
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288386253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


AVEC ‘08 

Vehicle Tyre and Handling Model Identification using an 
Extended Kalman Filter  

  
Matthew C Best, Andrew P Newton (Loughborough University, UK)  

  
Dept Aeronautical and Automotive Engineering   

Loughborough University, Leicestershire, LE11 3TU, UK  
 Phone: +44 1509 227209  
 Fax: +44 1509 227275  

 E-mail M.C.Best@lboro.ac.uk   
  

This paper uses an Extended Kalman filter in an unusual way to identify a vehicle handling model and its 
associated tyre model.  The method can be applied as an off-line batch process, or in real-time; here we 
concentrate on batch analysis of data from a Jaguar XJ test vehicle.  The Identifying Extended Kalman 
Filter (IEKF) uses the full state measurement that is available from combination GPS / inertia 
instrumentation packs.  Previous IEKF studies have shown success in identifying a bicycle model with a 
tyre force function for each axle. This paper extends to identification of a single, load dependent tyre model 
which applies to all four wheelstations, identified within a yaw-roll-sideslip model structure.  The 
resulting model provides impressive open-loop state replication, including accurate tyre slip prediction 
across the fully nonlinear slip range of the tyre.  

  
Topics/ 25 Modelling and Simulation Technology, 2 Tire Property, 6 Vehicle Control 

 
1. INTRODUCTION  
 

Within the field of chassis control, the Kalman filter 
is now recognised as an effective tool for observing the 
dynamic states of a system, and several publications 
describe filters for vehicle ride and handling control.  
In its traditional form it uses a simplified vehicle model, 
along with available sensor measurements, and 
effectively supplements the sensor information with 
predictions of state and sensor propagation using the 
model. 

Clearly the accuracy of the model within the 
Kalman filter will greatly influence its results, so a 
natural goal is to maximise this accuracy.  Ever 
increasing computing power makes more complex 
models viable, but with complexity comes an increase 
in the parameter set which needs to match the host 
vehicle.  Moreover, if we consider how complex a 
model needs to be to achieve high accuracy, it turns out 
that simple models can be highly effective, provided 
their parameters are chosen correctly. 

System identification provides a way of optimising 
parameters within a simple model structure and this 
paper explores a recent variant of the Kalman Filter, the 
Identifying Extended Kalman Filter (IEKF) to achieve 
this.  Introduced in Best [1] and Best et al [2], the 
IEKF uses full state feedback to identify the model.  
The drawback is that lateral velocity is required within 
the vehicle’s sensor set, but this is increasingly feasible 
given the recent development of GPS / inertia 
combination instrumentation sets.  As it retains an 
iterative filter structure, the IEKF can also be used to 
adapt parameters in real-time, and its structure is also 
similar to combination state / parameter estimators such 

as those suggested in Bolzern et al [3] and Best et al [4]. 
The previous studies [1] and [2] showed that 

bicycle model parameters could be identified by the 
IEKF along with a simple Pacejka force curve 
describing the nonlinear force / slip behaviour 
aggregated at each axle.  In this paper we take the 
model complexity slightly further in order to identify a 
single, nondimensional, load dependent (similarity) tyre 
model, in the style of that by Hugo Radt in Milliken and 
Milliken [5].  The nondimensional similarity model 
typically requires off-vehicle tyre testing, so obvious 
advantages exist if a similar single function for each 
wheelstation can be found via whole vehicle testing.  

A 3dof yaw-roll-sideslip model structure is 
employed, because this allows more physically correct 
load transfer calculations than the bicycle model. The 
inclusion of roll also makes the resulting model more 
widely applicable, for example in control applications 
which employ suspension actuators.  The required 
increase in complexity of the model is minimal. 

The study considers test vehicle data only, and the 
objectives are twofold; a) to establish the feasibility of 
direct identification of a single uniform tyre model, and 
b) to show that, if appropriate parameters are optimised 
by system identification, the simple model structure can 
very accurately represent vehicle handling dynamic 
behaviour. 

