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A randomized integral error criterion for parametric
identification of dynamic models of mechanical systems

M C Best* and T J Gordon
Department of Aeronautical and Automotive Engineering, Loughborough University, Leicestershire, UK

Abstract: This paper proposes a new approach to the identification of reduced order models for
complex mechanical vibration systems. Parametric identification is commonly conducted by the
regression of time-series data, but when this includes significant unmodelled modes, the error process
has a high variance and autocorrelation. In such cases, optimization using least-squares methods can
lead to excessive parameter bias. The proposed method takes advantage of the inherent boundedness
of mechanical vibrations to design a new regression set with dramatically reduced error variance.

The principle is first demonstrated using a simple two-mass simulation model, and from this a
practicable approach is derived. Extensive investigation of the new randomized integral error
criterion method is then conducted using the example of identification of a quarter-car suspension
system. Simulation results are contrasted with those from comparable direct least-squares identifi-
cations. Several forms of the identification equations and error sources are used, and in all cases
the new method has clear advantages, both in accuracy and consistency of the resulting identifi-
cation model.

Keywords: system identification, parametric identification, mechanical systems, vehicle suspension

NOTATION Mw , Mb , Me unsprung (wheel ), sprung (body) and
engine masses respectively of the

Bm mount damping constant for source source model
model Mus , Ms unsprung and sprung masses respect-

El ordinary least-squares error norm ively of the identification model
E2 randomized integral error norm p

i
percentage validation error for the ith

fmax cut-off frequency applied to the simu- state variable
lation input process; input bandwidth R

i
regressors for the identification model

Fdi damping force acting in the identifi- damper map
cation model tmax data batch length

F
i

damper force parameters for the t0 start time for the integration
identification model T integration interval

Fs , Fd , Fms , Ft suspension, damping, mount spring v
i

suspension velocity break points in
and tyre forces respectively acting in the identification model damper map
the source model vr road velocity input process for the

Kc damper compliance of the source simulation exercise
model x1 , x2 , x3 , x4 , x5 , x6 , x7Km linearized mount stiffness of the state variables for the source and the
source model identification models

Ks suspension stiffness of the identifi-
cation model

Kt tyre stiffness of the source and the
identification models

Abbreviations
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for publication on 7 October 1998. DOLS direct application of ordinary least-
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Leicestershire LE11 3TU, UK. RIEC randomized integral error criterion
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120 M C BEST AND T J GORDON

1 INTRODUCTION lying model (1) is taken as scalar here]

This paper concerns the parametric identification of
mechanical system models, i.e. the process of defining Cy(t1)

y(t2)

e
y(t

n
)D=Ca1 [u(t1)] a2 [u(t1)] ·· · a

p
[u(t1)]

a1 [u(t2)] a2 [u(t2)] · ·· a
p
[u(t2)]

e e e e
a1 [u(t

n
)] a2 [u(t

n
)] · ·· a

p
[u(t

n
)]D Ch1h2eh

p
Dan underlying mathematical model for the dynamic

system of interest, and estimating free parameters to give
the ‘best fit’ against measured experimental data. For
example, in vehicle ride dynamics, the input data might
be from time histories of vertical tyre contact forces, and
the output variables could be the resulting displacements +Ce(t1)

e(t2)

e
e(t

n
)Dand accelerations recorded for motion of the vehicle

body. The accuracy (and hence the usefulness) of system
identification depends on a number of factors, particu-

or more simplylarly in the choices for model structure and input exci-
tations. Another significant factor is the choice of error y=Ah+e (3)
criterion, i.e. the objective measure of goodness of fit

This leads to the well-known least-squares estimate [1]between the system model and the physical measure-
ments. See, for example, references [1] and [2] for stan- ĥ=(ATA)−1ATy (4)
dard approaches in the identification of linear systems.

In this paper, this direct approach of minimizingIn the simplest case, the model equations can be writ-
model equation error will be referred to as the directten as follows:
ordinary least-squares (DOLS) method. Perhaps the
most severe limitation of this basic approach is they(t)= f [u(t), h ]+e(t) (1)
assumption that the error signal e(t) arises as an ideal-
ized white noise process, uncorrelated with the elementswhere y(t) is a vector of measured outputs, u(t) a corre-
of the regressor matrix A. If this is not the case, thesponding vector of inputs (or other measured system
estimator may suffer from systematic bias and/or excess-variables), h denotes a set of constant unknown param-
ive variance. For example, in vehicle ride dynamics,eters and e(t) is an ‘error’ term. The errors essentially
errors arising from unmodelled mechanical vibrationsrepresent unmodelled effects in the physical dynamic
have associated resonance frequencies, and e(t) is clearlysystem, including any higher-order vibrational modes,
not white noise. Also, unmodelled non-linearities areelectrical noise and the effects of transducer cross-
likely to induce correlations between e(t) and thesensitivity. Of course these error signals are not known
regressor matrix, while errors in the regressors them-or independently measured, but they can be estimated
selves induce bias [1, 2 ].from equation (1) for any postulated parameter set h.

