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This paper concerns the synthesis of optimal control inputs for automotive handling dynamics, a typical 
application being in the evaluation of active safety systems operating near the limits of friction.  The 
paper considers an example of an emergency limit handling manoeuvre – combined acceleration and 
steering to achieve obstacle avoidance whilst also maximising speed and maintaining stability.  Two 
independent methods are applied to the problem.  The  first is a general numerical optimiser for non-
linear control systems (Generalised Optimal Control, or GOC).  The second is an indirect Dual Model 
(DM) method, which has the advantage that no differential analysis of the vehicle model is required, 
and it can therefore be applied directly to a wide range of complex multibody dynamic models.  A 
relatively low-order handling model is actually used within this study, since this allows  comparison 
between the two methods and an evaluation of the general usefulness of the DM approach in the future. 
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1. INTRODUCTION 

 Optimisation of handling performance, in its most 
general sense, has been a major goal of vehicle 
dynamics since its inception.  For improved handling 
performance, safety and driving pleasure, vehicles 
have been greatly improved over the years, through the 
underlying mechanical design of the chassis, through 
improvements to tyre materials and construction, and 
more recently through the use of active controls in 
brakes, suspension and steering.  Much of this 
‘optimisation’ is of course informally based, and would 
more commonly be described as ‘design evolution’ or 
‘handling development’.  However, as vehicles – and 
especially their chassis systems - rely increasingly on 
electronic controls, the design space acquires ever 
increasing dimensions, and a more rigorous approach 
to handling improvement becomes increasingly 
important.  Formal optimisation does not come without 
its own limitations, perhaps the most fundamental 
being its critical dependence on the choice (and 
relative weighting) of  performance metrics and 
constraint functions, and these in turn require a high 
degree of abstraction from an ill-defined ‘engineering 
problem’ to the formal mathematical and numerical 
definition of that problem. 
  

 Once suitable performance metrics have been 
defined, objective open-loop handling tests may be 
optimised in a relatively straightforward manner using 
simulation, even when the vehicle dynamics model is 
complex and nonlinear.  On the other hand, many 
applications, including active safety and  motorsport, 
require closed loop evaluation – the driver inputs must 
be modelled or systematically generated.  Where a 
driver model is used, it has a potential confounding 
effect – simulated improvements apparently due to 
(say) a new chassis control system, might be largely 
the result of an interaction with the particular driver 
model used.  To overcome this limitation, the driver 
inputs might be synthesised in some kind of optimal 
way.  The resulting optimal nonlinear control synthesis 
is technically challenging even with relatively simple 
(nonlinear) vehicle models; for complex nonlinear 
models the difficulties of finding optimal control 
signals can be overwhelming, and approximate 
methods are usually considered.  The aim of this paper 
is to explore a way of bridging between the formal 
optimal control of low-order vehicle models, and a 
‘near-optimal’ driver-model approach that is 
compatible with the use of complex vehicle models.  
The study will consider the two approaches in the 
context of a simple collision avoidance manoeuvre. 



 Here we shall make use of a formal method 
directly based on the underlying Pontryagin Minimum 
Principle formulation of nonlinear optimal control [1]. 
This Generalised Optimal Control (GOC) technique 
[2] is applied to the collision avoidance manoeuvre –a 
double lane change defined by the road and obstacle 
boundaries - using a low order nonlinear vehicle 
handling model.  This restriction to low order allows 
the GOC method to provide a performance benchmark 
for a second Dual Model (DM) technique [3] which is 
not restricted in this way.  These two techniques are 
described in Sections 2 and 3.   
 The conceptual difference between the two 
approaches is as follows.  GOC works at a single level, 
working with vehicle states and road/obstacle 
geometry limits simultaneously, to provide the optimal 
sequence of steering, brake and throttle actions to give 
the best obstacle avoidance possible; there is no 
internal representation of the ‘driver’.  DM on the other 
hand formally optimises the control of a simple particle 
model in the same geometry, and this provides a 
reference input to a second combined driver/vehicle 
model.  Of course the choice of driver model may still 
effect the results, but if – as this study explores – the 
DM method can come close to matching the 
performance of GOC, the same approach can be used 
with confidence as a near-optimal ‘driver’ for closed 
loop control, even with more sophisticated vehicle 
models.  This is precisely the motivation for this study. 
 The low-order vehicle model, described in Section 
4, employs a fixed roll-axis, and has four vehicle 
degrees of freedom – yaw, sideslip, roll and (variable 
speed) longitudinal motion.  The brakes and driveline 
have further degrees of freedom, including wheel-spin, 
and the tyres are represented as four load-dependent 
combined-slip Pacejka ‘magic formulae’ models, to 
impose realistic friction limits on the vehicle. 
 The manoeuvre, and it’s formulation via GOC and 
DM, are given in Section 5, test results are described in 
Section 6, and conclusions are drawn in Section 7. 
 

