
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288386267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


- 1 - 

 
On the Synthesis of Driver Inputs for the Simulation of Closed-Loop Handling 
Manoeuvres 
 
T.J.Gordon(1) and M.C.Best(2) 

(1) University of Michigan Transportation Research Institute and Dept. of Mechanical Engineering 
2901 Baxter Road, Ann Arbor, MI 48109, USA 
E-mail tjgordon@umich.edu 

(2) Department of Aeronautical and Automotive Engineering 
Loughborough University, Loughborough, Leics., LE11 3TU, England 

 

ABSTRACT 

This paper concerns a new  ‘Dual Model’ methodology for the synthesis of steering, throttle and braking 

inputs for the closed-loop simulation of linear or non-linear vehicle handling dynamics.  The method 

provides near-optimal driver control inputs that are both insensitive to driver model assumptions, and 

feasible for use with complex non-linear vehicle handling models.  The paper describes the Dual Model 

technique, and evaluates its effectiveness, in the context of a low-order non-linear handling model, via 

comparison with independently derived optimal control inputs.  A test case of an obstacle avoidance 

manoeuvre is considered.   The methodology is particularly applicable to the design and development of 

future chassis control systems. 
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1. INTRODUCTION 

This paper concerns the synthesis of steering, throttle and braking inputs for the simulation of vehicle 

handling dynamics, using a new reduced form of nonlinear control optimisation.  There are many 

situations that require such control inputs, particularly in simulation studies aimed at improving vehicle 

design for dynamic handling performance.  Traditionally, vehicle handling dynamics has focussed on 

open-loop dynamic responses, in the form of ‘objective handling tests’ (Gillespie.  Here the control inputs 

are prescribed as functions of time ahead of the test (or simulation), for example as random, sinusoidal or 

step-like inputs.  With the development of driver models, it has become increasingly common to evaluate 

vehicle, and especially chassis system, performance using closed-loop driver control, where some initial 

conditions and road geometry variables define the manoeuvre, and some control synthesis procedure leads 

to the dynamic control inputs for steering, throttle and brakes (e.g. Modjtahedzadeh and Hess 1993, 

Horiuchi and Yuhara 2000).  One way to achieve this is to pre-define a driver model as a dynamic input-

output system (e.g. Sharp et al 2000, Prokop 2001) but a problem with this approach is that any 

improvement in closed-loop performance cannot be uniquely attributed to the vehicle (or chassis system), 

and may result from an interaction with the specific driver model.  The use of an optimisation technique to 

directly prescribe the driver controls can remove this confounding issue, because the controls again do not  

depend on any aspect of the driver.  On the other hand, formal optimisation depends critically on the 

internal states and functions that define the vehicle dynamic model (as well as on initial conditions and the 

geometric definition of the manoeuvre) and the computational burdens tend to become overwhelming as 

the complexity of the vehicle model increases. 

 

The objective of this research is to develop an intermediate technique which approximates to optimal 

driver control behaviour, but without relying on the detailed formulation of the vehicle dynamics model.  

A Dual Model approach is developed, in  which a sub-optimal set of driver controls is synthesised by 

iteration between two levels of model.  An early version of this method was presented previously (Gordon 

and Best 2002) though in a different context and with a general application to lap optimization rather than 

obstacle avoidance.  The underlying concept for this is now briefly outlined, and taken up in detail in 

subsequent sections.  
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Initially, a set of optimal controls is determined for a simple nonlinear particle model of the vehicle, one 

that incorporates mass-centre acceleration constraints, but no other limitations, transients or delays.  These 

results provide a reference input to a more realistic simulation that consists of a vehicle handling model (of 

essentially arbitrary complexity) coupled to a generic driver model.  The particle-based reference is 

defined as a distribution of desired mass-centre velocities across the two-dimensional domain of the 

relevant road surface. From deviations between particle and driver-vehicle simulations, transient delays in 

the latter are estimated, as are effective friction limits, and the latter provides a modified set of conditions 

to revisit the reference optimisation.  This entire process is continued until, after a small number of 

iterations, no significant changes in controls are observed, and an approximately optimal input is obtained.  

It is proposed that the resulting control input shares the strengths of both approaches - coping with model 

complexity in the same way as using a fixed driver model, plus an inherent robustness to driver model 

assumptions, derived from the compensation mechanisms implemented within the iterative process. 

 

It is worth emphasising the central importance of using a ‘spatial velocity reference’. This appears to be 

essential, to accommodate path deviations that arise between the two models, in a way that a time-based 

reference cannot.  Path deviations result  from the inherent differences between the simple and ‘realistic’ 

models, and in particular via the transient dynamics of roll, yaw, load transfer, etc. that are not present in 

the reference particle model.   To illustrate this point, suppose that in an obstacle avoidance scenario, the 

vehicle model path starts to intersect with an obstacle in a way that the preceding particle trajectory did 

not; it makes no sense for the vehicle model to continue to track the original particle motion in variables 

such as acceleration, speed and yaw rate – the change in position means there has to be an appropriate 

change in the target (or reference) motion.  This is most naturally achieved by mapping the particle 

reference as a spatial distribution, or reference velocity field. And while this  results in an additional 

computational burden, it is only in the context of the particle model, and the resulting optimisation 

problem turns out to be perfectly tractable.  This approach is also much preferred to directly tracking a 

single particle trajectory, as this places a much greater burden on the driver control model, and increases its 

direct influence on the final results.   
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In this paper, a relatively low-order nonlinear vehicle model is used, which then permits a comparison with 

an independent optimisation of the handling control problem.  A single limit handling manoeuvre is 

considered, and compared to a second approach using direct optimisation of the driver control inputs.  The 

comparison technique is referred to as Generalised Optimal Control (GOC);  it has been applied 

previously by the authors in a number of non-linear optimal control studies (e.g. Gordon and Sharp 1998, 

Best and Gordon 2002) and involves the solution of a well-known two point boundary value problem over 

a fixed time interval, directly obtained from Pontryagin’s Maximum Principle.  The method has some 

advantages over more commonly applied optimal control techniques, in that it can be applied to any 

(smoothly) nonlinear plant, and the cost functions are not restricted to be linear or quadratic.  A practical 

limitation of GOC is that model complexity should be limited, for otherwise the optimisation times become 

prohibitive -  it requires the explicit evaluation of all derivatives of all functions in the model differential 

equations, as well as multiple simulations to eventually converge towards an optimal control sequence. 