Techniques such as the generalized least-squaresIntuitively, the best choice of parameters is that which
method and the maximum-likelihood estimation methodminimizes these ‘unexplained’ equation errors, with error
[1, 2] may be used to overcome some of these limitationscriterion defined by
but require explicit knowledge of the statistics or prob-
ability models underlying the error processes. On theE1=∑

i
dy(t

i
)− f [u(t

i
), h ]d2 (2)

other hand, any mechanical system is subject to the fun-
damental principles of energy and momentum conver-
sion, and this applies as much to the unmodelled degreeswhere the summation is over the available set of data

points. The corresponding estimator ĥ is the mapping of freedom as to those that are modelled. If the errors
in a simplified model are constrained by such principles,that provides parameters to minimize E1 . In the ideal

case, where the errors actually arise as a white noise it may be possible to apply suitable transformations to
reduce the relative size of the error terms and hence toprocess, uncorrelated with the input variables u(t), an

optimal choice, namely the minimum-variance unbiased reduce the variance in the parameter estimators.
In this paper, attention is directed to the elementaryestimator, is indeed obtained in this way [1]. The

required minimization can be carried out using one of principle of impulse–momentum, whereby the impulse
of a force is equal to the net momentum transferred inmany available numerical algorithms for non-linear

least-squares optimization, for example the Levenberg– the corresponding degree of freedom; this leads to a ran-
domized integral error criterion (RIEC) identificationMarquardt algorithm (see, for example, reference [3]).

If, in addition, the model equations are linear in the procedure. A quarter-vehicle automotive suspension
model will be used to investigate the usefulness of thisunknown parameters, the problem has a standard

explicit and unique solution. For data collected at n time new technique. In Section 2, the general concept is intro-
duced and the error properties are considered in the con-instants, the model may be written in the following

matrix–vector form [for notational simplicity the under- text of a two-mass model. Relevant quarter-car models
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121A RANDOMIZED INTEGRAL ERROR CRITERION FOR PARAMETRIC IDENTIFICATION

are defined in Section 3. Section 4 details the identifi- tion (5) over a time interval (t1 , t2) gives
cation procedures, and in Section 5 the performance of
the RIEC method is compared with that of the simpler (m1+m2)[ż(t2)− ż(t1)]= P t2

t
1

F(t) dt+ P t2
t
1

DF(t) dt
DOLS identification, for a reference case. The robustness

(7)of these two procedures is then investigated in Section 6,
particularly in respect of input signal requirements.

This is the impulse–momentum equation for the dynam-
ics of the 1 DOF model. The integral of the error is
associated with a net momentum transfer, which remains2 RANDOMIZED INTEGRAL ERROR
bounded even over long time intervals, provided that theCRITERION
relative velocity of the unmodelled degree of freedom is
bounded by some value vmax :

Figure 1 represents a very simple example of a system
where equation errors arise via an unmodelled P t2

t
1

DF(t) dt=m2 [ḋ(t2)− ḋ(t1)]∏2m2vmax (8)vibrational mode. The left-hand diagram represents a
‘physical’ two-degree-of-freedom (2 DOF ) system where

Thus, if the time interval is chosen so that relatively largea small mass m2 is flexibly coupled to a larger mass m1 momentum changes occur in the lumped mass m1+m2 ,which moves vertically under the action of some force
the effect of the integration should be to reduce theF(t). In general, F(t) might arise via interactions with
relative magnitude of the equation error. (In principle,other parts of a dynamic system, so that it takes the
although a second integration might be performed toform F(t)=F [x(t), h ]. Then the dynamic equation of
give error bounds based on peak deflections, this willvertical motion can be used to help identify the unknown
not be considered in this paper.)parameters h. The right-hand diagram represents a

The possible effectiveness of the time integration issimplified one-degree-of-freedom (1 DOF ) model that
illustrated in Fig. 2. Figure 2a shows an ‘arbitrary’ errormight be used in identification. The motion of the
signal (a sample of Gaussian white noise) while Fig. 2blumped mass is inferred from the motion sensor (acceler-
is a simulated time history for DF(t) in the above 1 DOFometer) attached to the lower mass in the 2 DOF system.
system. F(t) was applied to the 2 DOF model asOwing to the simplified representation, this induces an
Gaussian white noise, and a linear spring damper combi-equation error DF(t), and the motion of the simplified
nation was chosen to act between m1 and m2 , using thesystem is given by
following parameters:

