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Theorem 2: If x(t) is a real-valued signal, M1 = (a1,b1,c1,d1),
A’[Q = ((1,2, bz, Co, flz), then

a,le)z
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Auiy, Audy, > (CLl(lQAtQ + bub ) + (a1b —

4A¢t? 4

and the equality is achieved iff x(t) = (1/mo?)*exp(—((t —
t0)?/26%)), where o is an arbitrary real constant.
Proof: With the results of Lemma 2 and 3, we can obtain
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=d®At* + B*Aw? (13)
because z(t) is real, which means wo = 0 and 7 is real. Therefore,
using (13) and the uncertainty relation in the FT domain, the spread in
any LCT domain for a real signal is lower bounded by its spreads in
the time and frequency domains, i.e.,

b2

Add; > AP+ ——

AP (1

For arbitrary two LCT domains we have
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and the equality is achieved iff x(#) is a Gaussian signal.

IV. CONCLUSION

In this correspondence, we discuss the uncertainty relations in the
LCT domain. A lower bound for complex signals in two LCT do-
mains is derived, which can be achieved by a complex chirp signal with
Gaussian envelope. Moreover, the tighter lower bound for real signals
in two LCT domains given in [15] is also proven to hold for arbitrary
LCT parameters based on the properties of moments in the LCT do-
main. The uncertainty principle in the FrFT domain is a special case of
the achieved results.
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A Multiplicative Algorithm for Convolutive Non-Negative
Matrix Factorization Based on Squared Euclidean Distance

Wenwu Wang, Andrzej Cichocki, and Jonathon A. Chambers

Abstract—Using the convolutive nonnegative matrix factorization (NMF)
model due to Smaragdis, we develop a novel algorithm for matrix decom-
position based on the squared Euclidean distance criterion. The algorithm
features new formally derived learning rules and an efficient update for
the reconstructed nonnegative matrix. Performance comparisons in terms
of computational load and audio onset detection accuracy indicate the ad-
vantage of the Euclidean distance criterion over the Kullback-Leibler di-
vergence criterion.

Index Terms—Audio object separation, convolutive nonnegative matrix
factorization, multiplicative algorithm, squared Euclidean distance.

I. INTRODUCTION

Non-negative matrix factorization (NMF), an emerging technique
for data analysis [1], [2], has found many potentially useful appli-
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cations in signal and image processing, e.g., [3]-[19]. For example,
in audio signal processing, based on spectrogram factorization, NMF
has been applied to music transcription [5], [9] and audio source
separation [16]-[19]. The standard NMF model given in [1] has been
shown to be satisfactory and sufficient in certain tasks provided that
the spectral frequencies of the analyzed audio signal do not change
dramatically over time, which is however not the case for many re-
alistic audio signals. As a result, the single basis obtained via the
standard NMF decomposition may not be adequate to capture the
temporal dependency of the frequency patterns within the signal.
Moreover, a single basis function is typically required for the rep-
resentation of each note of a given instrument in music audio, and
therefore a clustering step needs to be used for source separation of
instruments playing melodies [20], [19] and [18]. However, as iden-
tified by [18], it may be difficult to perform a reliable clustering in
many situations.

To overcome these issues, the approaches of convolutive NMF
(or similar methods called shifted NMF) have been introduced
in [6]-[8], [13], [18], and [19]. As a common characteristic of
these approaches, the data to be analyzed are modelled as a linear
combination of a group of shifted matrices. However, the developed
learning algorithms have different characteristics due to the various
strategies adopted in their derivation or different applications being
addressed. For example, a multiplicative learning algorithm has been
developed in [6] and [7] for the adaptation of a criterion based on the
Kullback—Leibler (KL) divergence, and no restrictions are enforced
on the frequency resolution of the spectrogram. In [18], translated
versions of a single basis function are used to represent the typical
frequency spectrum of any notes belonging to a single music source,
which however requires the spectrogram to be logarithmic in the
frequency scale. In [19], the learning algorithms are developed based
on explicit constraints of temporal continuity and sparseness of the
signals.

