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Improvement of perceived vehicle performance through
adaptive electronic throttle control

S Tuplin*, M C Best and M A Passmore
Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, UK

Abstract: With the advent of production electronic throttle control there is scope for increased

customer satisfaction through the optimization of the throttle pedal demand map to individual drivers.

The aim of this study is to develop algorithms to identify, from variables measured in real time on

a test vehicle, the requirement for and the direction of adaptation of throttle pedal progression. An

on-line appraisal procedure has been developed to identify the individual ‘ideal’ progression (IIP)

for any driver. During the appraisal the subject is exposed to a series of pedal progressions, and their

verbal response to each change is used to converge to their optimal setting. Vehicle data acquired on

these appraisal drives have been regressed against IIP in a full factorial study, and the most statisti-

cally signi�cant driver model established. A preliminary implementation of the model is used to

demonstrate that throttle progression adapts appropriately towards IIP, thereby matching vehicle

performance feel to driver expectations.

Keywords: adaptive throttle, drive appraisals, electronic throttle control, model regression, pedal

progression, performance feel

NOTATION

a, b, c, d system coe�cients

â, b̂, ĉ, d̂ digital �lter transformed coe�cients

ARMA autoregressive moving average

b
k

subdivision of the range

(75th percentile algorithm)

CBM customer behaviour model

dT /dD rate of change in torque with pedal

demand

dT /dN rate of change in torque with engine

speed

D pedal demand (per cent)
D

t
pedal demand at time t (per cent)

D
tÕ1

pedal demand at time t�1 (per cent)

f1 , f2 , f3 , f4 factorial parameters measured on the

vehicle

H(s) general system
i candidate rating number

IIP individual ideal progression

IIP
i

concatenated x for all candidates

j test point

k number of experiment
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M
1 slope of straight-line model, �tted

below the model maximum

M2 slope of straight-line model, �tted

above the model maximum

MRV model regression variable
n number of progression steps tested

within a given iteration in the

appraisal

np number of data points

P pedal gain (no units)

Pmax maximum pedal gain (no units) within

the appraisal

PMAX maximum pedal gain (no units)

Pmin minimum pedal gain (no units) within

the appraisal

PMIN minimum pedal gain (no units)

Q3 75th percentile
Q

3POSN position of the 75th percentile

r candidate rating (unitary)

R returned Pearson error matrix

(no units)

R̄w mean Pearson correlation coe�cients

with model regression variable i

included in the regression

R̄wo mean Pearson correlation coe�cients

with model regression variable i

excluded from the regression

s poles of H(s)

sgn signum function
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S
j

candidate rating correlation score

(no units)

SSV steady state value

t time (s)

u
i

regression matrix for model regression

variable k

U(k) P input at iteration k (no units)

U(k�1) P input at iteration k�1 (no units)

WOT wide-open throttle

x individual ideal progression vector,

of length k

x
k

model regression variable k

y
i

individual ideal regression model

Y(k) �lter output at iteration k (no units)

Y(k�1) �lter output at iteration k�1

(no units)

ZOH zero-order hold

a , b, c , d, e least-squares coe�cients of the

customer behaviour model

a
i

signi�cance of model regression

variable i

a
k

general least-squares �tted coe�cients

e un�tted error ( least-squares

regression)

l range reduction factor (no units)

1 INTRODUCTION

Motor manufacturers continually strive to improve the

product they o�er to the motoring public. In the last

two decades much of their e�ort has been directed

towards identifying the precise needs and wishes of cus-

tomers and then successfully transferring these to their

product. One area to have received attention is the per-

ceived performance of the vehicle. In this case the manu-

facturers have been limited to identifying the optimum

set-up to satisfy all drivers. Passmore [1 ] and Passmore
et al. [2 ] reported one such study. They carried out an

extensive factorial study of performance feel, investiga-

ting factors, e�ects and interactions. The conclusions

gained from the study are that, although actual wide-

open throttle (WOT ) acceleration is the primary param-

eter in giving good performance feel, secondary e�ects

also have a powerful e�ect, and in particular the throttle

progression (rate of change in torque with pedal demand,

dT /dD) and rate of change in torque with engine

speed, dT /dN.