2. GENERALISED OPTIMAL CONTROL 

  
 The control optimisation is a nonlinear 
formulation of LQR; controls are sought to minimise a 
Hamiltonian which is prescribed in terms of a 
(nonlinear) system of costate equations over a fixed 
time period.  Given a cost function of time, L and a 
residual cost associated with final states, LT : 
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Adding constraint equations to this with a vector of 
Lagrange multiplier functions, p(t) : 
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where g is given by the system equations, 
 )(),( ttg uxx  .  The Lagrange multipliers can be 

formed as a so-called costate system, and the 
Hamiltonian function can then be defined (see for 
example [1]) as 
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Eqn. 2 can now be integrated by parts to give, 
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Considering small changes J in the dynamic cost 
caused by small changes in the controls u(t) and in 
the states x(t) : 
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and costates can be chosen such that J depends only 
on changes in the controls by imposing the following 
conditions : 
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As we seek an open loop series of controls to minimise 
the dynamic cost J for constant conditions, x(0) = 0, 
and the minimum cost must therefore exist where  
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In [4] an approximation to the continuous solution is 
found using a discrete sequence of controls, each held 
constant for a small time dt.  Within the time period for 
each control, the cost gradient can then be identified as 
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So it is feasible to establish a gradient based iteration 
optimisation of a sequence of discrete controls 
spanning the required time frame (Fig 1).   
 Note that, provided the control remains constant 
for its discretisation period, the method is valid 
irrespective of the duration.  Also, independent 
controls can take different discretisations.  Coupling 
this with the fact that in the nonlinear model, any 
variable can be designated a control, it is 
straightforward to include model parameters within the 
optimisation.  These are defined simply as controls 



which remain constant over the entire simulation 
period, and whose gradients are thus computed as 
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Figure 1 provides a summary of the algorithm which 
can be used to conduct the GOC optimisation. 
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 Fig. 1  Summary of GOC algorithm 
 
1   :  Using the current discrete control sequence, 

integrate the state-space system from x(0) and 
evaluate J[0,T]. 

2   :  Evaluate the residual cost LT and hence p(T) from 
Eqn. 6. 

3   :  Integrate the costate system and H/u in reverse-
time from the initial condition p(T).  Calculate 
cost gradients from Eqn 9.  

4   : Update the control sequence by a line search 
optimisation along the steepest descent or 
successively conjugate gradients to minimise J 
(evaluated by repeating Stages 1 & 2). 

 

3. DUAL MODEL OPTIMIZATION 

 
 This starts with the road geometry, defined by 
reference to a centreline C, and is assumed to be of 
uniform width and composed of circular arc segments.  
As described in reference [3] this allows one to 
introduce curvilinear coordinates to compute the 
vehicle path and define reference accelerations.  Using 
track-based displacement coordinates ),( yx ss  for the 

analysis, reference velocity components xv  and yv  

determine targets for forward and lateral velocities for 
the driver model [5].  In the present paper, the road is a 
simple straight section, with additional obstacles 
defined – Section 5.  
 The ‘flow optimisation’ of these velocity 
components is broadly to maximise xv  and hence 

maximise the average speed along the track, choosing 

yv to reduce the ‘flow acceleration’ and hence allow 

further increases in xv .  The flow acceleration is the 

local acceleration of a particle whose velocity 
components are xv  and yv .  In Cartesian coordinates 

the flow acceleration [5] is simply given by 
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and a ‘friction’ constraint takes the form 

 )(sa   (12) 

 
 For numerical representation, the track is divided 
into a rectangular grid based on the ),( yx ss  

coordinates, and a finite difference scheme is adopted 
[3].  The mean flow xv  is maximised, subject to the 

friction constraint (12) and a ‘containment’ constraint 

minvvy   on the right track boundary, and 

minvvy  on the left boundary. 
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Using a penalty function approach for the optimisation, 
an augmented performance index is chosen in the form 
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where 
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with ),( jie =0 when the friction constraint (5) is 

satisfied and ),( jie =1 otherwise.  The containment term 

is f the form 
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with 2,if =0 when min),( max
vV jix   is satisfied, and 

