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ABSTRACT 

This study applied a vision-based tracking approach to the analysis of articulated, three-
dimensional (3D) whole-body human movements. A 3D computer graphics model of the human 
body was constructed from ellipsoid solids and customised to two gymnasts for size and colour. 
The model was used in the generation of model images from multiple camera views with 
simulated environments based on measurements taken on each of three synchronised video 
cameras and the lighting sources present in the original recording environment.  A hierarchical 
procedure was used whereby the torso was tracked initially to establish whole body position and 
orientation and subsequently body segments were added successively to the model to establish 
body configuration.  An iterative procedure was used at each stage to optimise each new set of 
variables using a score based on the RGB colour difference between the model images and video 
images at each stage.  Tracking experiments were carried out on movement sequences using both 
synthetic and video image data. Promising qualitative results were obtained with consistent model 
matching in all sequences, including sequences involving whole-body rotational movements. 
Accurate tracking results were obtained for the synthetic image sequences.  Automatic tracking 
results for the video images were also compared with kinematic estimates obtained via manual 
digitisation and favourable comparisons were obtained.  It is concluded that with further 
development this model-based approach using colour matching should provide the basis of a 
robust and accurate tracking system applicable to data collection for biomechanics studies.       
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INTRODUCTION 

Technological advances have contributed to the increased interest in vision-based/ 
marker-free approaches to human motion analysis.  Such approaches may prove to be a less 
expensive and more flexible means of human motion capture than commercial opto-electronic 
systems or laser-based shape measurement systems.  However, tracking the kinematics of 
human motion without artificial markers is a task that is non-trivial due primarily to the 
complex structure of the human body, the nature of the movements and the regular occurrence 
of occlusions of one body segment by another.  The potential applications of marker-free 
human movement tracking systems are wide-ranging, including performance analysis, 
surveillance, and man-machine interfaces including gesture recognition.  For application to 
the collection of kinematic data for biomechanical analyses, the accuracy of the kinematic 
estimates obtained is of major importance.  
 The tracking of human movement generally aims to recover the 3D pose (position, 
orientation and configuration) of the human form over time.  This often involves estimating 
multiple joint angles with respect to an object-centred coordinate system.  Previous 
approaches have demonstrated successful tracking of movements of a constrained nature.  For 
example the movements tracked were essentially 2D or assumed to be limited to specific 



planes of motion (Yacoob & Davis 2000), the possible model configurations were pre-
determined (Rohr 1994), or only simulated sequences were tracked (Chen & Lee 1992).  A 
small number of studies have demonstrated success on less constrained movements with real 
data using image properties such as: edges (Gavrila & Davis 1996), ellipsoid regions (Bregler 
& Malik 1998), texture (Lerasle et al. 1999) and silhouette (Delamarre & Faugeras 2001).  
The latter approach demonstrated promising tracking results on running movements although 
some movements involving longitudinal rotations proved problematic to track.   

Despite the large amount of research activity in this area, successful tracking results 
on general 3D movement from video are still limited (Gavrila 1999).  Common threads 
among the more successful systems include a 3D model-oriented approach and the use of 
image information from multiple synchronised camera views.  Both of these factors reduce 
the ambiguity of matching 2D features when describing 3D motion.  A model-based tracking 
approach based on the matching of colour pixel values has been applied successfully to the 
tracking of 3D rigid body motion from synthetic and video data (Trewartha et al. 2003).  
Since human movement may be regarded as the motion of a hierarchical system of linked 
rigid bodies, it may be possible to extend this method by successively adding body segments 
after a rigid body tracking of the torso.  The purpose of this study is to apply a model-based 
tracking approach in order to recover motion parameters from a number of synthetic and 
video sequences containing 3D human body movements.  The performance of the tracking 
procedure will be evaluated by comparing the tracked kinematic variable estimates with 
known values for the synthetic sequence and with values obtained from manual digitising for 
the video sequences.   