(m1+m2)z̈=F(t)+DF(t) (5)
m1=10 kg, m2=1 kgIt is easily shown that DF(t) is an ‘inertial’ force associ-

ated with the relative deflection d(t) of m2 relative to m1 v
n
=100 rad/s, f=0.5

in the 2 DOF model:
The magnitude of F(t) was chosen such that the two

DF(t)=m2 d̈ (6) error signals e(t) in Figs 2a and b have the same r.m.s.
values.This is valid however the internal forces Fint(t) are

The two error signals look broadly similar in the plots,generated—perhaps via non-linear spring and damping
but the effect of integration is markedly different; seeelements which may be subject to hysteresis and dry
Figs 2c and d, where the corresponding integral errorfriction.

Although at any instant the magnitude of the equation
error can be large compared with the other terms, it may I(t)= P t

0
e(t) dt (9)

be constrained in its cumulative effect. Integrating equa-

is shown. The arbitrary white noise signal leads to drift,
as a typical ‘random walk’ process in Fig. 2c, while the
effective constraint on maximum velocity strongly
bounds the integral error in Fig. 2d.

The way in which these considerations can be turned
into a practical technique for system identification is now
considered. The integration used in equation (9) will
provide an alternative set of equations for error minimiz-
ation; for example equation (7) gives rise to the set

(m1+m2)[ż(t
i
)− ż(0)]= P ti

0
F [x(t), h ] dt+I(t

i
)

Fig. 1 Unmodelled mode resulting in equation error (i=1, 2, .. ., N ) (10)
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122 M C BEST AND T J GORDON

Fig. 2 Comparison of uncorrelated and mechanical equation errors

This is not particularly useful as it stands, because of where
the following limitations:

H(s)=
e−s(t

0
+T)

s
−

e−st
0

s
=

1−e−sT
s

e−st
0

(12)1. Integration over successively longer time intervals
makes the transformed model equations unduly

The corresponding frequency response gain is then easilysensitive to steady state and very-low-frequency
found to becontributions to e(t), such as amplifier drift and trans-

ducer offset.
|H( jv) |=

2 sin(vT/2)

v
¬T sincAvT

2 B (13)2. There is a systematic weighting, or over-sampling,
associated with data at the start of the test, i.e. near

Choosing for example T=0.1 s, this is plotted as thet=0, while there is no a priori reason to prefer these
solid curve in Fig. 3. Unfortunately the operation isdata to those obtained at later times.
‘tuned’ to give zero gain (drop-out) at discrete frequen-3. Related to item 1, the integral errors, obtained from
cies, here at multiples of 10 Hz. Rejecting data at certainvariable overlapping time intervals, are statistically
discrete frequencies in this way cannot be satisfactory incorrelated in a way that is impossible to characterize
general. Figure 3 also shows the effect of averaging overwithout detailed knowledge of the spectral properties
two distinct time intervals: T=0.1 s and T=0.33 s, withof the underlying error processes.
clearly improved results. Averaging over a continuous

To avoid problem 1 it is simple to apply upper bounds range of sample times, from T=0.1 s to T=1.0 s gives
on the integration time T, while item 2 motivates selec- the third smooth curve which, although biased towards
tion of a lower integration limit t0 . If t0 is then selected low frequencies, does not suffer from discrete frequency
by random sampling, the correlations noted in item 3 drop-out. The same effect is achieved for the expected
are also avoided. The transfer function for this modified frequency response if the operator incorporates random
integration process can be seen as the difference between sampling of T from the corresponding uniform prob-
two delayed pure integrators: ability distribution

T ~U(a, b) (14)I(t)= P t0+T
t
0

e(t) dt (11)
with a=0.1 and b=1.0. Taken together with a random

Therefore choice of the initial time

t0~U(0, tmax) (15)I(s)=H(s)e(s)

I04497 © IMechE 1999Proc Instn Mech Engrs Vol 213 Part I



123A RANDOMIZED INTEGRAL ERROR CRITERION FOR PARAMETRIC IDENTIFICATION

Fig. 3 Frequency response gain of the integration process

there is a need to reject the chosen values for T and t0 and typically eH1 provided that THtmax. Thus, even
though the error processes are completely unknown, thewhenever t0+T>tmax. Choice of the free parameters a

and b should depend on the approximate bandwidth of covariance matrix of equation errors can be given as
the model being identified, and this point is briefly taken
up in Section 4.