The study identi�ed the optimum set-up for throttle

progression and dT /dN but also showed a high variance

in response from drivers and some evidence of demo-

graphic e�ects, which lead to the conclusion that per-

formance feel bene�ts could be achieved if a vehicle’s

throttle system were able to adapt to the driver’s prefer-

ence. The advent of production electronic throttle con-

trol makes this a possibility and is the subject of this

D07002 © IMechE 2003Proc. Instn Mech. Engrs Vol. 217 Part D: J. Automobile Engineering

paper. This work details the development of an on-line

adaptive throttle control system to meet these customer

needs. At this stage a fully mapped system would be

di�cult to implement; therefore, to simplify the develop-

ment, inference from Passmore [1 ] indicates that the �rst

parameter to be considered in a one-dimensional system

should be throttle progression. The primary aims of this

study are to develop algorithms to identify, from param-

eters measured in real time on the vehicle, the require-

ment for and the direction of adaptation of the throttle

progression and to implement these algorithms in a

working system.

To implement such a system requires a model of driver

satisfaction that can be evaluated in real time. To estab-

lish this ‘customer behaviour model’ (CBM) the individ-

ual ideal progression (IIP) for each driver needs to be

identi�ed. Thus a novel appraisal method has been devel-

oped to identify IIP accurately, using a series of iterative

paired comparisons, implemented in an automated

double-blind randomized block design process on the

test vehicle. This method is described in section 2 of the

paper. Measurements such as engine and vehicle speed

are acquired during the appraisal, and a subset of these

are linearly combined to generate a CBM model,

described in section 3. Section 4 describes a statistical

analysis to determine the most signi�cant subset of

variables to employ in the model, and the paper con-

cludes with �eld trials of the �nal CBM, used to adapt

progression in the test vehicle.

2 IDENTIFICATION OF THE INDIVIDUAL
IDEAL PROGRESSION (IIP): THE ‘EYE TEST’
METHOD

The ‘traditional’ format of appraisal testing using, for

example, the Loughborough Likert scale (cf. reference

[1 ]), although well established and highly regarded, is

ine�cient at returning a reliable measure of IIP in a

suitably short ( less than 2 h) time frame. Such methods

require the driver to give ratings following each (typi-

cally �xed-length) test drive; this restricts the number of

options that can be tested and relies on the fact that the

driver has a good memory of what was good or bad. (It

should be noted that the driver is unaware of the precise

nature of the vehicle performance modi�cation that is

being made during the appraisal.) The goal here is to

achieve testing which:

(a) exposes the driver to a wide range of operating

conditions (progressions),

(b) identi�es the range of progressions over which a

given driver is insensitive to change,

(c) can be carried out over a single test drive, within

the concentration span of the driver (ideally no

more than 1 h),
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(d) is robust to the limitations of the driver’s rating

consistency,

(e) is robust to ‘incorrect’ responses caused by changing

environmental conditions and

(f ) does not follow predictable patterns of change

which might bias the driver’s expectations and hence

responses.

The solution described here uses paired comparisons

to limit the concentration and rating skills required by

the driver. The candidates are asked to state their prefer-

ence to the current progression, giving an answer of

better, same or worse than the previous setting. Also,

the driver is allowed as much or as little time as he/she

requires to make the assessment; this has risks in terms

of (e) above but reaps considerably greater bene�ts in

terms of (a) to (d). A degree of randomness in pro-

gression selection, together with automated (and hence

‘double-blind’) testing then ensures that (f ) is satis�ed.

2.1 Detailed appraisal methodology

Progression in this study is de�ned as an application of

gain to the input–output relationship of the throttle

pedal; thus

Throttle cable travel=P×pedal position (1)

Initially, prototyping was carried out to identify the safe

limits of progression over which the ‘eye test’ could oper-

ate. These limits were found by taking the test vehicle

out, and changing the progression until the vehicle

became undrivable:

Lower limit PMIN=0.5

Upper limit PMAX=3.5

The lower limit might be justi�ed even though it restricts

maximum throttle opening to half WOT. It has been

Fig. 1 Example of eye test slope estimation
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observed that some drivers do not even use full pedal

travel in a conventional (P=1) situation, indicating that

they do not wish to use the full power of the engine, at

least during the (B class road) driving environment

tested. The lower limit maximizes controllability but,

below this progression peak, torque is reduced to the

point where the car is undrivable. The upper limit is

de�ned by the point beyond which the car becomes

uncontrollable, due to the very small amount of pedal

travel to WOT. Gains of P>1 are saturated at WOT.