 
2. THE IDENTIFYING EXTENDED KALMAN 
FILTER (IEKF)  

  
The standard Extended Kalman Filter (EKF) 

operates on nonlinear system and sensor models f and h, 
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which relate the true state vector x , measured sensor 
set y, known inputs u and model parameters  at any 
instant k according to 

 
  , ,k k k k k x f x u θ ω  (1) 

  , ,k k k k k y h x u θ υ  (2) 

 
 ω  thus describes the state propagation modelling 
error, and  gives the sensor error. υ  is often 
misleadingly referred to as the measurement error, when 
in reality it aggregates measurement noise within y, and 
sensor modelling errors in h. 
 An optimal filter can be derived if the error 
sequences obey the following 

 
    ,        ,       k kE E k  ω 0 υ 0  (3) 

      ,          ,       T T
i j i jE E i j   ω ω 0 υ υ 0  (4) 

     ,  ,  T T T
k k k k k k k k kE E E   Q ω ω S ω υ 0 R υ υ  (5) 

 
where the error covariance matrices kQ , kR  and kS  

are assumed known.  In practice these are difficult to 
estimate and they are often assumed to be time-invariant, 
and are also approximated, or even set nominally, with 
S often neglected as approximately zero.     

The EKF also requires model Jacobians to be 
evaluated at each time step, defined 
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and the full set of equations for the standard, real-time 
state estimation application are 

 
    ˆ ˆk k k

 * 1F F x SR H x  (7) 

      ˆ ˆ ˆk k k k k k


   

1T TK P H x H x P H x R  (8) 

  * ˆk k k k   P I K H x P  (9) 

   * * * * *
1 ˆ ˆk k k k k kT 
       

1 T TP P Q SR S F x P P F x (10) 

 1ˆ ˆ    k k  x x   (11) 

       ˆ ˆ ˆk k k k k kT      
1K y h x f x SR y h x  

 
where the filter sample time T is used to provide a 
simple Euler integration of the state derivatives. 

Now the premise adopted in [3] and [4] is that an 
EKF can have its state vector augmented to include a 
subset of the model parameters.  The resulting filter 
assumes no known model for the parameter variation, 
and simply ensures slow adaptation by adjusting the 
expectation of errors related to the parameter changes; 
so eqn (1) becomes 
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and the covariance  ( ) ( )T
k kE θ θω ω  is then set as a tuning 

parameter, to adjust the rate of adaptation, ensuring this 
is ‘slow’ compared to the state propagation dynamics.  
This method of combining state and parameter 
identification is attractive, and has been shown to be 
effective – there is just some concern about limitations 
due to the combination of fast and slow dynamic 
responses, and the setting of error covariances. 

The new identifying Kalman filter IEKF was first 
introduced using a simulation study in [1] and then 
validated using vehicle test data in [2].  It takes the 
parameter role one step further, for circumstances where 
all of the state variables are measurable.  Provided 

k kx y we can now form the state vector entirely as the 

set of parameters, such that eqns (1) and (2) become 
 

 k kθ ω  (13) 

  1 1 1, ,k k k k k   y h y u θ υ  (14) 

 
 The sensor equation is simply modified to include 
an Euler integrated propagation of each variable over a 
time step, to avoid identity equations.  This reduces the 
system such that the entire model is represented within 
h alone.  More importantly, it also reduces the system 
to a form where the error covariance matrices can be 
determined from the noise sequences kω  and kυ , 

which are now directly calculable.  The form of eqns 
(1) and (2) depends on the unknown kx , so the error 

covariances cannot be explicitly determined within that 
filter – hence in other Kalman filter applications, Q, R 
and S are design matrices, the choice of which strongly 
influences the success of the resulting filter. 