In view of the proposed use of random sampling of
data from within a given batch, item 3 above is actually

E [eTe]=s2 C 1 e e · ·· e

e 1 e ·· · e

e e 1 ·· · e

· ·· ·· · · ·· ·· · ·· ·

e e e ·· · 1 D (18)addressed automatically, and in fact the statistical
properties of the equation errors will be stated below
explicitly, simply on the grounds of symmetry.

In the general case, typical model equations can be
written From this, it is possible to apply the generalized least-

squares method to the minimization of E2 , and it hasMq̈=F(q, q̇, t; h) (16)
been shown that the RIEC optimal solution is achieved

where q is a vector of generalized displacements, M is by applying the standard linear least-squares method to
the mass matrix and F represents generalized forces. In the integral equations, provided that a sufficiently large
the integral form the error criterion is number of samples are employed, and provided that the

regressors have zero mean [4]. Both of these conditions
E2=∑ LM [q̇(t0+T )− q̇(t0)] are met in the following simulation study.

− P t0+T
t
0

F [q(t), q̇(t), t; h ] dtL2 (17) 3 SIMULATION MODELS

the summation being over the randomly selected time Identification of a simple model for a vehicle ride pro-
intervals. This, formally, is the RIEC. vides a suitable test case for the new method. The well-

Returning to error statistics, and reverting to the known quarter-vehicle model, considered extensively as
notation e for equation error (now in the integral form) a platform for suspension control in the literature, is
it is clear that for a randomly selected time interval there used. Two variants are employed, as shown in Fig. 4.
corresponds a constant expected value for the mean State variables are clearly shown as relative displace-
square of equation error: ments x1 , x2 and x5 and velocities (bold arrows).

The model in Fig. 4a, used to provide source data forE{e2
i
}=s2

the identification, is termed the source model. It incorpor-
while for any two different time intervals there is a con-

ates a nominal representation of several physical charac-
stant cross-correlation which can be written

teristics that are typically unmodelled, combining a high
level of non-linearity with additional degrees of freedomE{e

i
e
j
}=s2e

I04497 © IMechE 1999 Proc Instn Mech Engrs Vol 213 Part I



124 M C BEST AND T J GORDON

Fig. 4 Models for source data and identification

in vertical engine vibrations and compliance in suspen- modal analysis. Approximating the suspension damping
rate at 1.5 kN s/m and using the first-stage suspensionsion damping. The dynamic equations of motion are
and mount spring stiffnesses, 20 kN/m and 400 kN/m
respectively, the resulting eigenstructure is summarized
in Table 1.

The resonance frequencies are typical of suspension
system modes, commonly referred to as ‘wheel hop’ at
13 Hz, and ‘body bounce’ at 1 Hz, but here the system also
includes a pole due to the damper compliance freedom,
and a third dynamic mode due to the engine motion. Note

ẋ1=vr−x3
ẋ2=x3−x4

ẋ3=
1

Mw
(Ft−Fs−Fd)

ẋ4=
1

Mb
[Fs+Fd−Fms−Bm(x4−x6)]

ẋ5=x4−x6

ẋ6=
1

Me
[Fms+Bm(x4−x6)]

ẋ7=Kc AdFd
dx7
B−1 (x3−x4−x7)

(19) that the engine and wheel-hop modes both appear at
approximately 13 Hz; this frequency matching is typical
of physical suspension systems, and the eigenvectors for
these two modes show that the wheel vibrations are
strongly coupled with the motion of the engine relative to
the body. The model thus provides a pathological case for
identification, as higher-frequency excitations required to
characterize wheel hop will also maximize the disturbing
influence of the engine mass. The very-low-magnitudeThe tyre force Ft is modelled as a linear spring with a
wheel velocity component in the body-bounce mode indi-threshold to accommodate lifting of the tyre contact
cates that it would not be sensible to identify the modelpatch from the simulated road surface:
from low-frequency excitations alone.

The two-mass identification model of Fig. 4b employs
only four state variables and has entirely linear compo-

Ft=GKtx1 , x1∏
Wt
Kt

Wt , x1>
Wt
Kt

(20) nents except in the damper characteristic. The equations
of motion are

where Wt=(Me+Mb+Mw)g and Kt=180 N/mm.
Note that the threshold force is non-zero, as the dynamic
state variables are taken as zero at the static load point.