An initial range is selected within these limits, which

covers most of the ‘expected’ IIPs as determined in pre-

vious appraisals. n individual test points are then de�ned

in this range by dividing it into n�1 equally spaced steps.

The process is then to record a rating between each

pair of adjacent points, while attempting to minimize the

predictability of the changes. This is achieved by ran-

domly setting n as either n=5 or n=7 and then subdiv-

iding the range into two. The order of execution of each

half, and the direction of travel (increasing or decreasing

P) with each half is also randomized. This is illustrated

in the example shown in Fig. 1. The order of tests is

shown by 1 to 8; therefore the ratings are recorded in

the order a to f. (The second half of the range is tested

�rst with increasing P, followed by the �rst half with

decreasing P.) Note that, although a rating is requested

between all changes in progression, the comparison

between tests 4 and 5 is ignored, as is that between test

8 and the �rst test in the next iteration of the algorithm.

Further randomness in test ordering is avoided to limit

the number of these unproductive comparisons. Each of

the ratings is recorded as follows:

r=+1: better than the last setting

r=0: the same, or insigni�cant change compared

with the last setting

r=�1: worse than the last setting
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Using these ratings, a piecewise linear model is �tted

about each of the n tested progressions in turn, in order

to locate the maximum (or exceptionally, the minimum)

point of preference (see Fig. 1). For each candidate

model, the peak is assumed to be at the jth point, and

slopes are calculated about that point. The slope of the

�rst line is determined from the ratings r
i

as

M1(j)=
åjÕ1

i=1
r
i
/¢P

i
j�1

(2)

where

¢P
i
=P

i+ 1
�P

i
if the test order has P increasing

¢P
i
=P

i
�P

i+ 1
if the test order has P decreasing

The second slope is then given as:

M2(j)=
ånÕ1

i= j
r
i
/¢P

i
n� j

(3)

Note that M1 is not calculated when j=1, and M2 is

omitted when j=n.

The optimal model is then selected as that which best

�ts all ratings, according to a correlation score S
j
:

S
j
= æ

jÕ1

i=1
r
i
sgn(¢P

i
M1(j))+ æ

nÕ1

i= j

r
i
sgn(¢P

i
M2(j))

(4)

Figure 1 also illustrates the line �tting de�ned by this

process for the �rst three values of j; by inspection of

the r
i
, the best �t should be obtained at either j=2 or

j=3, and this is con�rmed by the correlation scores

S1=3, S
2
=S3=5. In cases such as this, where two

scores are equal, the point closest to the midpoint of the

range is taken ( j=3 in this case).

When the optimum point of the current range has

been found, the process above is iterated, with the

Fig. 2 Eye test simulation results: testing robustness
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next set of tests centred on this optimum, and the

range reduced by a factor l, de�ned according to the

correlation score achieved:

l=1�0.5
max(S

j
)

ånÕ1
i=1

|r
i
|

(5)

Thus the search converges if consistent ratings are given.

Obvious adjustments are made to keep the testing

within the bounds PMINåPåPMAX and the one excep-

tion to the rates given above is where the gradient search

�nds a minimum (M1<0 and M2>0). This result indi-

cates very poor driver consistency but, if it occurs, testing

continues by centring the new range on j=1 or j=n

depending on which of M1 or M2 is best correlated,

according to the appropriate single term of S in equa-

tion (4). The candidate drives repeated iterations of this

process until convergence is indicated by a consistent set

of r
i
=0 Y

i
.

In Fig. 2, the eye-test method is illustrated in simu-

lation. A polynomial curve was used to represent IIP

(peaking at P=0.916) and to choose r
i

values (r
i
=0

where the change in the polynomial is less than 1). With

completely consistent responses (Fig. 2a) the eye test

predicts that P=0.916, but the algorithm also performs

very well in the face of signi�cant disturbance. Figure 2b

shows a test with 12 of the 26r
i
randomly (and wrongly)

chosen, and the �nal result is P=0.899.

In �eld trials the eye test appears to be successful, with

all candidates saying that the �nal vehicle response was

an improvement over the standard setting. Unexpectedly

the general trend was that, the more subjectively aggress-

ive the driver, the lower is the IIP that was preferred.

This indicates that a more aggressive driver prefers (or

requires) more control over the available power.
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3 DEVELOPMENT OF A CUSTOMER
BEHAVIOUR MODEL (CBM)

Once the IIPs for a sample have been identi�ed, a

method is needed to correlate these with the driver’s

behaviour in so far as this can be measured in the vehicle.

