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This paper reviews the state-of-the-art motion cueing algorithms for motion-based driving 

simulators. The motion cueing problem is presented, together with the main published algorithms 

– classical washout filtering, adaptive filtering, linear optimal control, and model predictive 

control (MPC). Implementation details for each of the algorithms are given and their response to 

various manoeuvres plotted. The algorithms all have a high-pass response apart from the MPC 

algorithm, which reproduces vehicle motion for as long as possible before returning to centre. The 

cost function-based algorithms require more parameters to be tuned, but the parameters have more 

relevance to the simulator operator and are thus easier to tune. Finally, proposals for an algorithm 

evaluation study with human test drivers are given, the results of which will be used in future 

work to develop a new driving simulator cueing algorithm. 
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1. INTRODUCTION  
  

Technological advances in the past few decades 

mean that driving simulators can now achieve 

impressive levels of realism; graphics systems provide 

photo-realistic images, real-time vehicle models 

replicate vehicle behaviour to a high degree of accuracy, 

and high-fidelity steering torque motors can reproduce 

exactly the steering feel of the real vehicle. Many mid- 

to high-end simulators also include some form of 

motion platform, the most common of which is the 6-

Degree of Freedom (DOF) Stewart platform. However, 

the problem of how best to generate motion cues from 

the simulated vehicle motion remains the subject of 

some discussion, with many different algorithms 

described in the literature. 

The research being carried out at Loughborough 

University aims to find an improved motion cueing 

algorithm for driving simulation, in particular one which 

provides the best possible feedback about the vehicle 

state to the driver and is easy for a non-expert to tune. In 

this paper the initial review of the state-of-the-art is 

presented, along with the plan for the next stage of the 

research – a simulator study with human test subjects 

that will assess the performance of the various published 

algorithms. 

 

2. MOTION CUEING ALGORITHMS 

 

The motion platforms used in driving simulators, 

for example the 6-DOF Stewart platform of the 

Loughborough simulator (Fig. 1), tend to have a very 

limited motion workspace (in the case of the 

Loughborough simulator, translational and rotational 

motion limits are of the order ±0.5m and ±20° 

respectively). In general, the range of motion of a road 

vehicle in a normal manoeuvre far exceeds the available 

motion workspace. Thus some transformation is needed 

which calculates a realizable set of platform motions 

from the simulated vehicle motion. This transformation 

is known as the motion cueing algorithm or the washout 

algorithm. 

 

 
Fig. 1 – Loughborough AAE Dept. Driving Simulator 
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Historically, motion-based flight simulation has 

been much more popular than driving simulation due to 

the advantages that even the early expensive and low-

quality flight simulators had over real flight testing. 

Thus much of the development of motion cueing 

algorithms has been based around flight simulation 

rather than driving. 

The four most popular published algorithm 

architectures are described in this section; they are 

presented in the order in which they were first 

published. In all of the algorithms, it is the linear 

accelerations and angular velocities that are filtered. 

2.1 Classical washout algorithm 
The first motion cueing algorithm described in the 

literature uses linear high-pass filters, and has come to 

be known as the Classical algorithm. The high-pass 

filters remove low-frequency motion content and thus 

allow reproduction of the higher frequency onset-type 

motion whilst ensuring that the commanded platform 

motion does not exceed the platform workspace 

(provided of course that the filters are appropriately 

tuned – the filter cut-off frequencies, damping factors 

and gains are generally tuned for the anticipated worst-

case vehicle acceleration). The work of Schmidt and 

Conrad [1] is one of the earliest published works on the 

classical algorithm; the later work by Reid and Nahon 

[2], [3], [4] studies the algorithm in some depth. 

Most implementations of the classical algorithm 

(and, as discussed later, of the other algorithms) use tilt 

coordination, whereby roll and pitch rotations are used 

to simulate, respectively, sustained lateral and 

longitudinal accelerations. Many authors (e.g. Reid and 

Nahon [2]) argue that the rate of tilt must be below the 

perception threshold for that particular axis, although 

Berger et al’s results [5] imply that the tilt can be above 

threshold without significantly affecting the driver 

performance, provided the visual acceleration correlates 

with the effective body acceleration. 

Figure 2 shows the filter topology for the roll/lateral 

and pitch/longitudinal axis pairs with tilt coordination. 