The convolutive learning rules developed in [6] and [7] are essen-
tially an extension of the multiplicative rules in [1] for the minimization
of the KL error norm. However, no formal mathematical derivations
are given therein. Moreover, although there are learning algorithms for
the standard NMF [1] based on the Euclidean distance, few such algo-
rithms have been proposed for the convolutive case. The aim of this cor-
respondence is to address these issues. To this end, we formally derive
a multiplicative algorithm for the gradient adaptation of the error norm
measured by the squared Euclidean distance. In addition, we provide
an efficient procedure for the update of the reconstructed data matrix at
each iteration, which can considerably reduce the computational load
required by existing algorithms in the literature. The original idea of
this work has been presented in [10].

We have applied our proposed algorithm to the audio object sepa-
ration problem (i.e., the detection of repeating patterns, or note events
from music audio signals), which is one of the core issues underlying
many applications in audio engineering such as music transcription,
audio information retrieval, low bit-rate audio coding, and automatic
auditory scene analysis. In order to show its general performance, we
have compared the proposed algorithm with the methods in [6] and
[11], respectively, in this application context. Our experimental results
reveal its superior performance to that of the two benchmark methods,
especially in terms of its computational efficiency and note detection
accuracy.

The remainder of the correspondence is organized as follows. The
next section briefly reviews the standard NMF and Smaragdis’ original
work on convolutive NMF. The proposed convolutive NMF algorithm
is described in detail in Section III. Section IV investigates the per-
formance of the proposed algorithm using numerical experiments, and
conclusions are drawn in Section V.
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II. PRELIMINARIES

A. Standard NMF

Given an M x N nonnegative matrix X €RZ’ XN the goal of NMF
is to find nonnegative matrices W € R4/ ¥ % and H GHRX]\ such that
X =~ WH, where R is the rank of the factorlzatlon generally chosen
to be smaller than M (or N), or akin to (M 4+ N)R < M N, which
results in the extraction of some latent features whilst reducing some
redundancies in the input data. To find W and H, several error func-
tions have been proposed [1]-[4], one of which, denoted £(-), is based
on the squared Euclidean distance

(VAV§ H) = arg min (W, H) = arg min,l (1
W, H wH 2

where W and H are the estimated ~optimal values of W and H, ||-[| .

denotes the Frobenius norm, and X is given by X = WH. Alterna-

tively, we can also minimize the error function based on the extended

KL divergence

(W H) = dlo nnn Z Z Do 2)
m=1n=1

where Dy, is the m, nth element of the matrix D given by D =
X ©log[X@X] — X + X, where © and @ denote the Hadamard (el-
ement-wise) product and division, respectlvely. We are particularly in-
terested in the multiplicative algorithm of Lee and Seung [1], [2] due
to its simplicity. In matrix form, the algorithm for minimizing criterion
(1) can be written as

H«1+1 :Hq@((Wq)TX)Q((Wq)TWqu) 3)
witt =wioXHTHDH)oWHRT HTHT) @)
where q is the iteration index, and (-)* is the matrix transpose operator.
These rules are easy to implement. In addition, a step-size parameter

which is normally required for gradient algorithms [4], is not necessary
in these rules.

B. Convolutive NMF

To take into account the potential dependency between the neigh-
boring columns of the input data matrix X, the standard (instantaneous)
NMF can be extended to a convolutive model [6]

—1
X=Y WpH §)

where W (p) EHfXR,p =0,..., P

] . . . . P .
H EHf *N is a weighting matrix, and H shifts the columns of H by
p spots to the right, with the columns shifted in from outside the matrix
set to zero. Effectively, X is now expressed as a sum of shifted ma-

— 1, are a set of basis matrices,

—Pr
trix products. These column shifts are noncircular. Analogously, H
shifts the columns of H by p spots to the left. These notations will
also be used for the shifting operations of other matrices throughout

the work. Note that, 0I-I = H0 = H. With the convolutive model, the
temporal continuity possessed by many audio signals can be expressed
more effectively in the time-frequency domain, especially for those sig-
nals whose frequencies vary with time [6].