 

For this reason a relatively simple non-linear four degree of freedom handling model is employed,  to 

allow direct comparison between the optimised results.  This model is described in Section 2 below, 

together with the generic driver control model.  Section 3 describes the method for optimisation of the 

reference vector field, and correspondingly Section 4 outlines the GOC method.  Section 5 is then devoted 

to the description of the overall DM technique, in the context of a simple closed-loop limit handling 

manoeuvre.  Results are presented and compared in Section 6, and Section 7 discusses  the wider 

significance of the results obtained and presents some final conclusions. 
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2. VEHICLE AND DRIVER CONTROL MODELS 

The vehicle model is based on the well known three degree of freedom - yaw, roll, sideslip - model, with a fixed 

inclined roll axis, and using a load dependent, combined-slip Pacejka tyre model.  A fourth, longitudinal, degree of 

freedom is also included, as are additional dynamics for wheel-spin, and first-order lags for brake actuation and drive 

torque delivery.  The intention is to include the major dynamic processes relevant to non-linear transient dynamics, 

without making the model particularly complex, or requiring an excessive number of defining parameters. 

 

The equations of motion are as follows 

longitudinal: MhrpMrVFUM
i

xi  
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  (1) 

lateral:  MUrFpMhVM
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roll kinematics: p  (5) 

Here standard SAE axes are used (Gillespie 1992) fixed relative to the vehicle wheelbase; the wheels are 

labelled (1-4) in ascending order as (front-left, front-right, rear-left, rear-right).  The principal notation and 

parameter values are given in Table 1. 

 

** INSERT TABLE 1 ** 

 

The tyre forces ),( iyix FF  controlling the vehicle motion allow for large steer angles 
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where the tyre forces ),( iytixt FF  are modelled according to the Pacejka magic formula 

     BBEBCDEDCBPP 11 tantansin),,,;()(    (7) 

using normalized slip and isotropic similarity scaling  (Milliken and Milliken 1995, Pacejka 2002).  In 

more detail, the normalized slip vector is  
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where s is the longitudinal slip ratio, and  is the slip angle.  The friction circle at each tyre contact patch is 

defined by the following simple analytic function of vertical load w 
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and the load-dependent cornering/longitudinal stiffness for each tyre is of the form  
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1 1)( cwecwC   (10) 

(see Table 1 for values) and the resulting tyre force vector is 
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The above tyre model is only broadly representative of real tyre behaviour, but is thought to incorporate 

sufficiently realistic aspects of force saturation and load dependence to properly test the Dual Model 

optimization process.   Wheel rotational dynamics are modelled as  

  )(1
ixtriwi FrTI    (12) 

where iT  is the drive torque (positive) or brake torque (negative) torque, and wI  = 5 kg m2 is the nominal 

wheel inertia, incorporating tyre, engine and driveline components.  The wheel torques i  are directly 

commanded as a driver input, apportioned equally between left and right wheels, and in the case of brake 

torque, apportioned in the ratio 60:40 between front and rear axles.  Drive torque is apportioned entirely to 

the front (FWD).  Torque delivery assumes a first order delay of the form 
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  )(1 TTT d    (13) 

where T is the delivered wheel torque and dT  is the (apportioned) demand torque.  The time constant   

was set to 0.15 seconds for drive and 0.05 seconds for braking. 

 

Vehicle position and orientation in global coordinates is then calculated using yaw angle, such that  
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As noted above, the DM method requires a basic driver model for the simulation stage, and this in turn is 

based on an optimised velocity field reference )(xw .  A suitable model was developed previously by the 

authors (Gordon et al, 2002).   

 

The controller comprises parallel single-loop feedback loops for steering and forward acceleration.  It is 

designed to be simple but effective near the limits of adhesion, and in the context of this work there is no 

intention that it be ‘optimal’ in any particular sense;  it is only important that it be capable of providing 

reasonable tracking performance for the reference signals derived from the vector field w.  These are 

defined in the form of magnitude wv  and direction xy ww /tan  , supplemented by the tangential 

and normal components of the associated flow acceleration: 

   wwe  tta  ,   wwe  nna  (15) 

Here te  and ne  are unit vectors tangential and normal to the reference field respectively, and te  and ne  

are defined as the corresponding vectors for the vehicle mass centre velocity: 

  tGG v ev   (16) 

  nGtGG vv eea    (17) 
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Longitudinal control is executed via an acceleration command signal )(1 tu  which is then converted to a 

commanded drive force or braking torque.  The control is determined via a forward acceleration demand 

  10 /)()( Gt vvata   (18) 

and feedback of longitudinal vehicle acceleration 

  201 /)( Uau    (19) 

The demand signal (18) is a simple sum of reference plus feedback, and 1  is a control parameter in the 

form of an assumed time constant.  Equation (19) is essentially an integral control, and while U  is not 

strictly the forward vehicle acceleration, the error is small in normal circumstances when the lateral 

velocity V is small compared to U. 