The behaviour model is constructed from variables

sampled in real time on the vehicle, and from �ltered

variants of these. The ‘eye-test’ appraisal has a ‘free driv-

ing format’ [2 ], driven over predetermined B class roads

using the Ford Focus 2.0l test vehicle. For this reason,

data sampled from the vehicle during the appraisal can

be used to correlate with the �nal IIP found. These data

are ideal for two reasons:

1. They properly re�ect the driver’s mood during the

appraisal; this is known to have an in�uence on IIP.

2. A wide range of di�erent progressions are being

executed throughout the data; therefore the in�uence

of progression on the variables measured is minimal.

Table 1 illustrates the raw data acquired during the

tests. From these, a relatively slow ARMA is also

deduced (having a settling time of around 1200 s), and

a 75th percentile measure Q
3 is also derived, using a

memory and processor e�cient algorithm which is

described in the Appendix.

Note that the pedal rate is calculated using a

backward-di�erence approximation, from pedal demand

D:

dD

dt
=

D
t
�D

tÕ1
t
t
�t

tÕ1
(6)

Seven raw data signals are thus derived from just four

sensors, and these are manipulated to provide 28 di�er-

ent continuous variables, giving both rapidly and slowly

varying measures of driving style. These 28 MRVs can

be united in various combinations in an attempt to pro-

vide a model for IIP, using multiple linear regression.

The regression is carried out using a least-squares �t,

returning a model of the form shown in the following

equation:

y= â 0+ â1x1+ â2x2+ · ··+ â
k
x

k
+e (7)

where

Table 1 Model regression variables (MRVs)

Global variable Raw signal ARMA* Q3 Q3 ARMA*

Engine speed × × × ×
Engine speed at gear change-up point × × ZOH† (not Q3) ZOH ARMA*†
Absolute lateral acceleration × × × ×
Longitudinal acceleration × × × ×
Throttle pedal position × × × ×
Throttle pedal rate × × × ×
Vehicle speed × × × ×

* ARMA, autoregressive moving average.
† ZOH, zero-order hold.
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y=IIP

a
k
= least-squares �tted coe�cients

x
k
=MRV

i
e =un�tted error

Figure 3 shows a sample regression using three MRVs.

There are 12 candidates represented in the plot, with the

x axis relating to the time on a test drive. Each candidate

has an equal amount of time represented.

Figure 3 indicates that distinct di�erences exist

between drivers, demonstrating that a suitable customer

model might be de�ned. Thus a statistical experiment

was conducted to identify an accurate CBM, using a

small number of MRVs.

4 STATISTICAL ANALYSIS TO DETERMINE
THE BEST MODEL

A factorial experiment is a well-known applied statistical

method used to consider all possible combinations of

variables in a multiple linear regression model. To cover

all possible combinations of all variables, 2k tests would

be performed. As 28 variables have been de�ned for

testing, 228 tests would need to be performed. As this

would take approximately 466 days, a more e�cient

Fig. 3 Sample regression of MRVs to IIP
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design was needed! The method adopted was to ran-

domly split the variables into two 14-variable factorial

tests. From these two separate experiments the 14 most

signi�cant variables were then tested in a third factorial

experiment and the results of this experiment used to

produce the �nal model.

For each regression in the factorial experiment a

Pearson correlation coe�cient is calculated measuring

the extent of the linear �t of the model; thus the factorial

experiment has the form

[R]=C n
p

å x(u
i
y
i
)�å x å u

i
y
i

ã[np å x2�(å x)2 ] [np å (u
i
y
i
)2�(å u

i
y
i
)2 ]Di=k

i=1
(8)

where

y
i
=(uT

i
u
i
)Õ1uT

i
x

u
i
= C1 x

1(t0) , x
i
(t0)

] ] ] ]
1 x1(t

n
) , x

i
(t

n
)D

x=CIIP1
]