To find a decomposition with the form of (5), Smaragdis has further
proposed multiplicative learning rules based on the extended KL diver-
gence (2), which can be rewritten as

HQH:H%(((Wq<p>)T§5>@<<Wq<p>>T=>> ©)
W () = W () (KUEH D @EET) D) )

where Zis an M x N matrix whose elements are all set to unity,
X1=XoX".
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C. Motivations and Contributions of Our Work

Two technical issues in [6] are worth, however, further investigation.
First, no formal mathematical derivation for (6) and (7) was provided.
As aresult, the theoretical analysis of its convergence performance may
become difficult to achieve. Second, no learning rules were developed
for convolutive NMF under the criterion (1). In this correspondence,
we develop a novel algorithm by formally deriving the learning rules
using the criterion (1). After comparisons with the KL divergence based
criterion, we have observed that the Euclidean distance based criterion
provides better performance for convolutive NMF in terms of computa-
tional load and onset detection accuracy. To the best of our knowledge,
it is probably the first study to address the performance difference be-
tween algorithms based on the two criteria in this context. Another con-
tribution in our work is using efficient recursions in the adaptation of
the reconstructed nonnegative matrix for further reducing the computa-
tional load of our algorithm, which can be readily applied to a category
of similar algorithms. Note, that similar symbolic notations as those in
[6] are used here for matrix shifts and convolutions, simply for making
easy comparison between the algorithms.

III. A NoVEL CONVOLUTIVE NMF ALGORITHM

A. Derivation of the Learning Rules

We first derive the update rules for W (p). According to (5), we have
the derivative X; ; with respect to (w.r.t) W, »(p),

. .\ pﬁ
5 93> Wia(p)Ha,
p d

0Xij;
awm,n (p) an,n(p)
p—
0> W, alp)Ha; p—
d
e 57‘ m Hn )
W () ot ®

where §; », is the Kronecker delta, and the right-bottom subscripts rep-
resent the element indices of a matrix, e.g., X‘,;,V,' is the ¢, jth element of
the matrix X. Similarly, according to (1) and (8), we have the deriva-
tive of £ w.r.t W, »(p),

X,
X; i —X; %
awm n (1) Z Z( v ] OWm n (p)
p—
= Z(Xm,j - Xm,,j) Hn,j- (9)
J
Let the element-wise step-size! be
Wrn,‘n
[,“'W(p)]m,n = — - (p) (10)
Z n ]X7

Using (9) and (10), we can derive the adaptation equation of W ,,, ., (p)
as

oL

Wm,n(p):Wm,n(p) [HW(p)]m nm (11)
:Wmn(p)
W1n n\J v i
~ W) SR, =X ) Hay (2)

Z H n,ij,,j J
J

INote that, the selection of such a learning rate follows from the similar
rescaling operation used in [2], and the convergence of our proposed algorithm
under such a learning rate can be proved similarly for the convolutive model.
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(X )m n .
(X(H) )m n

=Wpn(p) (13)

In matrix form, the update (13) can be written as (marked with iteration
number ¢)

+1 B aNTy o e T
W (p) = WIp)O((X(H)HS(X(H))) (14
where p = 0,..., P — 1. Similarly, using the gradient
p —p
ZW] m ',n - Xj,n) (15)
we can obtain the update equation for H in matrix form as
- P
H = Ho(W () X)W ()X (16)

Itis worth noting that (6) and (7) can be obtained using a similar deriva-
tion method and the KL divergence.