 

For lateral control, the steering angle )(2 tu  is computed using a similar integrator approach, though 

(angular) displacement errors also included in the feedback. The vehicle yaw angle   and slip angle 

   UV /tan 1  (20) 

together determine the direction   of Gv  

     (21) 

The reference angular velocity of Gv  is given by 

  2/ vav nG  (22) 

This is then combined with angular error to provide an angular velocity demand 

  30 /)()(  t  (23) 

which is translated into steering control via 

    )()( 2012 krku   (24) 
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where r  is the yaw rate, and the first term is for tracking the desired velocity direction; the 

second is to compensate for any large sideslip conditions, incorporating  a switching term (.) : 

  








0 if0

0 if1
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u

u
u  (25) 

Finally, to avoid excessive integrator windup, equations (19), (24) are supplemented by the condition 

  0iu   when 0iiuu   and 
max

ii uu   (26) 

 

Although the above model is essentially the same as presented in (Gordon et al, 2002), additional adaptive 

phase compensation will be applied to the model, in an attempt to improve reference tracking and to reduce 

the sensitivity of the overall optimised performance to many aspects of the driver model’s parametric 

definition – see Section 5 below. Also, whereas the previous application of the model required a specific 

look-ahead strategy to prescribe )(xw , the reference field is now in a general format of velocity data on a 

spatial grid.  The definition, interpolation and optimisation of this field now considered. 
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3. REFERENCE VECTOR FIELD 

While in the previous section )(xw and its derivatives are proposed as a spatial reference for the driver-

vehicle model, here it is considered further in the context of a simple particle model of the vehicle.  The 

particle model has four states representing the position r(t) and velocity v(t) of the vehicle mass centre, and 

is controlled directly by an acceleration demand u(t) 

  
uv

vr







 (27) 

This model will be subjected to a fixed acceleration constraint, but no other transient dynamic behaviour: 

  0
22)(  yx uutu  (28) 

This model can be thought to represent an ‘optimistic’ version of what the vehicle (and driver) might 

achieve, and in this context 0 should be set to a ‘high but realistic’ value, and in the present study a value 

2
0 ms 8   has been chosen.  To track the reference field without error requires u(t) = a(r(t)), where a(x) 

is the required (flow) acceleration of the reference field 

    wwwxa 
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w
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Typically we expect somewhat tighter constraints on the reference accelerations 

  a(x)  ax
2  ay

2  (x)  0  (30) 

where )(x  is to be estimated separately from the driver-vehicle model limits.  This notation is suggestive 

of a position-dependent vehicle ‘friction’ limit, though it should be emphasised that the physical source of 

these limits refer as much to context-dependent handling transients associated with the vehicle and driver, 

as to the tyre-road friction.  (In this study the tyre-road friction is assumed constant, though clearly the 

formalism  would very  naturally accommodate surface friction variations).  

 

As will be seen below, there may be occasions when the reference acceleration constraint (30) is violated, 

in which case only approximate tracking is possible.  To represent the resulting acceleration-limited 
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tracking behaviour, the particle motion equations (27) are augmented by a feedback control, based on the 

velocity error variable 

  e(t)  v(t)w(x(t))  (31) 

in the form 

  u(t)  a(r(t)) ke(t) (32) 

In this case the error dynamics are given by 

  
wvea

wvve
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 (33) 

or using equations (29) and (31) 
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Taking the scalar product of this equation with e, and defining e  e(t)  as the error magnitude, it is then 

quite easy to re-write this equation in the simplified scalar form 

  ee Hkeee T 2  (35) 

where H is the 22 symmetric matrix with components 

  Hij  1
2

wi

x j


wj

xi









 (36) 

Then, in terms of the eigenvalues of H 

  h  max eig(H ),0  (37) 

we clearly have h ≥ 0, and from (35)  

  22 ehkeee   (38) 

or 

  ehke )(   (39) 
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(see Gordon et al 2002, for further discussion of the relevance of this eigenvalue).  This equation allow a 

suitable choice to be made for k, dependent on the particular reference field.  For the obstacle avoidance 

geometry considered below, it turns out that max(h)  5 , and hence k = 10 provides suitable dominance in 

equation (39) to ensure e(t) 0 , provided of course the friction limit 0 is sufficient to deliver the 

feedback control (33).  In general the feedback will take the modified form 

  













otherwise

 if
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Clearly, if the reference accelerations are globally bounded as in equation (30), and any initial velocity 

error e(0) is small, the ke  term must remain small, and this is the same as the full control (33). 

 

Turning now to the synthesis of the reference field, we note that previously (Gordon et al 2002) this was 

defined by simple geometric construction relative to a desired target path, namely the track centreline C.  

However here, for a collision avoidance scenario, there is no such pre-defined reference trajectory, and 

w(x) will be obtained directly by optimality considerations.  Figure 1 shows part of a typical rectangular 

grid construction, appropriate to a collision avoidance manoeuvre. Here 2  is the track region 

available to the vehicle, and its boundary  consists of track and obstacle edges (
edge

 ) together with 

entry (
in

 ) and exit (
out

 ) points.  

  

** INSERT FIGURE 1 ** 

 

Reference velocities will be defined at each vertex or node N and interpolated to fill the space within each 

rectangle or ‘tile’ T.  Nodes will be referenced in the two alternative formats: ),( jiN VV  , where i 

corresponds to an increment in the longitudinal (x) direction, and j to the lateral (y) direction – see Figure 

2.  The N-form simplifies some notation, while ),( ji  is more specific to the grid coordinates.  Similarly, 

tiles are referenced according to the lowest indexed node (upper left in Figure 2) using square brackets;  
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for example, flow accelerations will be evaluated as a ‘tile mean’ (see below), so in this case we may write 

a N  a [i, j] . 

 

** INSERT FIGURE 2 ** 

 

Within any particular tile, )(xw  is defined via linear interpolation of the nodal values: 

  )1,1()1,(),1(),( )1()1()1)(1()(   jijijiji VVVVxw   (41) 

where   and   are normalized local coordinates 
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Clearly )(xw  so defined is continuous across tile boundaries, though in general it will suffer gradient 

discontinuities.    The ‘flow optimisation’ of the nodal velocity components will be to essentially maximise 

the mean flow speed while keeping the flow acceleration within the given bounds.  Formally this is 

specified as follows: 

  maximise 


 dydxP
2

2
1 )()( xwx subject to a(x)  (x) (43) 

where )(x  may in principle be chosen to emphasise certain desired aspects of the flow, though in this 

study 1)( x  will be assumed.   Further constraints arise from boundary conditions: if n is a unit normal 

to  , pointing into the ‘active region’   on 
in

 and 
edge

 , and out of the active region on 
out

, 

then 

  w n  0 on   (44) 