ẋ1=vr−x3
ẋ2=x3−x4

ẋ3=
1

Mus
(Ktx1−Ksx2−Fdi)

ẋ4=
1

Ms
(Ksx2+Fdi)

(21)The suspension forces, Fd and Fs and the mount spring
force Fms are modelled with piecewise linear and cubic
spline functions, illustrated in Fig. 5. For small exci-
tations the source model can be linearized, allowing a

I04497 © IMechE 1999Proc Instn Mech Engrs Vol 213 Part I



125A RANDOMIZED INTEGRAL ERROR CRITERION FOR PARAMETRIC IDENTIFICATION

Fig. 5 Non-linear characteristics of the source model: (a) damper, (b) spring and bumpstops, (c) engine
mount

Table 1 The eigenstructure of the linearized source model

Eigenvector velocity components
Frequency

Eigenvalues (Hz) f Wheel Body Engine—body

−266 — — 1.00 −0.17 0.19
−35.15±75.76i 13.29 0.42 1.00 −0.21A0.29i 0.49±0.67
−26.21±78.75i 13.21 0.32 1.00 0.07A0.19i −0.29±0.41
−2.08±7.63i 1.26 0.26 0.09±0.05 1.00 0.01±0.01

where Fdi takes a simple piecewise linear form, as illus- determined velocity break points v
i
; the R

i
are illustrated

in Fig. 6b.trated in Fig. 6a. For identification, this can be written
as a linear function in four force values F

i
:

4 IDENTIFICATION PROCEDUREFdi= ∑
4

i=1
F
i
R
i
(v
i
, x3−x4) (22)

where the R
i
are discontinuous linear ‘roof ’ functions of The simulated identifications are carried out using source

data simulated from a Gaussian white noise input pro-suspension velocity x3−x4 bounded according to pre-

I04497 © IMechE 1999 Proc Instn Mech Engrs Vol 213 Part I



126 M C BEST AND T J GORDON

Fig. 6 (a) Piecewise linear suspension damper model and (b) regression function used for identification

cess vr , chosen with sufficiently high bandwidth to excite P t0+T
t
0

Ft(t) dt−Mus Dx3all modes. The amplitude of vr was chosen to excite all
non-linearities of the source model, while ensuring that
the ‘lifting’ tyre remained in contact with the simulated =K̂s P t0+T

t
0

x2(t) dt
road surface for 99 per cent of the test duration. Details
of this and all other parameters required for the identifi-

+ ∑
4

i=1
F̂
i P t0+T

t
0

R
i
[x3(t)−x4(t)] dt (24c)cation process are summarized in Table 2.

Using values for the state variables x1 , x2 , x3 and x4 ,
their derivatives and the tyre force Ft from the source

Ms Dx4=K̂s P t0+T
t
0

x2(t) dtmodel simulation, parameter estimates are made accord-
ing to the structure of the identification model. From
equations (21) and (22), a series of regression equations + ∑

4

i=1
F̂
i P t0+T

t
0

R
i
[x3(t)−x4(t)] dt (24d)

can be formulated according to both DOLS and RIEC
criteria; these are given below. For each regression the Here Dx¬x(t0+T )−x(t0), and t0 and T are generated
estimated parameters, denoted with a circumflex ˆ, are for each sample according to the uniform distribution
obtained by least-squares solution of the matrix formed of equations (14) and (15):
from a large number of samples, N, according to the

T~U(a, b), t0~U(0, tmax) (25)structure of equation (3).
The DOLS formulation is The identification can be conducted in three stages. In

either formulation, the first two regression equationsFt=K̂tx1 (23a)
provide estimates of the tyre spring rate and system

Ft=M̂us ẋ3+M̂s ẋ4 (23b) masses; the third stage estimation of suspension force
parameters can then be conducted using either equa-

Ft−Mus ẋ3=K̂sx2+ ∑
4

i=1
F̂
i
R
i
(x3−x4) (23c) tion (23) or equation (24). These consider force (or

momentum) acting on the wheel or body respectively,
employing one of the previously identified masses as aMsẋ4=K̂sx2+ ∑

4

i=1
F̂
i
R
i
(x3−x4) (23d)

known value.
Clearly it is possible to identify all the parameters sim-The RIEC formulation is

ultaneously, either by some aggregation of the regression
equations or by reformulation as a matrix equation;P t0+T

t
0

Ft(t) dt=K̂t P t0+T
t
0

x1(t) dt (24a)
indeed a least-squares matrix solution has been con-
sidered in reference [5]. The proposed sequential scheme
is preferred, however, for two reasons. Firstly, regressionP t0+T

t
0

Ft(t) dt=M̂us Dx3+M̂s Dx4 (24b)
separation allows a degree of differentiation between the
sources of error, and hence their relative influence on
parameter bias; for example, the mass parameters areTable 2 Parameters defining the identification process
estimated independently from internal suspension force

Vertical velocity input process, vr Gaussian white noise, non-linearities. Secondly, the redundancy in equations
0–30 Hz,