B. Further Practical Improvements

1) Update of H: It can be observed from (14) and (16) that ” 4 1
matrices in total, i.e., a set P of W(p),p = 0,..., P — 1, requires
to be updated first, followed by H, at each iteration. Specifically, H
is updated using W (P — 1), which is the last update in the P loop
for updating W (p). As a result, the update of H can be dominated by
‘W (P —1). In order to mitigate this effect, as suggested in [6], we can
first update all W(p),p = 0,..., P — 1, and then take the average of
all the updates for H, that is

R
g+l _ — q/,
H' = 5 ;H (») a7
where H?(p) is given by
—p
HY(p) = H'o(W™ ()" X)W (5)"X7).  (18)

In contrast to (16), the update (17) also exploits the information from
W(0),..., W(P — 2) [see (18)], which has the practical advantage
of reducing the dominant effect of W (P — 1) for the update of H? ™
in (16). Note in this correspondence, that (17) is an intuitive operation
which is obtained empirically, rather than justified theoretically.

2) Update of X: From (16) and (14), it is clear that the updates of
H and W (p) both rely on the update of X, which, on the other hand,
depends on the instantaneous values of W (p) and H, according to (5).
This means that X should be updated correspondingly once for each
‘W (p) update. Nevertheless, updating the whole (5) is computationally
demanding if only an individual W (p) has a new value. Therefore,
instead of directly using (5), we use the following simpler formulation

X7 = X"—Wq(p)f-lq + Wet! (p)i{‘7 (p=0,....,P=1) (19
where X is updated to accommodate the new values of each W(p)
(inside the P loops), and the initial value of X (¢ > 1) in the right-
hand side (RHS) of (19) is obtained at the end of the (¢ — 1)th iteration
(outside the P loops), when the recursions are completed. For ¢ = 1,
X in the RHS of (19) is still calculated via (5). In practice, we found
that the nonnegative property of X may not be guaranteed, due to the
subtraction operation and small numerical errors. The small negative
values can be prevented by using the following projection:

X! ; = max(e, XY ;) 20)
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TABLE I
SUMMARY OF THE PROPOSED ALGORITHM: CONVNMF-ED

1) Generate X from the audio data. Initialize P, W (p), H(p), ¢ and Q (i.e. the predetermined iteration number).

Calculate X using (5), update (1), and set ¢ = 0. Run steps 2-6.

2)Setq=q+ 1, p=0, Hsyum = 0, where O GRf'XN, i.e., a matrix with each element equal to zero.

3) Set p = p + 1. Calculate W4 (p) using (14). Update X using (19) and (20).

4) Calculate HY(p) using (18), and Hsym = Hsym + HY(p). If p < P, return to step 3, otherwise, go to step 5.

5) Calculate HY as Hsym /P, i.e., in terms of (17). Normalize H? and W4(p).

6) Update X4 using (5), update (1) and (21). If (21) is satisfied or ¢ > Q, stop iterations and output W°(p) and HC, otherwise,

return to step 2.

where X?7 is the ¢, jth element of the matrix X at the iteration q,
max(-) takes the maximum value of its arguments, and € is a trivial
constant, typically, ¢ = 107 in our implementation. The algorithm
stops iterations when the following criterion is satisfied:

q

HXqH_X

£ <¢ (1)

-

o
where ( is a small constant.

C. Nonnegative Decomposition of Magnitude Spectra

In our problem, the nonnegative matrix X is generated as the magni-
tude spectra of the input audio data. For a signal with L samples, using
a T'-point short-term Fourier transform (STFT), it can be segmented
to K frames, where ' = [(L — T')/6], 6 is the time shift between
the adjacent windows and |-| is an operator taking the maximum in-
teger no greater than its argument. Concatenating the absolute value of
the spectrum of each frame, we can generate X with a dimension of
(T/2 4+ 1) x K (see details in [9]). The proposed algorithm can be
summarized in Table I, where W (p) and H(p) are typically initial-
ized with random nonnegative elements. For convenience, we name it
as ConvNMF-ED (i.e., convolutive NMF based on squared Euclidean
distance).