Note that some additional constraints are required to avoid additional ‘defects’ in the flow, as will be 

described in Section 5.  However, at this point, the above defines the optimisation problem sufficiently 

well to describe how the optimisation is to approximated within the discretised nodal form of the flow. 
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The flow acceleration is obtained from the linear interpolation formula (41) on tile T.  We obtain 
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After evaluating the derivatives, the result is greatly simplified as a node is approached (  0 or 1, 

 0  or 1) to obtain the following set of flow accelerations on tile ],[ ji : 
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It is then natural to define the ‘tile acceleration’ as the mean of these expressions 

   )1,1()1,(),1(),(4
1

],[   jijijijiji aaaaa  (47) 

The optimisation problem (43) can then be re-written 

  

maximise : P  1
2

N
N
 VN

2

subject to : aT  (x) on 

: VN nN  0 on 

 (48) 

The last of these conditions needs a little care when the boundary   includes corners, since then there 

exist two vectors nN , one for each intersecting boundary.  In this case, for convex boundary corners we 

require VN nN  0 for at least one nN , while for concave corners the condition is imposed relative to 

both normal vectors. 

 

According to the standard Kuhn-Tucker conditions (e.g. Liu et al 2003) the above optimisation problem 

may be re-stated by introducing appropriate Lagrange multipliers T  and N : 

  

minimize :  J  1
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:  T  0, N  0

  (49) 
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Thus J can be minimized as an unconstrained function, with the Lagrange multipliers separately adapted to 

satisfy the additional conditions.  For the present investigation, a simple steepest descent method was 

sufficient to solve this problem. T  0 was intermittently adapted to achieve the first of the supplementary 

conditions, while the VN nN  0 condition is more simply achieved by imposing it directly on the 

relevant components of VN , directly within the gradient descent.  Since the objective function is explicitly 

a quartic function of the VN  components, it  would be quite possible to use a Hessian-based optimisation, 

such as Sequential Quadratic Programming (Liu et al, 2003), potentially making the optimisation more 

efficient.  On the other hand, for a small scale problem of the type considered in Section 5, steepest 

descents proved more than adequate. 

 

In the above we have impose an upper limit on the ‘tile mean’ flow acceleration. This still allows the 

possibility of higher accelerations occurring locally within any tile, particularly at one vertex.  This can 

then cause excessive requirements on either model (particle or vehicle) during simulation, essentially due 

to the limited resolution of the tiles.  This feature has motivated giving the particle model an inherent 

acceleration limit, essentially to test the validity of the synthesized reference (to check for example that it 

doesn’t hit barriers) prior to the use of the full vehicle model.  Of course, if the particle does track the 

reference accurately,  the reference is fully equivalent to the dynamic particle model, and it is in this sense 

that the optimised reference field is equivalent to the simultaneous multiple optimisation of the particle 

model, using all possible initial positions in  , again subject to grid resolution. 
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4. GENERALISED OPTIMAL CONTROL 

Generalized Optimal Control (GOC) is an independent approach to providing driver inputs for the 

‘optimal’ obstacle avoidance problem, and is used here to provide a baseline for performance comparisons.  

The method uses a gradient descent implementation of Pontryagin’s Maximum Principle (see Bryson and 

Ho 1975 for the basic method,  and Marsh 1992 for the application in automotive systems).  GOC utilises a 

dynamic cost function L plus a residual cost associated with final vehicle states, LT  

     dtttLTLJ
T

T )(),()(
0

uxx   (50) 

Adding constraint equations via a vector of Lagrange multiplier functions, p(t), yields 

         dttttgtttLTLJ
T

T
T  

0

)()(),()()(),()( xuxpuxx   (51) 

where the function g is defined via the nonlinear system equations 

   )(),( ttg uxx   (52) 

Lagrange multipliers (costates) p(t) are introduced and a Hamiltonian function is defined: 

     )(),()()(),( ttgtttLH T uxpux   (53) 

The costates satisfy the following differential equations 
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p
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p
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T
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t )(        ,)(  (54) 

and the optimal controls are found from the Hamiltonian via 

  0



u

H
 (55) 

Equations (52)-(55) are solved over the time interval ],0[ T  assuming fixed initial states 0)0( xx  , and 

since the costate ‘initial’ conditions are set at t = T, the system is a two-point boundary value problem. 

Following the methods used in (Marsh 1992, Best and Gordon 2002), an approximate solution is found via 

a discrete sequence of controls, each held constant for a small time t .  Within the time period for each 

control, the cost gradient is obtained directly from the Hamiltonian: 
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   dt
u

H

u

J i

i-

t

t ii

1






 (56) 

which then enables a gradient-based iteration optimisation to determine the optimal control sequence. 

 

** INSERT FIGURE 3 ** 

 

Figure 3 provides a summary of the algorithm used to conduct the GOC optimisation:- 

1 Using the current discrete control sequence, integrate the state-space system from x(0) and 

evaluate ],0[ TJ  

2 Evaluate the residual cost TL  and hence p(T) from equation (54) 

3 Integrate the costate system and H/u in reverse-time from the initial condition p(I).  Calculate 

cost gradients from equation (56)  

4 Update the control sequence by a line search optimisation along the steepest descent direction to 

minimise J (evaluated by repeating Stages 1 & 2). 

Stages 1-4 are repeated until suitable convergence of cost and controls, and reduction of cost gradients is 

achieved.  

 

The costate system of equations (54) for the vehicle model is prohibitively complex to establish by hand, 

so three techniques are employed to create accurate, yet efficient simulation code.  Firstly, the equations 

are manipulated using an analytical math processor – the Matlab Symbolic toolbox (Mathworks 2004).  

Direct evaluation of the partial derivatives is then possible, but the resultant formulae are long and 

inefficient (for example uH  / leads to an equation comprising over 100,000 characters).  These direct 

formulae are thus only used to validate the final code, which is generated by first breaking each partial 

derivative into its component parts, eg 
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where H is the Hamiltonian written in terms of the tyre forces fi, and uf i   is further broken down in to 

component derivatives of the Pacejka formulae.  The resulting derivatives are then converted into lines of 

computer code by an iterative extraction of common terms, to produce the shortest possible function. 