METHOD 

The position and angle time histories (11 sets) for a half twisting forward somersault 
with shoulder and hip configuration changes were generated using a simulation model of 
aerial movement (Yeadon et al. 1990).  A total of 10 variables were altered in this movement: 
3 pelvis positional coordinates, 3 pelvis orientation angles (representing whole-body 
orientation), 2 arm abduction angles and 2 thigh elevation angles.  Image sequences of this 
movement were generated (Open Inventor, SGI) from three views (front, side and top) using a 
NURBS (Non-Uniform Rational B-Spline) surface-based graphics representation of an 18 
segment human body model (Figure 1a).  The camera and lighting parameters used in the 
creation of the sequences were known.  

An ‘Ellipsoid’ volume-based version of the 18 segment human body model was 
constructed to be the tracking model (Figure 1b).  A total of 33 ellipsoid solids were used with 
each body segment comprising between one and four solids.  Orientation and position were 
each described by three variables while body configuration was specified using 51 joint 
angles.   
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Figure 1.  (a) NURBS model; (b) Ellipsoid model. 
 

The tracking procedure, based around a ‘generate-and-test’ approach, has been 
described previously (Trewartha et al. 2003) but has the following basic structure.  For each 
set of synchronised target images, associated model images containing the Ellipsoid human 
body model within simulated environments are generated and matched onto the target images.  
Matching is evaluated by defining a “mask” comprising the pixels corresponding to the model 
in the model image and identifying the corresponding pixels in the video image through the 
mask. A score based on the RGB colour difference between the model and target images is 
then calculated.  Model configuration values are altered in an iterative manner to minimise the 
RGB difference score between the model images and target images.  Final model values 
provide estimates for the position, orientation and configuration of the human figure at each 
time instant of a movement sequence. 

A hierarchical procedure was used to determine the tracking variables by first 
optimising the six variables defining the position and orientation of the torso.  Subsequently 
segments were added outwards along the link system. At each stage of tracking those model 
segments directly relating to variables being optimised were successively included in the 
model images generated for the model-to-target comparisons.  Thus in the initial tracking of 
the torso no limb segments were included in the model.  This approach was adopted since 
attempting the simultaneous improvement of all variables describing body configuration may 
lead an automatic tracking approach into major difficulties as the search space is relatively 
high and so locating a global optimum is an ill-conditioned problem.  

A collection of downhill-stepping optimisation algorithms (based on the RGB 
difference score) were implemented to control the iteration of the model configuration to the 
best estimate of body posture.  In early matching at each time step, algorithms that iterated a 
number of variables to a global optimum simultaneously (multi-parameter) were used.  In 
later matching, algorithms that iterated a single variable at a time were used together with a 
final quadratic refinement of the estimate corresponding to minimum score.   

The 11 frame synthetic target sequences of articulated human motion were tracked 
using the Ellipsoid model and employing the hierarchical structure for optimisation of all 10 
motion variables.  In each set of time-matched frames the pelvis variables were tracked 
initially followed by arm variables and then followed by leg variables.  This process was 



repeated with successively smaller increment steps being used by the algorithms to refine the 
optimisation of the variables.  The starting pose for each frame was defined by the 
extrapolated values from the optimised poses obtained for the previous two frames.   

The accuracy of tracking the synthetic half-twisting somersault was assessed by 
comparing the values of the six tracked variables with the known values used to generate the 
sequences.   

Two gymnasts, who gave informed consent, performed a number of aerial gymnastic 
movements from a trampette and were recorded by three genlocked Hi-8 video camera 
systems.  The scene was illuminated solely by two 2000 Watt spotlights, one to the front/right 
and one to the right/rear of the movement space ( Figure 2).   

 

Figure 2.  Layout of video data collection area for aerial movements. 

 

Parameters to be used for specifying the model cameras in the simulated environments 
were obtained by calibrating the video cameras via the Direct Linear Transformation (DLT) 
procedure, and then back-calculating the initial geometric camera parameter estimates from 
the DLT parameters.  A constrained multi-parameter optimisation procedure (Simulated 
Annealing) was then used to obtain seven restricted parameters (location, orientation, focal 
length) available to specify the model cameras.  Model lighting parameters were obtained by 
estimating the position and orientation of the spotlights and substituting these values into the 
simulated environments. 