Upon convergence of the algorithm, X is decomposed into the con-
volution of P nonnegative matrices, denoted as W°(p) € Hf/ HxR
and H° € REXK, i.e., the corresponding local optimum values of
‘W (p) and H, respectively. And H contains the bases of the tem-
poral patterns while W (p) contains the frequency patterns of the orig-
inal signal. All the set of P ' W °(p) matrices together contain both fre-
quency and temporal information of the time-frequency patterns (i.e.,
audio objects) of the original audio signal.

D. Comparisons to Existing Methods

If P = 1, ConvNMF-ED reduces to a standard NMF algorithm sim-
ilar to that represented by (3) and (4) with the difference in the update
of X If P > 1, its computational load is approximately P times that
of the standard NMF. ConvNMF-ED is different from Smaragdis’ al-
gorithm [6] in steps 3—4 (see Table 1), where W9(p), X? and H(p)
in [6] are instead updated by (7), (5) and (6), respectively. As a result,
compared with [6], ConvNMF-ED requires (2RP—4R+ P+2)M N
fewer element operations (multiplications and additions) in each iter-
ation. We also consider a faster version of Smaragdis’ algorithm [6],
denoted as ConvNMF-KL, which is similar to [6] except that X is
updated using (19) and (20), instead of (5). Apart from its higher com-
putational efficiency, ConvNMF-KL has very similar performance to
[6]. Therefore, it is also used as an alternative to [6] in our simulations.
Although the algorithm in [7] uses the same learning rules as those
in [6], it is a supervised speech separation approach using additional
constraints from the application domain. Making direct comparisons

to [7] is not straightforward; therefore, it is not explored further in this
work.

SNME2D [11], [12] considers a two-dimensional deconvolution
scheme, together with sparseness constraints. We will examine the
most related learning rules based on the least squares (LS) criterion
in [12], i.e., SNMF2D-LS. In contrast, SNMF2D-LS uses the shifted
versions of W7 and H? at all time lags p = 0,..., P — 1, for
updating W9(p) and H?(p) with an individual time lag at each
iteration. For example, according to [11], the update of H in (16)
may be written as

HO = HOO (W (0) X+ 4+ W (P - 1) X))
—0 —P-1

SUWTTH0)' X)) - 4+ (WP -1)" X7 ). (22)
The resulting representation of W°(p) and H® using SNMF2D-LS
has actually broken the structure of audio objects, i.e., the time-
frequency signature in the spectrogram has been shifted more than
it actually requires. As a result, it becomes difficult to detect the
event or onset directly from W°(p) and H® (as shown in our experi-
ments in Section IV). Furthermore, SNMF2D-LS is computationally
much more expensive, as compared with both ConvNMF-ED and
ConvNMEF-KL. The time required for computing (22) would be
approximately P — 1 times than that for computing (16). These
observations will be further confirmed in numerical experiments.

IV. NUMERICAL EXPERIMENTS

In this section, we study numerically the performance of Con-
VvNMF-ED in the context of audio object detection,2 and perform
comparisons with ConvNMF-KL, SNMF2D-LS, and Smaragdis’
algorithm [6].

A. Music Audio

Two music audio signals with each containing repeating musical
notes G4 and A3 played by a guitar are mixed together. The mixed
signal is approximately 6.8 s sampled at f, = 22050 Hz. Note, that
for illustrative purpose, the signals used in this section are relatively
simple, however, realistic audio signals have also been tested in this
work, see, e.g., Section IV-D. Some parameters used in the experi-
ments are set as: T = 4096, P = 105, R = 2, { = 0.0001. The
described algorithms ConvNMF-ED and ConvNMF-KL, together with
SNMF2D-LS,3 were all applied to decompose X, where W (p) and H
are the absolute values of random matrices with elements drawn from a

2Numerical examples for applying the proposed algorithm to artificial audio
signals containing audio patterns whose frequency changes linearly with time
have been shown in [10], where we have shown the failure of the standard NMF
for such a scenario, and the advantage of our proposed algorithm.