 

 
Fig. 2 – Filter topology – tilt-coordination axis pair 

 

The remaining axes (yaw and vertical) are simply 

high-pass filtered, as there is no coordination between 

them. Schmidt and Conrad [1] and Reid and Nahon [2] 

both use 2nd-order filters for translational axes, transfer 

function as in equation 1:  
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with gain �, cut-off frequency 
 and damping factor 	. 

Note that the subscript _s denotes a simulator variable 

(i.e. �� is the acceleration of the simulator motion 

platform). The rotational filters are 1st-order, with 

transfer function of the form of equation 2. 
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 The low-pass tilt coordination filter is 2nd-order, 

with the cut-off frequency generally chosen such that 

the low frequency motion that is attenuated by the high-

pass filter gets passed to the tilt coordination channel, 

i.e. so that all of the translational motion is reproduced 

either through platform translation or by platform tilt. 

It is worth mentioning tuning here – the parameters 

are generally tuned through a trial-and-error process. 

Although there are only a few parameters to be tuned 

for each axis (cut-off frequency, damping and gain), the 

fact that they bear little relevance to simulator motion 

means that it is difficult for a non-experienced user to 

intuitively decide which parameter to vary and in which 

direction in order to achieve the desired effect. 

2.2 Adaptive washout algorithm 
An evolution of the classical algorithm employs 

adaptive filters. The ‘standard’ adaptive scheme, as 

described by Nahon et al [6] among others, has adaptive 

filter gains that are varied to minimize a cost function 

that penalizes motion error (the difference between 

platform motion and the simulated vehicle motion), 

motion magnitude and the change in the adaptive 

parameters from their initial values. 

As with the classical algorithm, the 

pitch/longitudinal and roll/lateral axis pairs are treated 

together. The tilt low-pass filter gain remains fixed, and 

the high-pass filter gains are adapted such that the 

following cost function is minimized: 
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where the cost weights �� are used to tune the filters, 

and  �  are the adaptive filter gains. The yaw and vertical 

cost functions are similar, but have only the rotational or 

translational terms respectively. 

The steepest descent method is used to move 

towards the cost function minimum, the adaptive gains 

adjusted according to equation 4, with the step size ��  
available as an additional tuning parameter. 
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The filter parameters (cut-off frequencies, damping, 

initial gain values, cost weights and adaptive step size) 

are again tuned based on the worst-case acceleration. 

Although the difficulty of how to choose the cut-off 

frequencies, damping and initial gain values remains the 

same as the classical algorithm, the cost weights are 
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much more intuitive for a non-expert to tune; the motion 

is considered as a trade-off between faithful 

reproduction of vehicle motion and limiting the 

platform excursion. 

2.3 Optimal control-based algorithm 
The optimal control-based algorithm treats motion 

cueing as a tracking problem – the accelerations 

perceived in the simulator should track the accelerations 

that would be perceived in the real vehicle as closely as 

possible, i.e. minimising e(s) (Figure 3) within the 

constraints of the motion platform. Such an approach 

requires some understanding of the relationship between 

actual body motion and the motion perceived by the 

brain. Zacharias [7] and Young [8] discuss the various 

models of the vestibular organs that have been proposed 

over the years. Different implementations of the optimal 

algorithm use a variety of different models for the 

vestibular response; a comprehensive review is not 

included here, suffice it to say that the different models 

have similar responses, with the major difference being 

the order of the models and the exact values of the 

model parameters. 

 
Fig.3 – Motion tracking problem 

 

The optimal algorithm uses a Linear Quadratic 

Regulator (LQR) tracking formulation to produce the 

washout filter. This method was developed by Sivan et 

al [9] and an implementation described by Reid and 

Nahon [2]. The washout filter that results from the LQR 

design process is the one that minimizes the cost 

function of equation 5. 

 � ()*+,* � -.
+/.-. � 0�+/0�1 (5) 

where * is the perception error, -. a vector of motion 

platform states (generally linear displacement and 

velocity and angular displacement for a tilt-coordinated 

pair), 0� the platform motion command, and ,, /. and 

/ are cost weight matrices of appropriate dimension. 

For the tilt-coordinated axis pairs, the vestibular models 

include the contribution of head tilt to linear motion 

perception; the coupling of the axes is thus taken into 

account during the washout filter design. The resultant 

washout filter has two inputs and two outputs. The 

single-axis cases are obviously single-input-single-

output; some implementations of the optimal algorithm 

consider all axes individually, with tilt coordination 

being performed by the simple low-pass filters of the 

classical and adaptive algorithms. 