(23) and (24) allows a check on the consistency of ther.m.s. vr=0.55 m/s
Test duration 40 s identification process.
Sampling rate for input and measurements 200 Hz Finally, the choices for a and b in Table 2 deserve
Damper map velocity break points, v

i
{−0.8 −0.3 0.3 0.8}

some comment. The range 0.05–0.5 s for the RIEC inte-For DOLS, Ns 8000 (all available data)
For RIEC, Ns 8000 gration interval has been made to ensure high-magnitude
For RIEC, a 0.05 s regressors and hence to provide good matrix condition-
For RIEC, b 0.5 s

ing for the estimation of all parameters. For a sinusoid

I04497 © IMechE 1999Proc Instn Mech Engrs Vol 213 Part I



127A RANDOMIZED INTEGRAL ERROR CRITERION FOR PARAMETRIC IDENTIFICATION

x(t), the average absolute change the regression equations (23a), (23b), (24a) and (24b).
The engine mass disturbance has clearly affected the

|Dx(t) |=|sin[2pf (t+T )]−sin(2pft) | (26)
ability of DOLS to identify the total sprung mass,
whereas the RIEC returns a satisfactory estimate. Bothis maximized by choosing T=1/(2f ). Thus the limits set

in the integration lengths will maximize regressors over algorithms underestimate Mus however, by about 20 per
cent. Given the significant difference between the struc-a range between nominal wheel-hop and body-bounce

frequencies, f=1 Hz and f=10 Hz. Although this tures of the source and the identification models, the bias
here may ultimately lead to more accurate identificationassignment appears ad hoc, it has been shown in refer-

ence [4] that, within certain limits, the identified param- models. However, as it is generally possible to estimate
masses more accurately from engineering data, or simplyeters are relatively insensitive to a and b. The main effect

of changing integration intervals is on matrix condition- by weighing, the case when the masses are known in
advance will also be considered.ing within the regression; if the range is small, with a#b,

or if both a and b are low ( less than 50 ms for models Four configurations are now available to complete the
identification; the suspension force parameters can besuch as these), then the RIEC algorithm would become

much more susceptible to bias from equation errors. identified from the motion of the wheel ( W ) or body
(B) [regression equations (23c) and (24c) and equations
(23d) and (24d) respectively] and, as both alternatives
also require knowledge of one of the masses, this can be5 PARAMETER ESTIMATION AND MODEL

VALIDATION identified (subscript id) or known a priori (subscript
true). It is interesting to consider all four variants, and
these are denoted in the corresponding way, as Wtrue ,The first regression, to estimate tyre stiffness from equa-
Btrue , Wid and Bid. The resulting damper force values aretions (23a) and (24a) is relatively trivial, as x1 and Ft illustrated in Fig. 7, and the spring stiffness estimates areare linearly related for 99 per cent of the test duration;
given in Table 4; for reference, recall that the first-stageboth algorithms estimate Kt with a very slight bias. Mass
spring stiffness in the source model is 20 kN/m.estimation represents a more challenging identification

problem, however; Table 3 summarizes the results from

Table 4 Identified suspension stiffness values
Table 3 Identified masses and tyre stiffnesses

Ks (kN/m)
Value for the following

Configuration variant RIEC DOLSParameter
(units) RIEC DOLS Source model

Wtrue 20.9 23.1
Kt (N/mm) 177.8 177.9 180 Btrue 20.7 19.7

Wid 20.8 20.1Ms (kg) 302.7 240.1 300
Mus (kg) 23.3 24.0 30 Bid 20.9 15.8

Fig. 7 Identified damper map
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The most striking observation here is the consistency poor parameter match does not necessarily result in poor
model performance; in this case, low values for Ks andof the RIEC estimations, for F

i
and Ks . Conversely, the

DOLS results vary considerably. We might expect a Ms combine to estimate the body-bounce mode well,
although noticeable errors remain at low frequencies,biased DOLS result from Bid (which uses Ms=240.1)

and this is seen in a very low estimate of Ks. However, particularly in x1 .
In Fig. 10, the pot-hole input provides a relativelyDOLS does not return a consistent result even when

known masses are employed; note particularly the severe double impulse, making the tyre lift; this is
reflected in high errors in estimation of states x1 , x2 andextreme damper map, in the Btrue variant.