IIP
i
D , IIP

i
= CIIP

npi]
IIP

npi
Dnp= k

np=1
where

k=number of experiments
t
n
=datum at time t

R=returned error matrix

np=number of data points

This was evaluated for k=214 experiments covering all

possible combinations of half of the MRVs. The returned

error matrix R can now be analysed to identify the most

signi�cant model. The signi�cance of an individual MRV

Fig. 4 Initial factorial experiment results for a single �tted MRV
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was calculated using

a
i
=R̄w�R̄wo (9)

where

a
i
=signi�cance of MRV

i
R̄w=mean Pearson correlation coe�cients with

MRV
i

included in the regression
R̄

wo
=mean Pearson correlation coe�cients with

MRV
i

excluded from the regression

If none of the MRVs is statistically signi�cant in pro-

viding the ‘best’ model, the signi�cance values a
i
will be

randomly distributed. This can be clearly illustrated

using the convenient graphical technique of normal score

plotting, where in the case of purely random data the

normal plot approximates a straight-line graph, whose

slope is de�ned by the standard deviation (see, for

example, reference [3 ]). Conversely, statistically signi�-

cant MRVs appear as deviations from this straight line,

and the degree of deviation illustrates the level of

signi�cance.

Figure 4 shows the results for single-variable

regressions from the two initial factorial experiments.

Eight of the MRVs have positive signi�cance which is

above the ‘noise’ level; these are (coincidentally) the

values with a normal score greater than 0.5. Of these,

three have major signi�cance.

The eight positively signi�cant MRVs were then com-

bined with six other, randomly selected MRVs, to con-

duct a �nal factorial experiment. Figure 5 shows the

results, and here the signi�cance values of all possible

combinations of up to four MRVs are illustrated.

As can be seen, there is obvious deviation from the

straight line, with several combinations of four MRVs

being statistically signi�cant. Of these, all should pro-

vide good models of customer behaviour but, from an

operational point of view, only those that have a large
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Fig. 5 Normal score plot for �nal factorial experiment

magnitude are considered further. Note that, in the

�gure, models with fewer MRVs appear more signi�cant;

these are not more accurate, however, as the plot omits

the mean level of signi�cance, which is lower for a lower

number of MRVs. It should also be noted that the use

of more than four MRVs in the CBM will result in a

better �tting model, but that the overall statistical sig-

ni�cance would be reduced. The ‘perfect’ model could

be generated if enough parameters were used, but this

would be a model that is a ‘forced’ �t of the particular

test data seen here and not a general re�ection of

customer behaviour.

4.1 Final customer behaviour model

Results of the factorial experiment show that the CBM

for pedal gain should take the form

P=a f
1
+bf

2
+c f

3
+d f

4
+e (10)

where the parameters f1 , f2 , f3 and f4 are de�ned by the

factorial experiment and the coe�cients a , b, c , d and

e are calculated using least-squares theory.

Figure 6a shows the �nal behaviour model regression,

which exhibits a 95 per cent correlation between the

‘ideal’ progressions and the resultant model. Although

none of the ‘ideal’ progressions is met exactly, 11 of the

12 candidates are within P=0.2 of their IIP. In general,

candidates were found to be insensitive to a small change

in progression; therefore, the model is considered accept-

able. Figure 6b shows the in�uence of each parameter
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on the �nal result; this shows the relatively even signi�-

cance of each parameter in the model. The de�nition of

a suitable CBM now allows the implementation of a

prototype auto-adaptive electronic throttle control

algorithm.

5 APPLYING THE MODEL TO ON-LINE
ADAPTIVE THROTTLE CONTROL

Figure 6a highlights that, although the general �t of the

model is good, allowing the model to run directly on the

vehicle would lead to rapid local changes in pedal pro-

gression. The �nal output of the pedal gain is thus con-

trolled by a �rst-order low-pass digital �lter. This

smooths out local variations and also allows the rate of

adaptation to be controlled. De�ning the general system

as

H(s)=
as+b

cs+d
(11)

the coe�cients are set at a suitable level such that rate

control and noise �ltering are optimal. To ensure that

the system adapts to the correct level [i.e. steady state

value (SSV )=1], the �nal value theorem is applied. In

this case a=0, c=1, and b and d are equal, de�ned to

give a slow response rate.

To de�ne the �lter in a suitable format, such that Y(k)

can be obtained, the inverse Laplace transform of the

‘z transform’ (applied using the ‘Tustin’ or trapezoidal
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Fig. 6 Final CBM �t for all candidates, and signi�cance of individual parameters

approach [4 ]) is taken; thus, the �nal �lter has the form

Y(k)=
âU(k)+ b̂U(k�1)� d̂Y(k�1)

ĉ
(12)

Only slow adaptation rates have been considered thus

far, to allow su�cient analysis of the system to be carried

out, and to respect safety issues before extensive analysis

of the adaptation rate has been completed.