 

To increase the efficiency of time integration of the states and costates, a discrete-time integration 

algorithm is employed; this is the Cash/Karp 5th/6th order algorithm (Press et all, 1992).  The time-step is 

kept constant within each control (ui) time interval, and to ensure accuracy the code is written to monitor 

state errors and adjust the time-step duration accordingly.  One further modification was made to improve 

optimisation of the handling model; although the (ui)  controls remain functions of time, they are held 

constant for a specific distance along the vehicle trajectory, improving the speed of convergence when 

steer and torque inputs are optimised simultaneously.  Finally, the integration and derivative codes are 

compiled to achieve the fastest possible simulation execution time.  This level of computation is in marked 

contrast to that of the DM method, which requires no such efficiency savings. 

 

 

For application to the obstacle avoidance manoeuvre, under limit handling conditions, the target has been 

to achieve maximum distance in the x direction, whilst maintaining adequate lateral control of the vehicle.  

A residual, final cost function is thus set as : 

    2

T GL X X T   (58) 

with XG set at some large, unattainable distance (in this case 50 m in T = 3 seconds).  .  The integral cost 

term varying is dominated by a boundary avoidance terms of the form 

  2χλLtrack   (59) 

where  is the perpendicular distance of the vehicle from a nominal track centre (defined using straight-

line  and arc segments).  λ  is chosen, to provide the minimum track following cost whilst ensuring that the 

obstacles are avoided ( λ=100).  Additionally, in the present study, the initial vehicle velocity vector is left 

free, and this is simply accommodated by setting the corresponding initial costates to zero, .0)0( ip    
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5. DUAL MODEL METHOD APPLIED TO AN OBSTACLE AVOIDANCE MANOEUVRE 

The Dual Model (DM) method was applied to the following problem.  The vehicle enters a track section, 

nominally 35m long and 10 m wide, as shown in Figure 4, with the initial entry point indicated by the 

arrow on the left boundary.  For the case presented – a  double lane-change – the entry speed and direction 

are to be freely chosen within the optimisation procedure.  Other vehicle states are set as simply as possible 

(wheel speeds correspond to a free rolling condition, but other states zero – yaw velocity, slip angle, roll 

angle, roll velocity, steer angle and drive/brake torque).  As described above, the first stage of the 

optimisation process is used to generate the reference field, also shown in Figure 4, and a uniform 

acceleration limit is chosen, 2ms 6)( x  (c.f. equation (48)). 

 

** INSERT FIGURE 4 ** 

 

As mentioned above, additional constraints were imposed to avoid certain ‘defects’ in the flow.  These can 

occur at lateral ‘source’ and ‘sink’ boundaries.  The source boundaries, shown at distance x = 5m and 20 

m, are lateral boundaries where the reference field ‘flows’ out of the obstacle.  A limiting exit speed needs 

to be defined in such cases, for otherwise the flow speed can increase without bound, especially near the 

exit.  Strictly this does not influence the vehicle path, since of course the vehicle should not really exit 

from either obstruction!  But the potential for unbounded velocities is highly undesirable for the numerical 

procedures, and may cause difficulties in early vehicle simulations when the reference following may be 

subject to sizeable errors.  In the present case, the (longitudinal components of the) exit velocities were 

limited to 5 m/s.   

 

Where sink boundaries (x = 10m and 25m) meet the lateral track boundaries (at a concave corner), it is 

possible to create a topological defect in the flow.  This is where, during the optimization from some 

randomised initial conditions, the velocities vectors tend to point towards the corner, and essentially 

become ‘trapped’ – and the optimization settles into a local minimum corresponding to ‘braking to a stop’ 
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at the corner.  To avoid this a minimum lateral velocity (2.5 m/s) away from the track edge is set on the 

nodes of the sink boundary.  One final velocity constraint is to regulate the exit flow to be purely 

longitudinal, a feature that can be easily seen at x = 35m.  We are now in a position to describe the overall 

Dual Model technique. 

 

** INSERT FIGURE 5 ** 

 

Figure 5 shows a comparison between flow model and vehicle case, both starting from the same initial 

location fixed for the test.  While the vehicle simulation is unsatisfactory, in the sense that the vehicle hits 

the second barrier, it does not go unstable or generate large path errors;  the driver is doing a ‘reasonable 

job’ in following the reference, but would expect to ‘do better next time’.  The plot gives a strong clue to 

the source of the problem – the direction of the vehicle path is consistently lagged behind that of the 

reference particle.  This is shown more clearly in Figure 6, where the vehicle path angle is plotted against 

the angle of the collocated (interpolated) reference field vector (left plot);  there appears to be a consistent 

time delay, or phase lag, and of course this should be expected – the driver model uses instantaneously 

available reference velocity information, and there are dynamic lags associate with all aspects of the 

vehicle and drivers actions.  A similar, though more complex lag behaviour is apparent in the right hand 

plot, where the vehicle acceleration lags behind that inferred from the collocated reference field. 

 

** INSERT FIGURE 6 ** 

** INSERT FIGURE 7 ** 

 

 

To compensate for this effect the driver should clearly introduce an element of ‘anticipation’, which is 

quite simply achieved as follows.  Referring to Figure 7, for each ],0[ Tt , an estimate of the time delay is 

derived in a non-parametric fashion.  The path angle )(t  is determined, and this is ‘inverted’ from the 

reference angles;  thus (within the resolution of the simulated trajectory) all times t  for which 

)()(0 tt    within a small tolerance   are formed into a set T   - this set is illustrated by the marking on 
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the time axis in Figure 7.  Of course some of these points are completely erroneous, but since the time 

delay is likely to be small, the time delay )(ˆ ttd  is determined by the nearest member of T   to t.  Formally, 

  }|min{arg)(ˆ Tttttttd   (60) 

and here )(ˆ ttd  is positive for the case of a lagged response to the reference.  If T   turns out to be empty, 

no result is available, and all non-trivial estimates are used in a regression-based estimate, taken here to be 

a quadratic function:  

  2
210)(ˆ tctccttd   (61) 

This ensures that the phase compensation is smoothly defined, and relatively insensitive to uncertainties 

that typically occur at or near regions of zero slope in )(t . 