The IEKF propagates its own error covariances, so 

kQ , kR  and kS  are now time varying.  Applying 

eqns (13) and (14) to the EKF formulae of eqns (7) – 
(11), and noting that now f = 0 and F = 0, we have 
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      ˆ ˆ ˆ
k k k k k k k


   

1
T TK P H θ H θ P H θ R  (16) 

  * ˆ
k k k k

   P I K H θ P  (17) 

 *
1   k k  P P   (18) 

   1 1 * * 1ˆ ˆT T
k k k k k k k k k k k kT       Q S R S S R H θ P P H θ R S  

     1
ˆ ˆ ˆ, ,k k k k k k k k kT 

    1θ θ K S R y h y u θ  (19) 

 
 

where, 2
1 (1 ) T

k k k k    Q Q ω ω  (20) 

 1 (1 ) T
k k k k    S S ω υ  (21) 
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 1 (1 ) T
k k k k    R R υ υ  (22) 

with 1

1 ˆ ˆ( )k k kT  ω θ θ  (23) 

  1
ˆ, ,k k k k k υ y h y u θ  (24) 

 
For implementation, as well as the choice of 

suitable initial conditions for 0Q , 0R  and 0S , two 

tuning parameters are now required,  and .  applies 
an exponentially weighted moving average to the 
propagation of the noise matrices in order to introduce 
an appropriate memory of the error history into the 
covariance.  It can better be interpreted in terms of the 
filtering time constant,  it introduces, by  

 
 /1 Te     (25) 

 performs a similar function to the design 

covariance  ( ) ( )T
k kE θ θω ω , in [4].  Set in the range 0 < 

 < 1, it diminishes the expectation of error in the 
change in parameters, stabilising the identification.  
Put simply, the filter causes parameter adaptation which 

induces (a desirable) non-zero kθ .  However, these 

changes are errors according to the zero model of eqn 
(13), and if their total magnitude is interpreted as error, 
Qk becomes relatively large compared with Rk, which 
results in an increase in the feedback gain Kk to provide 
greater correction to the .  Subsequent parameter 
corrections are then larger, and this induces instability.  
 provides a means of balancing the filter such that 
changes in Qk are, correctly, not interpreted entirely as 
error. 

Performance and stability studies on the setting of 
these parameters are given in [1] and [2], so these will 
not be elaborated further here.  Essentially, Q0 and 
provide the principal means of influencing the speed 
of adaptation of the algorithm,  can be nominally set 
according to the time history to be used for 
identification, R0 can be calculated directly from eqn 
(14), and S0 = 0 is appropriate (with 0S 0  

developing naturally as the IEKF runs). 
 
 

3. THE IDENTIFIED MODEL  
 
A 3DOF yaw-roll-sideslip model structure is 

adopted for identification, with fixed roll centres and 
with the roll axis parallel to the SAE x axis.  The 
principle equations of motion are, 
 
for sideslip, 
 

1,4
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Mv Mhp F Mur
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for yaw, 
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and for roll, 
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Lateral load transfer is provided for by calculating 

vertical loads on the tyres using 
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and the tyre slip angles are assumed equal on each axle, 
with a steering compliance compensation at the front : 
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The four load varying lateral tyre forces Fyi are then 

given by an adaptation of the Pacejka magic formula 
seen in [5], using slip normalisation such that : 
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p

GC

PF
   (32) 

    1 1sin tan / / tan /R C C E C C       (33) 

 pF PF R  (34) 

 
 The lateral forces then evolve from a necessary lag 
function which nominally accounts for slip transients in 
the tyre, 
 

  ( 1) ( ) ( )1y k y k y y kF F F      (35) 

 
 The model is executed within the IEKF by 
establishing symbolic (Matlab Symbolic Math) 
descriptions of the state derivatives, and setting  
 

 

r

v

p

 
   
  

y ,    1k k kT  h y y  (36) 

 
 And to avoid excessively long expressions in the 
Jacobian, an intermediate symbolic variable F (eqn 34) 
is employed, with Jacobian components calculated 
using chain rule differentiation; 
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h h F h F F
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Table 1 summarises the model nomenclature and 

fixed parameter values, which were set where possible 
using manufacturer’s data. Tyre data appropriate to the 
class of vehicle was obtained from [5] and Dixon [6]. 