3The MATLAB code of the SNMF2D algorithm was downloaded from
Morup’s webpage [14]. In our evaluations, the 2-D deconvolution is reduced to
one dimension by setting ¢ = 0. The convolutional frame length 7 was held
identical to P used in ConvNMF-KL and ConvNMF-ED in all experiments.

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on November 24, 2009 at 10:19 from IEEE Xplore. Restrictions apply.
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Fig. 1. Decomposition result of X using the proposed ConvNMF-ED algo-
rithm. (a) is the plot of magnitude spectrum matrix X of the music audio signal.
(b) and (c) are the plots of the rows of the factorized H. (d) and (e) are the plots
of the columns of the factorized W°(p) as a collection forallp = 0, ..., 104,
where (d) represents time-frequency signature of note G4, while (e) denotes note
A3.
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Fig. 2. Decomposition result of X using the ConvNMF-KL algorithm. (a) is
the plot of magnitude spectrum matrix X of the music audio signal. (b) and
(c) are the plots of the rows of the factorized H°. (d) and (e) are the plots of
the columns of the factorized W°(p) as a collection for all p = 0,...,104,
where (d) represents the time-frequency signature of note A3, while (e) denotes
note G4. Note that, the decomposed W and H° by ConvNMF-KL differ from
those by the ConvNMF-ED algorithm with a permutation ambiguity, which is
inherent due to the signal model considered, although the ambiguity does not
always occur in many of our random tests.

standardized Gaussian probability density function. All tests were run
on a computer whose CPU speed is 1.8 GHz.

Figs. 1-3 show the decomposition results of these algorithms, re-
spectively. In all these algorithms, plot (a) is the spectrogram matrix
X. Plots (b) and (c) visualize the first and second row of H*, and
plots (d) and (e) visualize the first and second column of W°(p) for
the collection of p. We can observe from these figures that the per-
formance of ConvNMF-ED is approximately identical to that of Con-
VNMF-KL, except for a difference in the permutation. The notes G4
and A3 were separated correctly by both algorithms, where W*°(p)
represents the magnitude spectrum of the notes, while H denotes the
onset locations of the notes. However, the SNMF2D-LS algorithm does
not correctly identify the note events. For example, it can be seen from
Fig. 3(b) and (c) that, after the convergence of the algorithm, the onset
locations in H® have been actually over-shifted, i.e., shifted more than
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Fig. 3. Decomposition result of X using the algorithm SNMF2D-LS. (a) is
the plot of magnitude spectrum matrix X of the music audio signal. (b) and (c)
are the plots of the rows of the factorized H°. (d) and (e) are the plots of the
columns of the factorized W (p) as a collection forall p = 0, ..., 104, where
(d) represents the time-frequency signature of note G4, while (e) denotes note
A3.

10 T T T T T T
=#i(a)
103 —(b) E
....... (C)
el (d) |
—(e)
w )
w 10 5
o
10° :
107 ;
10° : ‘ ‘ ' ' :
0 50 100 150 200 250 300 350

lteration numbers

Fig. 4. Convergence comparison between the algorithms ConvNMF-ED (plots
(a) and (d)), ConvNMF-KL (plots (b) and (e)), and SNMF2D-LS (plots (c) and
(f)). Two random tests were performed for each algorithm with 7" = 256 (plots
(a) (b) and (c)), and 1024 (plots (d) (e) (f)) respectively.

