to date were based on the application of ultrasound at the

final solid loading. However, this approach suffered from an upper solid loading limit 

beyond which ultrasound could not be applied because the viscosity was too high and 

the suspension became a solid even before the application of the ultrasound. This led to 

the development of the multi-ultrasound approach described earlier. Figure 10 shows

the results achieved for a 28 vol% suspension when this approach was used. Whilst it 

can be seen that a final viscosity of <1 Pa s was achieved even at this high solids content

(28.0 vol%, 70.0 wt%), unfortunately it was discovered that the resulting suspensions, 

which were based on Dispex A40, were unstable. They became a gel over time; the 

Page 11 of 34

Journal of the American Ceramic Society

Journal of the American Ceramic Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

higher the solids content achieved, and hence the more ultrasound used, the faster this 

occurred. It is believed that excessive use of ultrasound may have damaged the polymer 

chain of the dispersant, resulting in an unstable system. This led to the investigation of 

tri ammonium citrate, TAC, a shorter chain anionic dispersant, so it is less likely to be 

broken by the application of ultrasound, since the length of the dispersant chain is a key 

parameter in the stabilization of nanosuspensions.33,34

Figure 11 reveals the resulting flow curves for the TAC dispersed suspensions at 

different solids loadings and with different exposures to ultrasound; note that the 

concentrated suspensions made with TAC exhibited lower viscosities even without the 

use of ultrasound than those based on Dispex A40, opening up the potential for 

achieving even higher solid content suspensions after optimization. Figure 11 (a) shows 

the effect of concentrating the solids loading from the as-received value of 5.0 vol% up 

to 24.0 vol% without the use of any ultrasound. An important increase in the viscosity

and thixotropy may be observed from 9.0 to 24.0 vol% solids loading. Figure 11 (b) 

reveals how the viscosity and thixotropy decreased by increasing exposure to ultrasound 

from 2 to 6 minutes on a 24.0 vol% nanosuspension. A great improvement of viscosity 

is observed only after 2 minutes of ultrasound, compared with fig. 11 (a).

Fig. 11 (c) shows the flow curves of two 28.0 vol% suspensions, the first after 

application of just 2 min of ultrasound at 24.0 vol% and the second after 2 min of 

ultrasound at 24.0 vol% followed by a further 2 min at 28.0 vol%. When the former

curve is compared with that in fig. 11 (b) after 2 min ultrasound, it can be seen how an 

increase of just 4 vol% in the solids loading at these high values yields a very 

considerable viscosity increase. 

Table I summarizes the effect of the basic agent and anionic dispersant on the 

viscosity (taken at 100 s-1 from the up-curve) as a function of solids loading with and 
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without the use of ultrasound. The improvement shown by the TMAH / TAC system 

over the ammonia solution / Dispex A40 system is clearly visible in terms of the lower 

viscosities observed. Fig. 12 shows the viscosity curves of three suspensions in which 

TMAH was used as the basic agent. It can be seen that even with the application of a 

single, 6 min ultrasound treatment at the end of the concentration process, the use of 

TAC results in the 24.0 vol% solids content nanosuspension, fig. 12 (a), having a lower 

viscosity than the 19.0 vol% suspension prepared with 2.5 wt% Dispex A40 after the 

multi-ultrasound treatment, fig. 12 (b). When the multi-ultrasound process is then 

combined with the TAC, 28.0 vol% suspensions can be seen to display a viscosity <0.05 

Pa s at all shear rates measured, fig. 12 (c). They were also entirely stable for periods of 

at least 15 days, confirming the superiority of TMAH over ammonia solution and TAC 

as a dispersant compared to Dispex A40.

These suspensions were slip cast and green density values of ~55% of theoretical 

(6 g cm-3) were obtained. Fig. 13 (a) and (b) show the nanostructures of the two-stage 

sintered, slip cast samples prepared from a 19.0 vol% suspension prepared with TMAH 

and Dispex A40 after 5 min of ultrasound; ~99% dense ceramics were obtained with an 

average and uniform grain size of 80 and 90 nm after 5 and 10 h soaking time 

respectively. The equivalent nanostructure for a sample prepared from 28.0 vol% 

suspension made with TAC and the multi-ultrasound treatment after a soaking time of 

10 hours can be seen in fig. 12 (d), its green nanostructure may be seen in fig. 12 (c).

The sintered sample has an average grain size of 75 nm, i.e. lower than that obtained

from the equivalent sintering cycle for the sample prepared with Dispex A40, figure 12 

(b), and is much more uniform due to the greater stability and higher solid loading of 

the precursor suspension.
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IV. Conclusions

A colloidal route has been developed for the production of ~99% dense 3 mol% 

yttria stabilized zirconia nanoceramics with final average grain sizes of ~75 nm. It is 

based on the preparation of 3YSZ nanosuspensions with solids contents up to 28.0 vol% 

but viscosities as low as 0.05 Pa s from commercially available, dilute suspensions. The 

process is based on a series of steps involving initially adjusting the pH to a value of 

~11.5±0.1 from the original value of 2.4±0.1 using (solid) tetramethylammonium 

hydroxide, TMAH. This is followed by the addition of anionic dispersants. Whilst both 