 
Table 1  Model nomenclature and parameters 

States, x 

r Yaw angular velocity (rad/s) 
v Sideslip velocity (m/s) 
p Roll angular velocity (rad/s) 
 Roll angle (rad) 

Parameters, default values 
M Mass (1840 kg) 
Izz Yaw moment of inertia (4140 kgm2) 
Ixx Roll moment of inertia (735 kgm2) 

b, c CG to front / rear axle distance (wheelbase 3.03 m) 
h CG height above roll axis  

hf/ r Height of front / rear roll centre (0.1 m) 
tf/r Front / rear track  (1.56 m) 
Kf/r Front / rear roll stiffness  (59 / 36 kNm/rad) 
B Roll damping (front / rear equal)  (1225 Nms/rad) 
S Steering compliance (°/g acting at front axle) 

c1,c2 Tyre cornering stiffness coefficients (3, 7) 
P Tyre peak force (road friction) coefficient 
G Tyre cornering stiffness gain coefficient 

C, E Tyre model shape coefficients 

y Tyre lag factor (as eqn (25) with = 0.1) 

Inputs, u 

 front wheel steer angle (rad) 
u forward velocity (m/s) 

 
 

4. VEHICLE TESTING AND TYRE MODEL 
 

 The test vehicle is a 2002my X350 3.5l Jaguar XJ8.  
An Oxford Technical Solutions RT3200 combined GPS 
/ inertial measurement system was used to provide all 
the required data apart from the handwheel steer angle, 
which was sourced from the vehicle CAN.  All data 
was collected and re-sampled where necessary at 100Hz 
to match the IEKF set with T = 0.01s. 
 Identification and validation drives were conducted 
on a flat, dry proving ground.  The identification data 
comprises a sequence of step steer events, carried out at 
cruise controlled constant speed, with each event 
achieving a steady-state lateral acceleration for a few 
seconds before returning and again settling to zero steer.  
Steps with progressively higher magnitude were 
conducted up to and slightly beyond the terminal 
understeer condition (though the combination of 
rear-wheel drive and cruise control caused nearer 
neutral / oversteer limit behaviour on occasion, that was 
suitably controlled by the driver).  The sequence was 
repeated at several fixed speeds.  The validation data 
comprised a ‘free drive’ around the proving ground with 
low frequency randomly varying speed and steer 
manoeuvres. 
 Given the measurement of yaw and lateral 
accelerations along with all of the constituent variables 
required to formulate tyre slip angles, it is possible to 
construct a scatter plot of the normalised tyre behaviour 

directly from the measurements.  This is not 
independent of an assumed tyre and vehicle model, but 
it does provide a useful measure of the consistency of 
the tyre behaviour and hence the feasibility of direct 
‘single model’ tyre identification. 
 To generate the plot, cumulative axle force is 
deduced from measured lateral and yaw accelerations 

ya  and r  : 
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An estimate of vehicle roll angle, 
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is then applied to eqn (29) to estimate the tyre vertical 
loads.  (Measured roll angle suffers from low 
frequency errors since it is an absolute measure and 
small road camber angles are not insignificant and 
unknown.) 
 Measured , u, v and r are applied to eqns (30) – 
(32) to find F in order to attribute an appropriate left / 
right split to the ‘measured’ data Fyf and Fyr, and hence 
find an equivalent ‘measured’ R by inversion of eqn 
(34) : 

1
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The four measurement based Ri and i , plotted in Fig 
1 show how the measurements on the identification 
drive emulate eqn (33).  Alterations to parameter 
choices will obviously influence the plot, but it is clear 
both that the expected shape exists, and that the four 
corners provide consistent behaviour. Note however that 
direct optimisation of parameters from this plot cannot 
be achieved, since (eg) P   or 0G   tend to a 
zero slip null solution.  The IEKF objective is to match 
the model to each discrete update of the measured states, 
so it doesn’t suffer such severe conditioning problems. 
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Fig. 1  Normalised tyre interpreted from vehicle test data 
 