2,if =1 otherwise. Similar terms are used for left 

containment and obstacle avoidance (Section 5).  A 
final cost function term limits the flow convergence [5]  
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and the overall cost function is 
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4. VEHICLE MODEL 
 
The model is based on the well known three degree of 
freedom, yaw, roll, sideslip model, with a fixed, 
inclined roll axis, and using a load dependent, 
combined slip Pacejka tyre model.  The equations are 
for sideslip, 
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for forward speed, 
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for yaw, 
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 And here the forces Fxi, Fyi acting on the body, are 
given from tyre forces 
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where the tyre forces are derived using the Pacejka 
magic formula  (see for example Milliken and 
Milliken, 1995) : 
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and the wheel rotation degree of freedom is modeled as  

  1
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Vertical load transfer due to roll is given by 
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And finally, vehicle position and orientation in global 
coordinates is then calculated using yaw angle, such 
that  
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Control inputs  and  are applied equally to both 
wheels at the front axle only. 
 
 

Table 1  Model Nomenclature and Parameters 

States, x 

u forward velocity (m/s) 
v sideslip velocity (m/s) 
p roll angular velocity (rad/s) 
r yaw angular velocity (rad/s) 
 roll angle (rad) 

 yaw angle (rad) 

X,Y Vehicle position in global space (m) 

parameters,  (values 
Ixx roll moment of inertia (200 kgm2) 
Izz yaw moment of inertia (2500 kgm2) 
Ixz roll/yaw cross moment of inertia (0 kgm2) 
M mass (1400 kg) 
b longitudinal Distance of C of G to front axle (1.16 m) 
c longitudinal Distance of C of G to rear axle (1.54 m) 
h C of G height above roll axis (0.33 m) 
h0 ground plane to roll axis distance below CofG (0.27 m) 
hf roll axis to x axis vert. distance at front axle (0.17 m) 
hr roll axis to x axis vert. distance at rear axle (0.23 m) 
tf front track  (1.5 m) 
tr rear track  (1.5 m) 
Kf front roll stiffness  (37 kNm/rad) 
Kr rear roll stiffness  (16 kNm/rad)  

Bf front roll damping  (790 Nms/rad) 

Br rear roll damping  (860 Nms/rad) 

Sp Pacejka tyre model shape coefficients  (0.709, 1.41, 
1.0, 0.0) 

C zero lateral slip cornering stiffness  (64 kN) 

Kx zero longitudinal tyre slip rate  (64 kN) 
 tyre friction coefficient  (1.0) 

 
 

5. OBSTACLE AVOIDANCE MANOEUVRE 
 
 Both optimisation methods were applied to the 
following problem.  The vehicle is moving at 10 m/s, 
2.5 from the left road edge, and parallel to the road as 
shown in Fig. 3.  Track dimensions are given in 
metres, and the dark regions are obstacles.  The vehicle 
must swerve to avoid the left obstacle, and swerve 
back to  avoid the second of the right-hand obstacles 
whilst also accelerating.  To ensure the problem is well 
posed, the optimisation takes the form of minimising 
the time to pass the 35m mark on the track.  Although 
this is not fully representative of an active safety 
manoeuvre, the minimum time requirement (subject to 
staying on the road and avoiding the obstacles)  
provides a suitable case to compare the results of the 
two methods. 
 The GOC method optimises a simulation of fixed 
duration, so to achieve minimum time over a fixed 
distance it is given a sufficient total time (3.5 seconds) 
and targeted to maximise the distance travelled in this 
time.  A residual, final cost function is thus set as : 

   2

T GL X X T   (29) 

with XG set at some large, unattainable distance (in this 
case 50m).  The time varying cost is then dictated by a 
track following term : 

 2
trackL x  (30) 



where x is the perpendicular distance of the vehicle to 
the track centre, which is defined using straight-line 
and circular segments as shown in Fig. 2.   is chosen, 
to provide the minimum track following cost whilst 
ensuring that the obstacles are avoided (=100). 
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Fig. 2  Obstacle Avoidance 