 

A precisely similar phase estimation was also carried out for the longitudinal acceleration and brake 

control.  In both cases, the delay compensation for )(ˆ ttd  is easily implemented in a repeat simulation, 

using a translated reference: 

   )(ˆ)()())((ˆ ttttt dvrwrw   (62) 

Note that a different ŵ  is used for the lateral and longitudinal control aspects of the driver model of 

Section 2, corresponding to the fact that the lateral and longitudinal dynamics of the vehicle (and driver) 

have different transient characteristics.  One further  important aspect of the phase compensation is that 

there exists some interaction between the control modes, and for this reason the estimated )(ˆ ttd  was 

truncated at a suitably small value ( 1.0)(ˆ ttd ) and the entire process was run iteratively until no 

significant additional phase change resulted. 

 

The final component of the iterative DM optimisation is adaptation of the ‘friction’ distribution )(x .  

This should be based on the ‘level of saturation’ of the driver-vehicle system – where increased mass-

centre accelerations can be delivered whilst maintaining control of the vehicle, then )(x  can be increased 

of such points.  Where control or stability is compromised, for example where tyres experience excessive 
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slip, or the vehicle slip angle is large, then )(x  should be reduced in such regions.  For simplicity, the 

adaptation criterion adopted here is base purely on tyre force saturation.  For any location )(tr  on the 

vehicle path, we can associate a tyre force utilization parameter: 
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where )(tF  is the tyre force magnitude (at wheel i) and )(tFp  is the peak force available.  In the tyre 

adhesion region, with the normalized combined slip parameter k below its value at the force peak (c.f. 

equation (8)) the utilization is less than one.  Above this critical slip parameter the tyre is ‘over-utilized’ 

and the ratio is reversed.  A revised acceleration limit )(ˆ x  may then be defined using a Gaussian 

neighbourhood function;  let )(min td
t

rx   be the distance from x to the vehicle trajectory, and let 

0  be a characteristic length (  = 1m in this study).  The revised acceleration limit is then given by 

  22 2/)1(1

)(
)(ˆ




de


x

x  (64) 

Clearly if 1  there is no change in )(ˆ x , but where the tyres are over-utilized ( 1 ) )(ˆ x will be 

reduced in the neighbourhood of the vehicle path, and where the tyres are under-utilized ( 1 ) )(ˆ x will 

be increased.  It is then clear that, if a significant change in )(ˆ x  is implied by equation (64), the 

underlying field optimisation needs to be refined and the vehicle simulation repeated.  The DM process 

then continues until the change in )(ˆ x  is insignificant – meaning that the reference field reoptimisation 

causes insignificant changes in the driver-vehicle model response. 

  

The above procedure may seem computationally burdensome, so it is perhaps worth making some informal 

comments about the computational efficiency of the DM optimisation process.  The flow optimisation was 

implemented in Matlab, and the result presented in Figure 4 took approximately 20 minutes, on a standard 

1600 MHz Pentium PC, starting from a highly random initial velocity distribution.  Flow refinement, 

required for any modest changes in acceleration limit, are much quicker – typically taking around 5 
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minutes.  The phase compensation stages of the DM process required less than 20 simulations of the 

combined driver-vehicle model, and including the various numerical routines for the phase compensation 

itself, this took less than 10 minutes to run.  Overall, the whole analysis takes 30-60 minutes on a standard 

PC, depending on the number of acceleration limit revisions required.  Of course these numbers will 

increase if finer discretisations of the track are used, or if more lengthy manoeuvres are optimised, but 

overall the method appears to be inherently much quicker than the full GOC optimisation.  In the next 

section we consider its effectiveness in this test problem. 
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6. OPTIMIZATION RESULTS 

We first consider how the DM iterations develop, and then make comparisons with GOC.  The phase 

compensation converged in 18 iterations of the process described above, and the result is shown in Figure 

8. 

 

** INSERT FIGURE 8 ** 

 

Compared to Figure 6, the directional phase lag is almost entirely removed.  There is also clear 

improvement in the phasing of the longitudinal acceleration, though clearly the picture remains more 

complex.  The result might be improved further, for example by introducing additional basis functions into 

equation (61) for the regression fit.  On the other hand this is only a very simple aspect of the relatively 

complex driving task being modelled, and excessive focus on ‘improving the phase result’ would certainly 

bias the overall performance of the driver-vehicle system.  For example, the delayed braking at the start is 

a direct effect of the transient lags in the driver-vehicle system, and no further compensation is possible.  

Again, the delay in braking at around t = 1.5 seconds is due to the fact that the vehicle has a slower speed 

than the reference assumes, this in turn being due to the sharp spikes in the reference acceleration, which 

cannot be achieved by the vehicle model (note that such spikes are a feature of the discretisation mentioned 

earlier – even though the ‘tile mean’ demand remains at approximately 6 ms-2, locally the peaks can be 

higher; fortunately this does not seem to significantly degrade the overall performance). 

 

We now turn to the adaptation of acceleration limits, equation (64).  It turns out that the tyre utilization – 

see Figure 9 – was very close to unity )1(   even in the first iteration.  This is a somewhat surprising 

outcome, resulting perhaps from a ‘lucky guess’ ( 2ms 6)( x ) for the initial acceleration limit.  This 

issue will be discussed further in Section 7, but for now the conclusion is that further iterations of the DM 

sequence are pointless – according to Figure 9, 1 , and the application of equation (64) makes no 

significant difference to the distribution of )(x , and hence no difference to the optimisation results. 
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** INSERT FIGURE 9 ** 

 

Figure 10 shows the revised path of the DM vehicle (solid line), and clearly the phase compensation has 

been successful in improving the path of the vehicle, which now has a slight bias towards the ‘safe side’ of 

the reference vehicle path in avoiding the obstacles.  The GOC - optimal path is also shown, and this 

clearly has a much stronger tendency to avoid the barriers.  This is simply a feature of the cost function 

parameter ( λ  in equation (59)) and is not a particular indicator of one solution being ‘more optimal’ than 

another.  One other feature Figure 10  is that the GOC path is slightly offset from the intended start 

position;  this was the result of starting the GOC optimisation a little ‘early’ (at x = -5 m) in order to 

remove some initial transients.  In any case we do not expect high levels correlation between time-

histories, and the advantage that GOC enjoys here is compensated for by its greater tendency to avoid the 

obstacles. 