Selected aerial movements were captured via an image capture board into SGI movie 
format.  Post-processing (separation of fields and vertical interpolation) of captured video 
sequences resulted in three synchronised image sequences for each movement displayed at 
768 x 576 pixels at 50 images per second.  The following movements were tracked: a 
starjump movement by the female subject (37 images), a piked forward somersault by the 
female subject (43 images) and a half twisting forward somersault by the male subject (45 
images). 

The Ellipsoid graphics model was customised to each of the gymnasts using 
anthropometric data to scale body segments and RGB sampling from the video images to 
select segment colouring (Figure 3).   
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Figure 3.  Model images of the Ellipsoid human body model customised for anthropometry and colour for (a) 

female subject and (b) male subject. 
 
The hierarchical tracking approach was applied to the video sequences with RGB 

difference scores based on an equal weighting between colour differences obtained using 
original RGB pixel intensities and differences obtained using pixel intensities normalised for 
overall intensity (normalised RGB).  A total of 15, 20 and 14 model variables were altered for 
the starjump, piked somersault and twisting somersault movements respectively.  Initial 
model configurations were obtained from manual digitising estimates of the first video fields.  
Following initialisation in the first field the tracking process was fully automatic: there was no 
‘boot-strapping’ procedure available to re-initialise the model configuration at any future 
stage.  The final values from the first field were used as the initial estimates for the second 
field and linear extrapolation was used to estimate the initial variables in subsequent fields.  

The tracking performance of the three video recorded movements was assessed by 
visual comparison of the original video sequences with the generated model images and by 
comparing estimates of the tracked variables with values obtained via manual digitisation.   

 

 

 

 

 

 



RESULTS 

The final model configurations of the synthetic half twisting somersault returned by 
the tracking procedure were used to produce graphics sequences that were compared with the 
target sequences from the front and side views (Figure 4). 
 

Original NURBS Image Sequence ( front view ) 

 
Tracked Ellipsoid Model Sequence ( front view ) 

 
Original NURBS Image Sequence ( side view ) 

 
Tracked Ellipsoid Model Sequence ( side view ) 

 
Figure 4.  Comparison of target and tracked image sequences from front and side views for the synthetic half 

twisting forward somersault movement. 
 
  
 
 
 
 
 
 
 
 
 
 
 



 
 
The accuracy of the tracking of the synthetic movement was good with root mean square 
errors less than 5 mm and 1.2o (Table 1).   
 

Table 1. Tracking error estimates for the synthetic half twisting somersault 

Variable Range Max 
Error 

RMS 
Error 

    
pelvis vertical 790 mm 8 mm 4 mm 
pelvis A-P 980 mm 9 mm 5 mm 

pelvis lateral   10 mm 5 mm 2 mm 

pelvis somersault 282° 0.7° 0.4° 

pelvis tilt     6° 1.4° 0.5° 

pelvis twist 175° 1.0° 0.4° 

L-arm abduction 130° 1.1° 0.7° 

R-arm abduction 130° 0.9° 0.4° 

L-thigh elevation   40° 2.9° 1.1° 

R-thigh elevation   40° 2.5° 1.0° 

Note:  A-P = anterior-posterior, L = left, R = right.   
 
The original video target images of the movement were compared with the generated 

model images and the target-through-mask images which showed the region of the target 
images covered by the model boundaries (Figures 5 – 7).  The rms differences in kinematic 
estimates obtained from the automatic tracking procedure and manual digitising were 
calculated (Table 2).  Repeated digitisation provided an independent estimate of the precision 
of the manual digitising process.  The rms difference values obtained from repeated manual 
digitising trials were between 6-16 mm for position estimates, 1-3° for pelvis orientation 
angles, 3-5° for arm angles and 2° for leg angles, depending on the movement. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 2. RMS differences between estimates obtained from tracking and 
manual digitising  