TABLE II
COMPARISON OF COMPUTING TIME REQUIRED FOR THE ALGORITHMS
RUNNING 100 ITERATIONS. FOR EACH 1', THE TIME CONSUMED
(IN SECONDS) WAS AVERAGED OVER 50 RANDOM TESTS

T 256 | 512 | 1024 | 204 | 4096
ConvNMF-ED | 250 | 584 | 1102 | 2043 | 4952
ConvNMI-KL | 262 | 607 | 1231 | 2424 | 5800
SNMF2D-LS | 694 | 1094 | 2079 | 3841 | 9212
Algorithm [6] | 673 | 1109 | 2115 | 3912 | 10545

is required. As a consequence, H° does not reveal the correct onset
locations. Moreover, the magnitude spectrum of the notes described
by W¢(p) is less accurate than obtained by ConvNMF-KL and Con-
vNMF-ED.

B. Convergence Performance

In this section, we compare numerically the convergence perfor-
mance of the three algorithms. We perform two random tests for each
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TABLE IIT
COMPARISON OF TP/ FP FOR NOTE ONSET DETECTION BETWEEN THE THREE ALGORITHMS. FOR EACH T, THE RESULT WAS AVERAGED
OVER 50 RANDOM REALIZATIONS. THE VALUES OF TP ARE ALSO SHOWN IN BRACKETS.

T 256 512 1024 2048
ConvNMF-ED | 13.49 (93.1%) | 3.46 (77.6%) | 3.56 (78.1%) | 3.39 (77.2%)
ConvNMF-KL | 3.95 (79.1%) 3.34 (70.1%) | 2.45 (71.0%) | 0.92 (47.8%)
SNMF2D-LS 0.06 (5.7%) 0.04 (4.0%) 0.04 (3.9%) 0.04 (3.4%)

algorithm with 7" set to 256 and 1024, respectively, and run each algo-
rithm for 300 iterations. The evolution of the relative estimation error
(REE) versus iteration number is drawn in Fig. 4, where REE is defined
as

REE = ‘ E (23)
This performance index is relatively less sensitive to the signal
dynamics as compared with the absolute estimation error due to
the adopted normalization. All the three algorithms were initialized
randomly with the same starting points. The three algorithms have
very similar convergence behavior, with SNMF2D-LS having lowest
REE, followed by ConvNMF-ED and ConvNMF-KL.

C. Computational Load

To compare the computational complexity of the proposed algorithm
with that of ConvNMF-KL, SNMF2D-LS and the algorithm in [6],
we ran each algorithm 50 times for each 7', where T was set to be
256, 512, 1024, 2048, and 4096, respectively. We measured the com-
puting time required for 100 iterations. All the algorithms were ini-
tialized randomly. Other parameters remained the same as those in
Section IV-A. The average results over 50 tests for each algorithm are
listed in Table II. More specifically, if we further average the results
over different 7', the reductions of computing load of ConvNMF-ED
as compared with ConvNMF-KL, SNMF2D-LS and Smaragdis’ algo-
rithm in [6] are respectively 13%, 47%, and 51%. Clearly, the proposed
algorithm ConvNMF-ED is the most efficient algorithm. When 7" be-
comes larger or the signal to be analyzed becomes longer, the advan-
tage of ConvNMF-ED becomes more significant. This numerical result
supports our theoretical analysis results in Section III-D.

D. Audio Object Separation Accuracy

In order to evaluate the convolutive NMF algorithms more objec-
tively, it can be useful to measure the accuracy of the detected note
events from H® or W°(p) that is obtained using those algorithms.
Here, we use the same peak-picking algorithm described [9] to detect
the note onsets from H*. The threshold used for peak-picking was set
to 0.4 and held constant for all the tests. We evaluate the performance
using the ratio between the percentage of true positives (i.e., the number
of correct detections relative to that of total existing onsets, denoted
as TP for brevity) and the percentage of the false positives (i.e., the
number of erroneous onsets relative to that of the total detected onsets,
denoted as FP for brevity) [21], i.e., TP/FP. A higher value of TP/FP
indicates a relatively better performance. A detected note is considered
to be a true positive if it falls into one analysis window within the orig-
inal onset. Otherwise, it is considered as a false positive. In practice,
there may exist a few missing notes that are not detected at all, which
nevertheless does not affect the accuracy of evaluation using TP/FP.
A subset of a commercial music audio database was used for the eval-
uation, for which 25 testing signals, each containing various numbers
of notes, were used [15]. For each signal, 7" was set to be 256, 512,
1024, 2048, and 4096, respectively, and 50 random realizations were
run for each T'. Table III shows the average results of TP/FP, with
TP also listed in the brackets. It can be seen from these figures that