5.1 O�-line results

Figure 7 shows the result of a simulation of the adaptive

system, using data recorded during the eye-test

appraisal. A start point of P=1.5 has been used for the

simulation. The �nal adapted value correlates well with

IIP=1.993. The gain is not held constant for the full

simulation of the drive, as the behaviour may change

over time. The result signi�es that the algorithm is

suitable for �eld testing.

Fig. 7 Adaptation simulation of an eye test candidate
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5.2 On-line results

Figure 8 shows that there is good correlation between

the direction of adaptation and IIP, P=1.352 in an

on-line implementation. The IIP found in the eye-test

appraisal is not necessarily correct for that driver on the

day of testing, it was only correct at the time of the eye

test. IIP is dependent on in�uential factors on driving

style, such as driving conditions, tra�c, driver mood and

time of day. Indication that the process was adapting to

a suitable level was given by the fact that the driver was

happier with the vehicle at the end of the driving period

than at the beginning.

6 CONCLUSIONS

A novel on-line procedure has been developed to identify

optimum or ‘ideal’ progression for any driver (the IIP).

This procedure is a paired comparison technique labelled

Fig. 8 Time history of pedal gain during a �eld trial
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the eye test. The procedure has developed a number of

signi�cant conclusions:

1. The novel methodology provides a reliable robust

method for obtaining customer IIPs.

2. The eye-test method provides a useful tool through

which a vehicle can be tailored to particular customer

needs, by providing initial set-up values of pedal

progression.

3. Candidates were found to be insensitive to small

changes in progression.

4. Results from the eye-test appraisal indicate that

drivers considered subjectively to be more aggressive

in nature preferred a lower IIP. This indicates that

they prefer and or require more control over the

available power.

The formal statistical analysis procedure used to

identify a CBM has produced the following conclusions:

1. The identi�ed CBM gave a 95 per cent linear corre-

lation between the ‘ideal’ progression and the

resulting model.

2. Using many MRVs in the CBM will result in a better

�tting model, but the overall statistical signi�cance

would be reduced.

3. Preliminary implementation of the model on a vehicle

in real time demonstrates that the throttle progression

adapts appropriately towards IIP, thereby matching

the vehicle performance feel to driver expectations.
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APPENDIX

75th percentile Q
3

Percentiles are a measure of the distribution of the data.

They focus on the central proportion of the data exclud-

ing the in�uence of outliers. The position of the upper

quartile Q3 is expressed as

Q3POSN=
3(n+1)

4
(13)

where n is the number of data points being sampled [5 ].

The Q
3 used is a rolling range parameter, being de�ned

over a period of time. This lowers the variability and

builds a true long-term model of the driver. The varia-

bility reductions compensate for ine�ectual data such as

that recorded while stationary at junctions, where both

pedal position and vehicle speed are zero. The method

used for calculating Q
3 is a ‘box’ technique. Calculation

of an exact Q3 would require the storage and sorting

of an entire data set, which is inherently processor inten-

sive and thus incapable of being executed in real time.

The ‘box’ method is computationally much more

e�cient, allowing Q
3 to be found from a large data set

which is continuously updated. Each ‘box’ is de�ned as

a subdivision of the full range; thus

b0=XMIN : XMIN+(k+1)

b1=XMIN+(k+0.01) : XMIN+(k+1)

]
b
k
=XMIN+(k+0.01) : XMAX

where

XMIN= lower limit of range
X

MAX
=upper limit of range

k=number of subdivisions

b=subdivision of range

Each new data sample recorded is rounded up to its

nearest integer and placed in its corresponding box. The

‘�rst’ data point from the stored range is then removed

from the sample, allowing the range to move in time.

The number of counts is recorded for each box, and the

position of Q3 is calculated thus:

Q3POSN=3 A æ
i= kHI

i= kLO

x
i
+1BN4 (14)

Q3 is therefore the integer value of the box that contains

Q
3POSN

:

Q3=b
k
(x

Q3POSN
) (15)

The accuracy of the returned Q
3 is �0.99+0.0 units of
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the appropriate sampled variable. The use of these slowly

varying parameters gives a baseline for the adaptation

process to work from. Using a static Q3 would cause a

delay the same length of time to that over which the
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percentile is taken. This means that the adaptation pro-

cess would always be adapting to how you have been

driving and not how you are driving. This cannot be

avoided, but its e�ects can be minimized.