As suggested earlier, the validity of these identification x3 for both models. RIEC provides a slightly more accu-
rate model, most notably in the first overshoot of x4 .models cannot be assessed simply in terms of parameter

matches with the source data; the source and identifi- A summary of validation performance on each input
condition is given in Table 5. The figures show aggregatecation models are too dissimilar. Validation simulations

are thus carried out, to compare state trajectories from percentage error (on the simple assumption that the
accuracies in each of the four states have equal impor-source and identification models. However, the road

input must be carefully chosen for these; although it is tance). In all variants the RIEC provides lower vali-
dation errors than the DOLS method, particularly forreasonable to use broad-band excitation to ensure good

conditioning in the identification process, the validation the Robson road input condition, where errors are
reduced by about a third in most cases. The notableshould reflect more general conditions for which the

model might be required. exception is the Btrue DOLS model which returns an
uncharacteristically good validation on the pot-holeTo this end, two new input sequences are introduced.

The first represents random road roughness, a Gaussian input. Surprisingly, the most successful models on the
Robson road are those which have the least accuratewhite noise process coloured using a filter of the form

proposed by Robson [6 ]. The vertical displacement parameters. For the DOLS method, the Bid model (illus-
trated in Fig. 9) has severely biased Ms and Ks estimatespower spectral density (PSD) S of the surface is modelled

as a function of frequency f by and, for both identification methods, imposition of the
true masses results in less successful models. Although

S( f )=kU1.5 f−2.5 (27)
this last trend is reversed for the pot-hole validations, it
may be concluded that the most ‘accurate’ parameterswhere the vehicle speed U is chosen to be 20 m/s and the

roughness coefficient k is 3×10−5 to emulate a poor- are not necessarily those which provide the best (simpli-
fied) model for the identified system.quality minor road.

The second input considers a single event, a nominal
pot-hole the profile for which is given in Fig. 8; again

6 FURTHER STUDY OF VARIATIONSthis is traversed at 20 m/s. Figures 9 and 10 show vali-
dation results for both the DOLS and the RIEC models
identified in the Bid variant. In each case, the four On the basis of the initial study above, the RIEC offers

an advantage over the DOLS model in terms of accu-common state variables x1 to x4 are plotted. To provide
a quantitative measure of performance, the percentage racy, and appears to be more robust to simple changes

in the identification process. Now the study is extendederror p is defined for the ith state as
to examine robustness to changes in the underlying
random processes. Two factors are considered: the res-p

i
=

√{∑
k
[x̂
i
(kT )−x

i
(kT )]2}

√[∑
k
x2
i
(kT )]

×100 (28)
onance frequency of the principal disturbance mode, and
choice of the input process bandwidth, which affects the

where x̂ and x refer to the identification and the source degree to which all modes are excited.
data respectively. The source model of Fig. 4a can easily be modified to

The Robson road validation in Fig. 9 shows that both move the engine vibration frequency and hence to emu-
identification models provide a generally accurate recon- late different sources of disturbance. Varying the mount
struction of the source data. For the DOLS result, a stiffness Km of the linearized model, and altering Bm to

maintain a constant damping ratio, two cases are con-
sidered in addition to the original ‘pathological’ case.
The first places the disturbance frequency at around
6 Hz, between the wheel-hop and body-bounce modes;
the second emulates the more general physical case,
where the unmodelled disturbance exists at relatively
high frequencies; resonance in this case occurs at 25 Hz.

In the linearized form the three cases are summarized
in Table 6. For each case, the non-linear mount charac-

Fig. 8 Impulse event road profile teristic is reconstructed in the source model simply by
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Fig. 9 Bid model validation on the ‘Robson’ road

applying the appropriate gain factor to the original of the body mass, and using identified values for the two
mass parameters (Bid variant).spline model of Fig. 5c.

For the second factor, the original input signal vr of As before, the first-stage estimation of Kt remains rela-
tively trivial for all input bandwidths; these results areTable 2 is filtered using the fast Fourier transform, to

remove all frequencies above fmax ; source data are then not illustrated. Identification of the masses, and the sub-
sequent estimation of Ks is presented in Fig. 11. Thegenerated and the parameters identified, for values of

fmax between 0.5 and 30 Hz. This was carried out for most significant feature of these plots is that the RIEC
results are generally much less sensitive to the inputeach of the three source models in the same way as in

Section 4, except that here only the most successful bandwidth. The pathological and included-mode cases
exhibit similar trends, although the latter generatesidentification is considered, via the equation of motion
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Fig. 10 Bid model validation for the pot-hole input

Table 5 The aggregate validation performance

S
i
p
i Table 6 The parameters defining the variants of the source

model‘Road’ input condition ‘Pot-hole’ input condition
Configuration

Engine resonancevariant RIEC DOLS RIEC DOLS
frequency (Hz) Km (kN/m) Bm (N s/m)