 
 RMS Difference 

Variable star 
jump 

piked 
som 

twisting 
som 

    
pelvis vertical 11 mm 34 mm 41 mm 

pelvis A-P 12 mm 30 mm 39 mm 

pelvis lateral 10 mm 22 mm 26 mm 
pelvis somersault  1.5o  6.1o  6.3o 

pelvis tilt  2.9o  6.8o  4.4o 

pelvis twist -  8.6o 13.0o 

L-thigh elevation  7.4o  6.4o 10.2o 

L-thigh abduction  6.4o 11.1o  9.4o 

R-thigh elevation  1.8o  5.9o  8.1o 

R-thigh abduction  4.4o  9.1o  7.6o 

L-upperarm angle * 12.1o 14.6o 28.1o 

R-upperarm angle*  7.7o 20.8o 23.1o 

L-forearm elevation  11.8o  

R-forearm elevation   8.5o  

L-calf elevation   7.5o  
R-calf elevation   5.9o  

Note: * upperarm angle gives the difference in arm orientation 
after elevation and abduction.   
A-P = anterior-posterior, L = left, R = right. 

 

    

    

    
 
Figure 5.  Video (upper sequence), model (middle sequence) and target-through-mask (lower sequence) images 

from the front camera view (selected fields) for the starjump movement. 

 



 

 9 

    

 

   

    

 

Figure 6.  Video (upper sequence), model (middle sequence) and target-through-mask (lower sequence) images 
from the side camera view (selected fields) for the piked somersault movement. 

 

    

    

    

 

Figure 7.  Video (upper sequence), model (middle sequence) and target-through-mask (lower sequence) images 
from the front camera view (selected fields) for the half twisting somersault movement.   

 
There was a tendency for the time histories of the tracked variables on the right side of 

the body to be in better correspondence with the digitised estimates than the variables on the 
left side of the body (Figures 8-10).  This was due primarily to the placement of video 
cameras and light sources within the data collection environment (Figure 2) which resulted in 
poor illumination of the left side of the body.   
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Figure 8.  Time histories of the tracked variables during the starjump movement obtained from automatic 
tracking and manual digitising. 
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Figure 9.  Time histories of the tracked variables for the piked somersault movement obtained from automatic 
tracking and manual digitising. 
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Figure 10.  Time histories of the tracked pelvis variables for the half twisting somersault movement obtained 

from automatic tracking and manual digitising. 
 

Although not presented, the time histories for the leg abduction and elevation 
variables for the twisting somersault movement had the same degree of correspondence 
(automatic tracking vs. manual digitising) as the leg elevation variables from the piked 
somersault movement (Figure 9). 

DISCUSSION 

The present results on synthetic image data (Figure 4 and Table 1) confirm that the 
model-based tracking approach is capable of returning accurate estimates when extended to 
the tracking of articulated movement.  RMS error estimates were less than 5 mm for pelvis 
position estimates, less than 0.5° for pelvis orientation estimates and less than 1.2° for limb 
configuration angles.  Despite the experiments being run on synthetically generated image 
data these low error estimates are impressive considering the inter-frame steps taken by some 
of the variables.  The entire movement was covered in only 11 frames, resulting in arm angle 
changes of up to 70° between consecutive frames.  The iterative tracking algorithms were able 
to cope with such large changes despite using initial estimates that were constrained to lie 
within 8o of the final values from the previous frame.  This result gives some confidence that 



 

 13 

the approach has the potential to produce very accurate estimates under good tracking 
conditions.   

Comparing the target images to final model images for each video-recorded movement 
(Figs. 5-7) it is evident that the procedure was successful in tracking the prominent features of 
each movement.  The model images obtained for the starjump and piked somersault 
movements exhibit extremely good correspondence with the video images while the model 
images for the twisting somersault movement are generally good but show periods of 
inconsistent tracking.  Similarly, the target-through-mask images demonstrate that the 
registration of the model onto the human subject at each stage is also occurring with good 
consistency for the vast majority of time steps for each movement. 

When the tracked estimates and the estimates obtained from manual digitising are 
compared (Table 2 and Figures 8-10) it is evident that the starjump movement seems to have 
been tracked with good accuracy, the rms difference values approaching the limits of the 
manual digitising precision.  As the movement complexity increases, the rms differences also 
increase.  The rms differences for the piked somersault movement are approximately twice as 
large as those observed for the starjump movement and the rms difference values for the 
twisting somersault movement are larger still.  Generally limb angles have larger rms values 
than pelvis variables since the errors in estimating pelvis variables are propagated to more 
distal variables.  On some occasions limb variables must deviate from the true values in order 
to maintain a good model-to-target match due to poorly estimated pelvis variables. 