 

** INSERT FIGURE 10 ** 

 

More objective performance metrics are presented in Table 2.  The first row of data relates to the 

acceleration-limited particle model, which takes 2.76 seconds to complete the 35 m section.  The initial 

DM vehicle (prior to phase compensation) is 0.16 seconds slower, but of course it collides with a barrier.  

The effect of phase compensation is to reduce this figure to 2.81 seconds (0.5 seconds slower) which is 

close to the 2.78 seconds achieved by GOC.  Another notable feature from Table 2 are the very slight 

differences between maximum speeds, as compared to the exit speeds, which are much more variable, and 

with GOC exiting the fastest.  Note that in the last two columns, ‘angle error’ is not meaningful for the 

GOC result (as there is no relevant reference )(xw  for comparison), and ‘path error’ (maximum deviation 

from the particl model trajectory) is only meaningful for the DM vehicle simulations.  It is finally worth 

noting how the phase compensation greatly reduces the peak angle error, and that the maximum path 

deviations are a little misleading, since the 0.39 m in row 2 is not only reduced to 0.25 m in row 3, but the 

deviation moves from the ‘wrong side’ of the reference to the ‘right side’.  
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** INSERT TABLE 2 ** 

** INSERT FIGURE 11 ** 

 

Figure 11 shows how the vehicle speeds differ between the (phase compensated) DM case and the GOC 

case.  The DM speed is initially higher and there is a very simple interpretation of the curve – deceleration 

towards the corner of the first obstacle, acceleration until the second obstacle corner is approached, brief 

deceleration and then acceleration towards the exit.  The speed in the GOC case is harder to interpret, but 

clearly the advantage of a slower start is to avoid sharp decelerations and to start the exit acceleration 

earlier.  In a sense therefore, the GOC case appears to operate more smoothly in terms of longitudinal 

control.  On the other hand, the vehicle slip angles are considerably higher for the GOC case, so one might 

anticipate that the ‘GOC driver’ is more aggressive with the steering control, and this is clearly confirmed 

by reference to Figure 12, the driver control inputs.  The left plot shows the steering inputs (degrees of 

steer at the front wheels) with the GOC driver applying sharp initial right steer, followed by even sharper 

counter-steer at around 0.5 seconds.  Hence the GOC driver is prepared to exercise the vehicle controls at 

the limits far more than the DM driver.  This is also apparent in the right hand plot.   The solid line shows a 

fairly simple torque demand (a nominal control input, equivalent to demMra , where M is vehicle mass, r is 

the rolling radius of the road wheels, and dema  is a demanded vehicle acceleration) from the DM driver, 

which is almost a ‘bang-bang’ control sequence – hard braking on approaching the obstacle corners, with 

hard acceleration in between.  On the other hand, the GOC driver has independent control of the drive and 

brake torques, and at one point – around 0.5 seconds – they are applied sharply and simultaneously.  This 

is a way that ‘rear-only’ braking can be applied (recall the vehicle is FWD) inducing temporary oversteer, 

to assist with the counter-steering action in the left plot.  This is a highly sophisticated and coordinated use 

of the three control inputs, typical of a racing driver, and while it reinforces the validity of the GOC 

control optimization method, it pushes the optimisation into a specialist domain that the DM method is 

unlikely to go, not at least without a very much more elaborate control model.  

 

** INSERT FIGURE 12 ** 
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7. DISCUSSION AND CONCLUSIONS 

In the foregoing analysis, a modular ‘Dual Model’ driver control optimisation has been defined and 

applied to the simple case of an obstacle avoidance manoeuvre.  The DM method combines the use of a 

simple particle model to determine a velocity reference for the actual vehicle model.  The use of  the two-

dimensional track coordinates as independent variables for the velocity reference is a key and distinctive 

feature of the approach.  The method is superficially analogous to asking a skilled human driver to 

repeatedly execute a given manoeuvre, with performance gradually improving until it is considered 

‘optimal’.  However, a key step in this iteration is a global optimisation of the reference ‘flow field’, 

something that is presumably outside of the capability of a human driver.  The other notionally important 

aspect of the iterative DM optimisation – adaptation of friction limits – has not been exercised in this 

study, because the tyre utilization limit was achieved in the first iteration.  One possible reason for this is 

that the particular vehicle model has very uniform acceleration limits, even under transient conditions, and 

these are very close to the limits chosen; so, for a less ‘well behaved’ vehicle the adaptation would be 

much more significant.  A second possibility, is that the driver model has a natural tendency to use all 

remaining friction under longitudinal control, provided the lateral tracking requirements are met.  This is 

unlikely however, since the optimized reference pays equal attention to speed and lateral control.  It is also 

possible that the ‘worst tyre’ utilization condition is too simple, and can be replaced by a more appropriate 

metric in the future.  This issue, although interesting, is of reduced concern since the overall performance 

in the obstacle avoidance is very close to that of GOC, (as well as the reference particle model). 

 

The use of an intermediate flow optimisation not only provides an essential input for the driver model, it 

also allows an independent assessment of the validity of the driver-vehicle performance, via the angle and 

path errors.  Compared to the GOC benchmark,  it turns out that the fine details of the driver control input 

time histories are indeed quite different, but that the overall performance is very similar indeed.  The 

conclusion is that the DM result is ‘close to optimal’ in a space of solutions where many different driving 

styles are also ‘close to optimal’. 
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One important issue must be considered.  It is conceivable that results equivalent to those achieved above 

could have been obtained directly via a carefully designed driver model.  But in a future application, 

perhaps with a different vehicle model, we would clearly have little confidence in the optimality of the 

results without again needing some independent benchmark.  So what is there about the DM technique that 

should be different.  One reason has already been mentioned: there are intrinsic benchmarks within the 

methodology.  A second reason would be that the  final results are insensitive to the particular assumptions 

of the driver model.  A full study of this phenomenon is outside of the scope of this paper, but for interest a 

repeat of the avoidance manoeuvre was undertaken, with the yaw control made less aggressive and the slip 

angle control entirely removed ( 1k reduced from 1 to 0, 2k  set to zero in equation (24)).  The relevant 

vehicle paths are shown in Figure 13.  The initial path is considerably worse than before, confirming that 

the control has indeed changed, but after 17 iterations of phase compensation relative to the fixed reference 

field, the transfer time is reduced to 2.82 seconds (compared to 2.81 previously), the maximum path error 

is 0.20 m, and the peak angle error is 1.5 degrees. 