Wid 41.0 70.0 126.2 138.8
Pathological case 13 400 4000Bid 40.2 57.5 129.8 137.7
Included-mode case 6 100 2000Wtrue 58.9 87.6 116.2 127.8
Higher mode case 25 1500 7750Btrue 59.4 65.9 116.9 95.8
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Fig. 11 Parameters identified as the input bandwidth is varied

greater parameter variation with respect to the band- similar in all three cases; therefore only the pathological
case is illustrated here. Again the RIEC shows a consist-width and, for the DOLS model, a more severe bias

occurs in Ms and Ks . Interestingly, when the bandwidth ent identification, with almost constant F
i

after about
10 Hz, whereas the DOLS method exhibits a drift in allincludes the wheel-hop mode (above about 15 Hz), the

RIEC identification in both of these cases is very similar. four forces, towards lower values as the input frequency
increases.Indeed there is little difference between the RIEC models

identified at higher bandwidths in all three cases. The Consideration of equation errors shows that the
damper compliance has a significant effect here.higher mode creates less parametric variation for both

methods, although again the RIEC curves provide a Figure 13 shows two identified damper maps together
with the corresponding scatter plots of the damper forcemore consistent set of results.

Figure 12 illustrates variations in the identified versus the suspension velocity x3−x4 from the source
data. In Fig. 13a the input bandwidth is low and thedamper map. Rather surprisingly, the results are very
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Fig. 12 Identified damper forces over varying input bandwidth

Fig. 13 Comparison of damper identifications at different input bandwidths

compliant element induces only slight hysteresis. As available within the regression, it is clear that the param-
eter drift in Fig. 12 is explained by this hysteresis, withthe bandwidth increases to excite the wheel-hop and the

engine modes in Fig. 13b, however, the effect becomes the DOLS damper map shifting to adopt the line of least
instantaneous force error. For the RIEC, the identifiedsignificant. Although the damper force is not directly
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F
i

remain much more consistent, perhaps because the ize the whole study and they reveal a number of interest-
ing points.method considers an aggregate of force error, over time

periods typically longer than the wheel-hop and engine Firstly, the RIEC models show a consistent trend of
diminishing p as fmax increases; in all except one plot themode cycles. Over each complete cycle, the net impulse

exerted by the compliant element is approximately zero; highest bandwidth input provides the most accurate
model. This is an intuitively correct result, and criticallythus the RIEC rejects these bounded errors in the same

way as those due to the unmodelled engine mode. it is not the case for the DOLS data; in all cases on the
Robson road, better results can be obtained by selectiveTo complete the analysis, the identification models

are again validated using the two inputs described in excitation of frequencies.
For the pathological and included-mode cases, the per-Section 4. Again the aggregate performance for the four

states is considered, and Fig. 14 shows how this varies formance plots do not display the oscillatory variations
of Ms and Ks seen at low bandwidths for the DOLSwith the bandwidth fmax. These plots effectively summar-

Fig. 14 Aggregate validation performance ( p) as the identification input bandwidth varies
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model in Fig. 11. As with the initial study this shows derived from four permutations of the dynamic equa-
tions of motion, and in the presence of three very differ-how the relatively ill-conditioned parameters Ms and Ks

can vary greatly while inducing relatively low model ent unmodelled modes. In most cases this model is also
well retained under variation in the input bandwidth.error.

Conversely, the peaks in Figs 14b and c show good It should also be noted that the RIEC method success-
fully identifies appropriate mass parameters where thecorrelation with the parameter bias of Fig. 11; variations

in Mus match the performance trends for both the RIEC reference method fails. This is particularly significant
given the finding that the ‘true’ source model massesand the DOLS models. Further investigation shows that

the errors in the wheel velocity p3 predominate in these provide suboptimal parameter choices for the identifi-
cation models examined.validations, and the obvious inference is that better

models can be obtained with more accurate estimation The new method is simple, requiring only minor pre-
processing in the generation of the regressor set andof unsprung mass. However, the results for true masses

in Table 5 refute this. Also there is a clear difference in retaining a straightforward least-squares optimization.
There are also additional advantages, e.g. in the abilitysensitivity to the bias in Mus between the DOLS and

RIEC models in Fig. 14b. to extract a large number of samples from each single
batch of data, and in the ability to tune the integrationA final point of interest from these plots is the large

increase in p for DOLS over the higher-bandwidth tests step length depending on the system to be modelled.
Further research, using physical examples, will providein Figs 14e and f; this occurs in spite of relatively consist-

ent values for the identified parameters, shown for the an important platform for development of the scheme,
particularly in terms of the relative importance ofhigher-mode case in Fig. 11. The error trend correlates

with variations in Mus and the damper forces, but similar measurement errors, not considered in this study.
variations in the first two cases result in less severe
changes in performance. It appears again that the DOLS
model is simply more sensitive to parameter variations REFERENCES
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