The tuning of the optimal algorithm is done by 

adjusting the cost function weights. This makes the 

tuning process even easier for the non-expert; filter 

parameters are removed completely, and the operator 

can tune the algorithm purely as a trade-off between 

motion fidelity and limiting platform excursion. 

2.4 Model predictive control algorithm 
Recent work by Dagdelen et al [10] proposes an 

algorithm based on Model Predictive Control (MPC). 

The algorithm minimizes the perception error (e(s) in 

Figure 3) whilst remaining within the platform limits. 

This algorithm has the advantage that it takes the 

platform limits into account explicitly, thus eliminating 

the need to tune the algorithm for the worst-case 

motion. 

At each time step, a control sequence is calculated 

over a horizon 2 such that the square perception error 

*� is minimized and the platform remains within the 

workspace limits. The other constraint is that, after two 

prediction time steps, the platform washes out towards 

the platform centre below the motion perception 

threshold over the remainder of the prediction horizon. 

The first value of the control sequence is used at that 

time step, and then the process is repeated at each 

subsequent time step. The effect of this optimization 

formulation is that the platform motion matches the 

vehicle motion for as long as possible, then returns to 

centre when it can no longer do so within the workspace 

limit. 

In order to perform such a computationally 

expensive process in real time, Dagdelen employs a 

method where the reachable state set is precalculated 

such that the problem becomes a single-step 

optimization. In terms of tuning this is the simplest of 

the four algorithms discussed here; only the prediction 

horizon needs to be determined, and this simply needs 

to be long enough to produce the desired performance 

i.e. it generally does not need to be tuned for different 

motion scenarios. 

 

3. ALGORITHM RESPONSE 
  

The motion cueing algorithms described in the 

previous section have been implemented in 

MATLAB/Simulink. As a first step in the investigation, 

the response of the algorithms to various inputs was 

simulated; the results of a few of these experiments are 

presented in this section. The results presented here 

consider a single translational axis only. Note that the 

cut-off frequency and damping values are the same for 

the classical and adaptive filters used here, in order to 

isolate the effect of the adaptive gains. 

3.1 Step response 
Figure 4 shows the response of the four algorithms 

to a unit step input. Note that the classical filter 

produces a false cue between 2s and 6s, i.e. the 

acceleration of the platform and of the vehicle are in 

opposite directions. The adaptive algorithm acts to 
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reduce this false cue by reducing the adaptive gain. The 

optimal LQR algorithm also exhibits a high-pass type 

response, the algorithm having been tuned to give a 

lower peak amplitude but a longer time spent simulating 

the motion. The MPC response is the most extreme, 

with the step input being followed exactly for a short 

period before washing out in the opposite direction. 

Note that there is a sloped transition between 

reproduction and washout phases; this is as suggested 

by Dagdelen et al as a result of their initial tests [10]. 

 
Fig. 4 – Motion cueing algorithm step responses  

 

3.2 Double raised-cosine pulse 
Figure 5 shows the response to a double raised-

cosine (RC)-sided pulse. The classical and adaptive 

algorithms show an apparent phase lead, the negative 

peak in their responses occurring before the negative 

peak in the input. This is because the filter output does 

not have a chance to settle before the next motion 

‘event’ (e.g. the transition to the negative pulse) occurs. 

This effect could be tuned out by adjusting the filter cut-

off frequency. Note that the adaptive gain reduces 

during the negative peak in order to reduce the platform 

excursion. 

 
Fig. 5 – Double RC pulse response 

 

The LQR response seems to follow the input quite 

well, although it must be pointed out that this is more an 

indicator that the algorithm is tuned well for this 

particular manoeuvre than it is an indicator that the 

LQR algorithm is better than the classical and adaptive 

algorithms. 

The MPC algorithm doesn’t manage to reproduce 

the first pulse in its entirety, but the fact that the 

platform is away from centre means that the second 

pulse can be fully reproduced. This is a strength of this 

algorithm; it makes full use of the platform workspace, 

and can therefore take advantage of situations like this. 

 

3.3 Vehicle acceleration data 

 
Fig. 6 – Track data response 

 

The results of Figure 6 are from lateral acceleration 

data from a simulator driving run. Of note here are the 

false cue in both the classical and adaptive responses at 

around 2.7s onwards and the strong adaptation of the 

adaptive gain during the false cue. The slower decay of 

the LQR response gives less of a false cue, but again 

this is more down to the tuning set than anything else. 