The results for tracking movement from video sequences are particularly encouraging 
bearing in mind that the data collection environment was far from ideal.  The distribution of 
the cameras and the concentration of the light sources on one side of the body led to 
difficulties in estimating values for body parts on the ‘far’ side of the scene due to occlusion 
problems and shadowing on some regions of the body (see Figures 8 – 10).  Although it was 
initially considered to be advantageous to brightly illuminate the subject and leave the 
background with little illumination, the shadowing problem for certain body parts negated any 
possible advantage.  Moreover, since more successful tracking results have been obtained 
using some form of normalised colour representation rather than the intensity-based original 
RGB signal it is anticipated that a well-illuminated environment throughout the entire activity 
volume will prove more successful.  Such an environment is arguably more likely to exist in a 
‘real life’ setting, such as a gymnastics arena.   

All vision-based tracking systems introduce a number of assumptions to make the 
problem tractable.  The proposed tracking system is no different to others in that tracking will 
only be successful providing certain criteria are met.  For example, the model-to-target 
comparison is based on a colour difference score and so it is vital that there is some colour 
contrast between the subject and the background and preferably between different body 
segments.  The pose estimate is improved if body segments are not occluded from a number 
of camera views, if the model is a better approximation of the human form, and if reliable 
information about the environment (e.g. lighting and camera conditions) is available.  

The ‘generate-and-test’ optimisation procedure used in this approach tends to be more 
computationally demanding than other pose estimation routines (Delamarre & Faugeras 
2001).  This procedure has been used successfully in a number of systems, however, and has 
been demonstrated to be a successful method in motion estimation.  Due primarily to the fact 
that the system reported here is aimed at obtaining kinematic estimates for biomechanical 
analyses, robustness and accuracy considerations will initially take priority over speed of data 
availability.  The run time for tracking the video sequences with a 600 MHz Pentium II CPU 
ranged from eight hours to nine hours.  Processing speed may be expected to improve by a 
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factor of around 20 when using current hardware with parallel processing of the data from 
each camera.   

Lerasle et al. (1999) state that the errors involved in modelling the human form using 
approximate representations have a negative effect on the accuracy of pose estimation and 
they recommend the use of more precise and deformable representations.  In contrast, Gavrila 
(1999) states that models need not be highly representative providing robust model matching 
is possible.  At the present time, the 18 segment (33 solids) Ellipsoid model is considered 
sufficiently complex for tracking human movement from video images. Model segments have 
been sized according to anthropometric measurements and coloured according to a sampling 
of the video images.  Future elaboration of the method may be necessary if the approach is to 
be used for tracking individuals where no information (other than video) is available on their 
physical characteristics or if it is felt necessary to update the RGB content of model segments 
based on the most recent image data during tracking. 

At present the approach has run into some inconsistent matching when tracking more 
complex movements, particularly twisting motions.  Longitudinal rotations are notoriously 
difficult to estimate due to the fact that little image change results from relatively larger 
changes in twist angle.  One step that may be expected to result in immediate improvements 
in this regard would be to increase the number of cameras from the three used in the present 
study to provide more redundancy of data.  Additionally patterned clothing may be used to 
improve the ability of the system to track torso variables accurately. 

This study has presented successful tracking results on a number of aerial movements 
including whole-body somersaulting and twisting rotations which have not been tracked in 
any other studies.  The tracked estimates have been evaluated against kinematic estimates 
obtained using an alternative method, a step that is often overlooked or avoided in tracking 
studies.  The present results demonstrate the complexity of tracking possible using a relatively 
straightforward approach to the problem with only a single image cue and minimal image 
processing.  This provides a sound basis for future development.  Further additions are 
required before this tracking system will provide a genuine solution for biomechanics 
research.  It is envisaged, however, that this model-based multi-view colour matching 
approach may form the basis of such a system. 
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