 5. IEKF RESULT  
 
 Prior to application within the IEKF, the vehicle 
data is filtered in the frequency domain by zeroing 
frequencies above 6Hz using a DFT.  This 
post-processing is not essential, and would clearly be 
omitted or replaced with suitable real-time filters in any 
on-line application of the IEKF, but it provides 
improvements in speed and consistency of the 
parameter convergence when the algorithm is used, as 
here, for system identification. 
 The experiment uses four step-steer sequences, at 
13, 16, 21 and 24 m/s.  The mid-range around 18m/s is 
avoided since at this speed, CG lateral velocities 
experience an anti-node.  The aim is to optimise 
performance principally through identification of the 
‘single tyre’, so the parameter set is 
 
 = [P (0.9), G (1), C (1.4), E (-0.2), S (2), a (1.5), h (0.5)] 
 
where the bracketed numbers show the initial condition 
0, which are ‘best guess’ approximations, using 
manufacturers data and tyre data resources [5] and [6]. 
 Inclusion of a and h allow lateral and vertical 
optimisation of the CG, which guards against any 
mis-calibration of the CG position in the set-up of the 
instrumentation, ensuring that the (highly sensitive) 
lateral velocity, and (less critical) roll rate signals are 
correctly referenced. 
 The IEKF is run over the 360 seconds of data 
repeatedly, for several iterations, with its own 
sensitivity parameters set to  promote slow and steady 
parameter optimisation.  This is achieved by setting 
=350 (consistent with the test duration) and =0.01, 
Q0=10-6I (for further guidance see [2]). 
 Fig. 2 shows the convergence for the first 20 
iterations of the data, and Fig. 3 shows sections of data 
which typify the open loop performance of the final, 
converged parameter set, in comparison with 0; table 2 
summarises RMS errors. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Fig. 2  Parameter and cost convergence 
The optimised parameter set is 
 

 = [1.072, 1.956, 1.782, -2.291, 4.519, 1.689, 0.408] 
 
which shows physically sensible results throughout; 
S=4.5 equates to just over 2°/g compliance. 
 Fig. 2 shows that trace(Rk) (the best measure of 
cost*, giving aggregated error in yk) decays rapidly over 
the first few iterations, and that four of the parameters 
converge equally quickly.  The remaining, slower 
parameters are therefore relatively poorly conditioned 
within the set, but these do converge within 50 
iterations.  There is some indication that E may 
continue to fall if alternative sensitivity parameters are 
employed in the IEKF however.  Fig. 1 was compiled 
using the optimised parameter set and this illustrates the  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

                                                 
* The actual cost criterion of the IEKF is trace(Pk), but this gives 
expectation of parameter error, not actual performance. 
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Fig. 3  Identification data state time histories 
identified tyre curve; we can see the influence of a low 
E setting which can ultimately turn the curve towards 

even lower R for high magnitude   (creating a more 
distinct ‘S’ shape).  If E is omitted from the 
optimisation, slightly poorer performance figures are 
returned, in exchange for a flatter tyre curve. 
 

Table 2  State estimation performance 
RMS error / RMS signal (%) 

  v r p  ay 
Identification 0 239 13 69 31 27 

 opt 45 5 52 13 9 
Validation 0 290 17 78 58 34 

 opt 66 7 54 45 11 
 

Fig. 4 shows open-loop performance on the 
validation data, with ay rather than r illustrated for 
variety – both yield very similar, excellent performance.  
In this section of the test, speed varies between 14 and 
18 m/s, so the anti-node case is seen, where very low v 
predominates.  Both Fig. 3(a) and Fig. 2(a) show an 
excellent improvement in tracking v, which is clearly 
attributable to the identified tyre model.  The phase 
correction and improved prediction of p is also 
impressive. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4  Validation data time histories 

 
6. CONCLUSION  
 

 Results using the initial parameter set, 0 show 
that reasonably accurate parameters allow the simple 
model structure used here to provide good estimation of 
yaw rate and lateral acceleration.  However we see that 
a sub-optimal tyre model prevents correct lateral 
velocity and hence tyre slip prediction.  The IEKF 
solution shows that excellent performance, including 
correct tyre slip prediction, can be gained from the 
simple model structure.  Moreover it is also clear that 
the method allows a simple, single tyre model to be 
successfully identified directly from the vehicle test 
data. 
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