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1. INTRODUCTION 
 
The transfer function between two points in a structure can be easily measured and is widely used 
to analyse the characteristics of the system. Often the phase of the transfer function is discarded 
because only the amplitude of the vibration is of interest. For example, when calculating the energy 
of a sub-system during the Statistical Energy Analysis (SEA) of a structure. Yet the phase of 
transfer function may also reveal information about the structure, for example, the level of diffusivity 
of the vibrational field. 
 
Research into the transfer function phase characteristics in the past has received only limited 
attention. Lyon and Toyama having made a significant contribution through a series of 
investigations into the behaviour of phase accumulation for transfer functions in a multi-dimensional 
system [1-7]. First the relationship between the transfer function phase and the poles and zeros of 
the system was presented [1,2]. In the same references the phase model of one and two-
dimensional systems was predicted using the theory of poles and zeros. In reference [3] the 
distribution of the zeros in the complex plane was investigated. It was shown that the zeros could be 
categorised into different two different types, minimum phase and non-minimum phase. The effect 
of truncation of impulse response data on phase accumulation was discussed in reference [4]. In 
reference [5] the transfer function phase was expressed using only the number of non-minimum 
phase zeros. The phase variability in a reverberant field was reported in reference [6] and the 
relationship of phase with group delay was discussed in reference [7]. A contribution from Fletcher 
and Thwaites considers the conditions under which direct field propagation phase occurs in a 
reverberant field [8]. 
 
In this paper, the phase of the transfer function for a thin steel plate is reported. A theoretical phase 
model for the plate is given and the factors likely to affect the phase accumulation are noted. An 
experiment to obtain data for transfer function phase from a thin steel plate is described. The 
experimental data are normalised and compared to the theoretical formula for the reverberant 
phase limit of an idealised diffuse field. Such results are of interest when trying to assess at which 
frequencies the SEA assumption of uniform energy density in a sub-system is valid. 
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2. THEORY 
 
The mobility of a system can be generally expressed as a ratio of polynomials, which are factored 
according to their roots: 
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where aω , bω , … are the zeros of M and 1ω , 2ω , … are its poles. The roots have been ordered 

so that ⋅⋅⋅<< ba ωω  and ⋅⋅⋅<< 21 ωω . From Equation (1), the phase of transfer mobility is 
given by 
 



 

φ(ω) = arg(ω −ωa) + arg(ω −ωb ) + −arg(ω −ω1) −arg(ω −ω2) − (2) 
 
Thus, as the frequency increases and a zero is passed the phase increases by π radians. 
Conversely, as a pole is passed the phase decreases by π radians. Thus, up to frequency ω , if Np 
poles and Nz zeros have been passed, then the total phase of M will be approximately [1] 
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where the last term arises from the possibility of a pole or zero near 0=ω .  
 
Therefore, the problem in estimating the phase accumulation becomes one of estimating the 
number of poles and zeros that will occur up to frequency ω . Tohyama and Lyon [3] have further 
simplified this equation by arguing that for two-dimensional system over a sufficiently large 
frequency range the number of zeros is half the number of poles. Thus, the limit phase of transfer 
functions in a diffuse field is given by 
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Since the poles are corresponding to system resonances, the usual methods of mode count 
estimation used in SEA are useful. For a flat plate the number of poles or resonances below 
frequency ω  is given by [9] as 
 

Np = ωA / (4πκcl)               (5a) 
 

= (A k2) / (4π)                (5b) 
 
where 

 

c  is the longitudinal wave speed in the material and 

 

κ  is the radius of gyration of the cross-

section. For a homogeneous cross-section the radius of gyration 

 

κ = h /2 3 , where h is the 
thickness of the plate. Thus, the phase limit of the diffuse field is dependent upon the plate area, A, 
and the bending wavenumber, k. 
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3. EXPERIMENTAL TECHNIQUE 
 
To obtain a diffuse field, the steel thin plate was suspended using elastic ropes from a rigid frame 
as illustrated in Figure (1). Steel has relatively low internal damping, so more waves are reflected by 
the boundaries. The plate was excited using random excitation from an Electro dynamic exciter, 
located on the centre of the plate, and the input force measured with a force transducer. The 
response acceleration was measured with an accelerometer on the reverse side of the plate at the 
excitation point and at different distances from the source location. The dimension of the test plate 
was 600*600*1.5mm. Measurements were carried out using a Hewlett-Packard 3566A spectrum 
analyser. The damping of the steel plate was also measured using the reverberation time method. 
The damping varied with different frequencies. The damping at frequency 4000Hz was 2.9E-4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (1): Measurement set-up for the diffuse field experiment. 
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4. RESULTS 

 
Figure (2) shows the unwrapped transfer mobility phase, in degrees, for the steel plate plotted over 
a linear frequency range of 0 to 6400Hz. The distance between the source and response points was 
6cm. The calculated direct field propagation phase, - kr, where k is the wave number and r is the 
distance between the source and the response point, is shown lying between 0 and 1000 degrees. 
The propagation phase on this scale appears to lie close to the zero degrees, however, when the 
scale is expanded, the propagation phase is, as expected, proportional to f2. The theoretical diffuse 
field phase limit, calculated using equations (4) and (5), is shown as a straight line extending from 0 
to 45000 degrees. The experimentally measured phase shown in Figure (2) can be seen to lie 
between the direct field phase and the diffuse field phase limit. Compared to the theoretical phase 
limit of the purely diffuse field, the slope of the experimental phase is much lower than the 
theoretical result. In fact it has a slope of around 40% of the value of diffuse phase limit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (2): Transfer mobility phase of the steel plate, r=6cm. 
 

Figure (3) shows the transfer function phase at different distances, ranging from 2cm to 14cm, from 
the source location. Generally, the experimental phase curves are very close to one another except 
for the phase of the transfer function corresponding to r=2cm.  
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Figure (3): Transfer mobility phase of the steel plate at separation distances: 
r=2, 4, 6 8, 10, 12, 14cm. 

 
Following the approach of Fletcher and Thwaites [8] the relationship between the transfer function 
phase and the distance from source to the response point is shown in Figure (4). It can be seen in 
Figure (4) that all frequencies show the same trend. That is, for distances less than 6cm the phase 
increases with distance. For distances greater than 6cm there is a phase plateau such that as the 
distance become larger, the phase stays at approximately the same value.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure (4): Relationship of transfer mobility phase with distance 

at selected frequencies from 400Hz to 6000Hz. 
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5. DISCUSSION AND CONCLUSIONS 
 
This paper has reported an investigation into the transfer function phase characteristics of a steel 
plate. The phase characteristics from a number of separation distances between the source and 
response point have been measured and compared to theoretical formulae for the phase limit of an 
idealised diffuse field. 
 
A general conclusion from the work reported above is that as the separation distance increases the 
transfer function phase increases towards the value of the diffuse field limit.  However, at a certain 
distance the phase no longer increases with distance but remains approximately constant at a given 
frequency. Thus, the diffuse field phase limit given by equations (4) and (5) which indicates that 
there is no relationship between separation distance and the transfer function phase is only true 
beyond a certain critical separation distance. This result is in agreement with the results of Fletcher 
and Thwaites [8].  However, the phase curves shown in Figures (2) to (4) are only 40% of the value 
of the theoretical diffuse field limit. Tohyama, Lyon and Koiko proposed a possible explanation in 
reference [6] where the theoretical diffuse filed phase limit was shown to reduce as the damping in 
the structure increases. This was also observed in reference [8], but does not provide a satisfactory 
explanation for the lightly damped steel plate investigation reported in this paper. This will be the 
subject of future investigations. 
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