This example illustrates a disadvantage of the MPC 

method; once the algorithm starts to return to centre, 

none of the high-frequency motion content is 

reproduced. It is suggested that a period of complete 

motion reproduction followed by no motion at all (apart 

from the below-perception-threshold washout) would 

feel odd to the driver, a theory that will be tested in the 

simulator study proposed in the next section. 

3.4 Discussion 
It is inappropriate to draw too many firm 

conclusions from analysis of simulation results like 

those above (indeed, over-analysis of simulated results 

in other work is something the author has been critical 

of in the past). However some general remarks about 

algorithm behaviour can be made. The classical 

algorithm shows reasonable performance but is prone to 

strong false cues; the adaptive algorithm reduces the 

magnitude of these false cues and is therefore likely to 

feel better to the driver. The LQR algorithm also 

exhibits a high-pass response, so the potential for false 

cues remains. The MPC algorithm response is 

significantly different to the other three, but is not 

necessarily better – the author proposes that ceasing all 

motion reproduction once it is identified that a limit will 
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be encountered would feel strange to the driver, a theory 

that will be tested later. 

In terms of tuning the MPC algorithm has a clear 

advantage that only the prediction horizon needs to be 

chosen, and that a single ‘long enough’ horizon will suit 

all motion types. The LQR cost function weights and 

the associated performance trade-off are more easily 

understood by a non-expert, as are the adaptive cost 

weights. However, the filter parameters of the adaptive 

and classical algorithms are not as intuitively tuned by a 

non-expert. 

 

4. PROPOSED SIMULATOR STUDY 
 

The logical next step in the research is to evaluate 

the cueing algorithms using tests on a driving simulator 

with human test subjects. As well as verifying and 

exploring the relative merits of each algorithm as 

claimed in the literature, this study will also provide 

useful data and experience for use later in the research – 

both in terms of which control strategies to potentially 

use as part of a new algorithm and of how to carry out 

successful comparisons of cueing algorithms on the 

simulator. 

The study will involve around 30 test subjects in 

three age groups: 18-30, 30-50 and 50+. It is intended 

that there will be approximately equal numbers in each 

age group, and that within each age group both genders 

and a range of driving experience levels will be 

represented. The test subjects will be asked to perform a 

series of standard manoeuvres – a double lane change, a 

constant radius turn at fixed speed, and a decreasing 

radius turn at fixed speed. This set of manoeuvres has 

been chosen to provide transient, steady-state and limit 

handling scenarios in which to evaluate the algorithms. 

Each manoeuvre will be repeated for the different 

cueing algorithms, the order of the algorithms varied 

each time to ensure a blind test. 

Two types of algorithm evaluation are proposed; 

evaluation based on the opinions of the test subjects, 

and based on the subjects performance in controlling the 

vehicle. Driver opinions will be collected by asking 

subjects to rate the motion after each test run, probably 

relative to a baseline motion algorithm (most likely the 

classical algorithm). Assuming a baseline condition is 

used, subjects will be asked to rate each algorithm on a 

scale of -5 to +5 (negative being worse than baseline, 

positive better) in two areas – ease of vehicle control 

and overall quality of motion. The results from all 

subjects will then be analysed using appropriate 

statistical techniques. 

Subject performance in controlling the vehicle will 

be evaluated based on recorded vehicle data. Path 

deviation will indicate how well the drivers were able to 

control the vehicle, and steer angle data will provide 

information about the control effort required for the 

manoeuvres – the theory being that better quality 

motion, i.e. better feedback about the vehicle state, will 

allow better control with lower control effort. 

5. CONCLUSION 
 

The four main algorithm architectures presented in 

the published literature were discussed and some 

simulation results presented. The classical, adaptive and 

LQR algorithms all have a high-pass response, and have 

a tendency to produce false cues; the adaptive algorithm 

acts to reduce the magnitude of these false cues. Of 

these three, the LQR algorithm is most easily tuned by a 

non-expert, the cost function weights representing a 

trade-off between motion fidelity and platform 

excursion. The MPC algorithm behaves very differently 

to the other three and is much easier to tune, however it 

is suggested that the resultant motion would feel 

unusual to the driver. These results are a useful first step 

in the work but it is difficult to draw any firm 

conclusions, such is the subjective nature of motion 

perception. 

The planned simulator tests, with a range of test 

subjects performing several different manoeuvres for 

each algorithm, will hopefully provide more insight into 

the relative merits of each motion cueing algorithm, and 

the results will influence the development of the new 

algorithm. 
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