Dispex A40, a commercial surfactant based on ammonium polyacrylate, and 

triammonium citrate, TAC, work, the latter has been found to be more suitable, offering 

both the potential to achieve lower viscosities at higher solids contents and also more 

resistance to the subsequent use of ultrasound. The dilute nanosuspensions can then be 

concentrated by evaporation at 50oC in a water bath. The use of ultrasound energy has 

been found to be important for breaking any agglomerates that form, thus ensuring that 

they do not cause a problem in the subsequent nanostructure of the green components 

formed. Since the higher the solid content of the suspension, the more frequent and the 

longer periods of ultrasound that were required, an approach based on the use of 

multiple ultrasound applications for relatively short durations was found to be an 

appropriate way forward. Whilst this caused problems with nanosuspensions dispersed 

with Dispex A40, possibly because of damage to the polymer chain, with the shorter 

chain TAC, high solids content, low viscosity nanosuspensions could be formed that 

were stable for periods of at least 15 days. This stability range is very high when 

compared with other nanoparticle suspensions.35 

Samples produced by slip casting the most promising nanosuspensions could be 

sintered using a two stage sintering process to yield a final average grain size as fine as
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~75 nm. The process by which the nanosuspension was formed is the subject of a patent 

application.36 
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Captions

Fig. 1. TEM images of the 3YSZ nanoparticles at different magnifications.

Fig. 2. Evolution of the zeta potential as a function of pH for the diluted, 1.8 vol%, 

nanosuspension: without dispersant, with 2.5 wt% of Dispex A40, or TAC.

Fig. 3. Evolution of the particle size and zeta potential as a function of pH with the 

addition of TMAH to 1.8 vol% nanosuspension.

Fig. 4. Flow curves of dispersed suspensions containing 2.5 wt% Dispex A40 

prepared with NH4OH (17.0 vol% solids content) and TMAH (19.0 vol% 

solids content).

Fig. 5. Flow curves of a 15.0 vol% suspension dispersed with Dispex A40 after 1 and 

2 minutes of ultrasound. The basic agent was TMAH.

Fig. 6. Effect of ultrasound time on the viscosity of a 19.0 vol% suspension dispersed 

with Dispex A40; a) flow curves and b) viscosity at 100 s-1 as a function of 

ultrasound exposure time. The basic agent was TMAH.

Fig. 7. Effect of ageing on viscosity of a 16.0 vol% suspension with Dispex A40 

subjected to different ultrasound exposure time. The basic agent was TMAH.

Fig. 8. Average agglomerate size measured by laser scattering for Dispex based 

concentrated suspensions with and without ultrasound exposure.

Fig. 9. FEG-SEM micrographs of the fracture surface of green bodies prepared from 

15.0 vol% suspensions with TMAH and Dispex after a) 1 minute and b) 2 

minutes of ultrasound, c) and d) green bodies from a dispersed 19.0 vol% 

suspension (TMAH & Dispex) subjected to 5 minutes of ultrasound, at 

different magnifications.
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Fig. 10. Viscosity vs. volume fraction curve for a suspension with TMAH and Dispex 

A40 using “multi-ultrasound”. Shear rate: 100 s-1. Ultrasound application at 

15.0, 19.0 and 28.0 vol%, the latter being the final solids content.

Fig. 11. Flow curves of suspensions with TMAH and TAC, a) without ultrasound, b) 

24.0 vol% with different ultrasound times, c) 28.0 vol% without and with 2 

min ultrasound at this solids loading, after 2 min ultrasound at 24.0 vol%

(multi-ultrasound). 

Fig. 12. Viscosity curves for the nanosuspensions: a) 24.0 vol% using TMAH & TAC 

after 6 min ultrasound, b) 19.0 vol% prepared using TMAH & Dispex A40 

after multi-ultrasound, c) 28.0 vol% using TMAH & TAC after multi-

ultrasound treatments.

Fig. 13. FEG-SEM micrographs of sintered samples prepared from a 19.0 vol% 

suspension with TMAH & Dispex with soaking times of: a) 5 h, b) 10 h; c) a 

green sample prepared from a 28.0 vol% suspension with TMAH & TAC after 

multi-ultrasound and d) the sample in (c) after sintering (soaking time: 10 h).

Table I. Summary of the characteristics of the nanosuspensions prepared under a range 

of different conditions.
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Dispersant
Dispersant 
content /

wt%

Solids 
loading 
/ vol%

Basic 
agent

Ultrasound / 
min

Viscosity 
/ mPa s

at 100 s-1 

pH ±
0.1

- 0 5.0 - 0 2 2.4

PEI 2.0 5.0 - 0 10 4.6

0 1000
17 Ammonia

2 300

2 260
19

6 45

Dispex 
A40

2.5

28

TMAH

Multiultrasound 700

9.5

0 1400

2 7524

6 15

2 320

TAC 2.5

28

TMAH

Multiultrasound 45

9.5

Table I. 
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Fig. 1
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Fig 3

Page 24 of 34

Journal of the American Ceramic Society

Journal of the American Ceramic Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Fig 4
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