 
 The overall DM method goes through a sequence 
of optimisations, starting with a finite difference 
representation of the ‘flow map’ of the reference field, 
Fig. 3.  This is initially optimised without 
consideration of any vehicle path.  An ideal vehicle 
would follows the reference field, while using the 
driver model of [5], the  approximate path is achieved 
as shown.   
 This vehicle-driver result makes use of a 
secondary 2-parameter re-optimisation of the driver 
model.  While the core of the model is unchanged, the 
‘driver’ component is given the freedom to adapt 
‘visual preview’ and reference speed according to the 
equation:  

   GGref t vrwv )(  (31) 

where  rw  is the optimised reference field,   is an 

anticipation factor - effectively giving a phase lead 
compensation in the short-term vehicle control – and 
  is the speed adaptation.  In this paper  and  are 

constants and the re-optimisation uses the combined 
criteria of angular deviation from the reference field 
direction, and time to exit the track portion, leading to 
the values 9.0,12.0   . 
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Fig. 3 DM Optimization Method 

  
  
6. RESULTS  
 
 The GOC method reaches the end of the 
manoeuvre in 3.19 seconds, with an exit speed of 
14.75m/s using the control sequence illustrated in Fig. 
4.   Fig. 5. shows the tyre force utilisation throughout 
the manoeuvre where it is immediately apparent that 
the front axle forces are on, or close to their peak 
throughout, only deviating significantly during the 
changeover of steering command.  This is the expected 
result for the given, understeering vehicle design.  Note 
also that the more lightly loaded tyre is over-slipping 
throughout the test, so the torque input is being kept on 
the point of wheel-spin.  The resulting path was shown 
in Fig. 2. 
 The DM approach turns out to behave in different 
ways depending on the exact track position at the start 
of the simulation.  For lateral positions up to 2 m from 
the centre, the results are very similar to that of GOC.  
However, for the 2.5 m offset shown, the path (Fig. 3) 
has greater initial curvature, and this coincides with 
high levels of initial braking (Fig. 6) not seen with 
GOC.  Thus the field-based method appears to be more 
‘conservative’ on the one hand, and this incurs the 
penalty of a later completion of the track section (4.6 
seconds).  The driver model also has greater steering 
workload in controlling the relatively large slip angles 
(Fig 6). 
 



 

 
Fig. 4  GOC control inputs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5  GOC tyre forces (FR, FL, RR, RL), kN 
 

7. CONCLUDING REMARKS 

 
 The two approaches to handling optimization are 
completely different, and yet under certain conditions 
their results are very similar, though the very accurate 
preview enjoyed by GOC allows it to make more 
finely- 
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Fig. 6  DM Vehicle Response and Steering Input 

 
judged control decisions.  It is clear that the overall 
optimality comparison between these methods requires 
further objective assessment, but the general viability 
of both approaches is clear.  Each method has strengths 
and weaknesses outlined in the paper, and a combined 
approach, at least for relatively low-order models, is 
likely to lead to a deeper understanding of the issue of 
optimal handling control. 
 

REFERENCES 

1. Bryson A.E. and Ho, Y.C., “Applied Optimal 
Control: Optimisation, Estimation and Control,” 
Hemisphere, New York, 1975. 

2. Best, M.C. and Gordon, T.J., “Simultaneous 
Optimisation of Vehicle Parameter and Control 
Action to Examine the Validity of Handling 
Control Assumptions” , Proceedings of the 6th 
International Symposium on Advanced Vehicle 
Control (AVEC) , Hiroshima, Japan, September 
2002, pp 87-92. 

3. Gordon, T.J. and Best, M.C., ''A Sequential Dual 
Model Approach to Lap Optimisation'' , 
Proceedings of the 6th International Symposium 
on Advanced Vehicle Control (AVEC) , 
Hiroshima, Japan, September 2002, pp 99-104 

4. Marsh C., “A Nonlinear Control Design 
Methodology for Computer-controlled Vehicle 
Suspension Systems,” PhD Thesis, Loughborough 
University, 1992.  

5. Gordon, T.J.  An Automated Driver Based on 
Convergent Vector Fields, Proc Inst Mech Engrs, 
vol 216, part D, pp329-347. 

0 0.5 1 1.5 2 2.5 3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

        steer, , rad/sec 
        torque, kNm/10 

-5

0

5

-5

0

5

-5

0

5

0 0.5 1 1.5 2 2.5 3
-5

0

5

           Peak   Fx 

           2 2Fx Fy   Fy 