 

** INSERT FIGURE 13 ** 

 

Of course, the critical link between the simulation and the confirmation of optimality is that the particle 

model is representative of the driver plus vehicle.  If this is true, satisfactory reference field tracking is 

sufficient to infer the (near) optimality of the vehicle results, and from the results presented this appears to 

be the case, provided the driver model has some ‘minimum level of competence’, and a time-dependent 

phase compensation is applied.  It is interesting to note (MacAdam 2003, Weir and McRuer 1970) that 

similarly simple models of coupled driver-vehicle dynamics have been inferred even in the case of the 

human driver performance.   Clearly further work is needed to firmly establish this technique as a practical 

design tool, but the indications from this research is that the Dual Model technique has fundamental and 

durable significance. 
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TABLES 

 

Table 1.  Vehicle Model Notation and Parameter Values 

States and Dynamic Variables (units) 

U vehicle forward velocity (m s-1) 
V sideslip velocity (m s-1) 
p roll angular velocity (rad s-1) 
r yaw angular velocity (rad s-1) 
 roll angle (rad) 
 yaw angle (rad) 

),( GGG yxr  vehicle position in global coordinates (m) 

Ti driveline or brake torque at wheel i  
ω wheel angular velocity (rad s-1) 
w magnitude of tyre vertical load (N) 

Parameters  (value, units) 

Ixx body roll moment of inertia (200 kgm2) 
Izz yaw moment of inertia (2500 kgm2) 
Ixz roll/yaw product of inertia (0 kgm2) 
Iw wheel (plus associated driveline) moment of inertia (5 kgm2) 
M vehicle mass (1400 kg) 
a longitudinal Distance of C of G to front axle (1.16 m) 
b longitudinal Distance of C of G to rear axle (1.54 m) 
h C of G height above roll axis (0.33 m) 
h0 ground plane to roll axis distance below C of G (0.27 m) 
hf front suspension roll centre height above ground (0.1 m) 
hr rear suspension roll centre height above ground (0.5 m) 
ε roll axis inclination angle - downwards to front of vehicle (8.4 deg) 
tf front track  (1.5 m) 
tr rear track  (1.5 m) 
rr tyre rolling radius (0.3 m) 
Kf front roll stiffness  (37 kNm/rad) 
Kr rear roll stiffness  (16 kNm/rad)  
Bf front roll damping  (790 Nms/rad) 
Br rear roll damping  (860 Nms/rad) 
B,C,D,E Pacejka formula coefficients  (0.709, 1.41, 1.0, 0.0 - dimensionless) 

21,cc  cornering stiffness parameters (69 kN/rad, 1.4 kN) 

21,  time-constants for driver longitudinal control (0.25 sec, 0.25 sec) 

321 ,, kkk  driver lateral control gains (1,1,1) 
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Table 2.  Performance Summary for the Obstacle Avoidance Manoeuvre 

Simulation Model total time 
(sec) 

max speed 
(ms-1) 

min speed 
(ms-1) 

exit speed 
(ms-1) 

peak angle 
error (deg) 

max path 
deviation 

(m) 
Reference particle 
model 

2.76 15.4 10.4 15.2 0.7 - 

Initial DM vehicle  2.92 15.4 9.8 13.5 2.8 0.39 

Phase compensated 
DM vehicle 

2.81 15.4 10.4 14.6 1.3 0.25 

GOC optimised 
vehicle 

2.78 15.5 12.0 15.5 - - 
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FIGURE CAPTIONS 

 

Figure 1.  Illustration of Track Geometry 

Figure 2.  Discretised Velocity Reference  

Figure 3.  Summary of GOC Algorithm 

Figure 4.  Track Boundaries and Optimised Velocity Reference  

Figure 5.  Reference Path from Particle Model and Vehicle Path from Combined Driver-Vehicle Model  

Figure 6.  Phase Delay in Vehicle Path Angle and Longitudinal Acceleration 

Figure 7.  Algorithm for Phase Delay Estimation  

Figure 8.  Delay after Phase Compensation in Vehicle Path Angle and Longitudinal Acceleration 

Figure 9.  Time History of the Tyre Utilization Parameter ( ) 

Figure 10.  Comparison of Vehicle Paths  

Figure 11.  Comparison of Vehicle Speeds and Slip Angles 

Figure 12.  Comparison of Vehicle Control Inputs 

Figure 13.  Vehicle Paths for a Modified Driver 
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FIGURES 

 

Figure 1.  Illustration of Track Geometry 

 

 

Figure 2.  Discretised Velocity Reference 
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Figure 3.  Summary of GOC Algorithm 
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Figure 4.  Track Boundaries and Optimised Velocity Reference  
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Figure 5.  Reference Path from Particle Model and Vehicle Path from Combined Driver-Vehicle Model  
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Figure 6.  Phase Delay in Vehicle Path Angle and Longitudinal Acceleration 

 

 

Figure 7.  Algorithm for Phase Delay Estimation  
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Figure 8.  Delay after Phase Compensation in Vehicle Path Angle and Longitudinal Acceleration 
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Figure 9.  Time History of the Tyre Utilization Parameter ( ) 
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Figure 10.  Comparison of Vehicle Paths 
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Figure 11.  Comparison of Vehicle Speeds and Slip Angles 
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Figure 12.  Comparison of Vehicle Control Inputs 
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Figure 13.  Vehicle Paths for a Modified Driver 

 