SNMEF2D-LS almost totally fails for onset detections of note events
in the signals. This is not surprising regarding the discussion we had
earlier in Sections III-D and IV-A. In contrast to both SNMF2D-LS
and ConvNMF-KL, the proposed algorithm ConvNMF-ED provides
the better decompositions that are particularly suitable for note onset
detection.

V. CONCLUSION

A new multiplicative learning algorithm for convolutive NMF has
been presented. The algorithm features novel learning rules derived
from the squared Euclidean distance, together with an efficient method
for computing the estimate of the low-rank approximation. The pro-
posed algorithm has advantages over both Smaragdis’ algorithm and
the algorithm by Schmidt and Morup, in the context of audio object sep-
aration and note onset detection, in terms of the performance measure-
ment of computational complexity and detection accuracy. The pro-
posed algorithm can be a useful tool for a wide range of applications
including the analysis of complex auditory scenes.
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OFDM Joint Data Detection and Phase Noise Cancellation
for Constant Modulus Modulations

Yu Gong and Xia Hong

Abstract—This correspondence proposes a new algorithm for the
OFDM joint data detection and phase noise (PHN) cancellation for con-
stant modulus modulations. We highlight that it is important to address
the overfitting problem since this is a major detrimental factor impairing
the joint detection process. In order to attack the overfitting problem
we propose an iterative approach based on minimum mean square
prediction error (MMSPE) subject to the constraint that the estimated
data symbols have constant power. The proposed constrained MMSPE
algorithm (C-MMSPE) significantly improves the performance of existing
approaches with little extra complexity being imposed. Simulation results
are also given to verify the proposed algorithm.

Index Terms—Constant modulus modulation, OFDM, phase noise can-
cellation.

I. INTRODUCTION

The phase noise (PHN) in an orthogonal-frequency-division multi-
plexing (OFDM) system arises from the imperfections at the receiver’s
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oscillator, damaging the orthogonality among subcarriers [1], [2]. A
typical PHN consists of two parts: the common PHN and the random
PHN [3]. Most existing PHN cancellation algorithms (e.g., [3] and [4])
mainly consider the common PHN which is an averaging effect over
the OFDM transmission and can be mitigated with the help of pilot
symbols. The random PHN, on the other hand, is much more difficult
to handle as it varies from one symbol to another even for slowly fading
channels. Recently, a family of algorithms for joint data detection and
PHN cancellation based on the probabilistic approach of variational in-
ference have been proposed [5].

In general, a joint estimation process may suffer from the “overfit-
ting” problem so that the estimate is too close to the received samples
and fits into the noise. The overfitting problem is particularly serious in
the joint OFDM data detection and PHN cancellation. This is because
for an OFDM symbol with [V subcarriers, there are N data symbols and
N PHN to be determined from 2N observations including N from the
receiving data model and another NV from the PHN model. On another
front, the PHN must be mitigated at every symbol since it varies from
one symbol to another. This describes a very special case of parameter
estimation problem: unlike the classic parameter estimation whereby
the estimates can be improved by increasing the number of data sam-
ples, here the number of unknown parameters (i.e., the symbols and
PHN) always equals the number of the “observation” samples, making
it particularly vulnerable to overfitting which thus must be carefully
handled as otherwise the whole joint process may be invalidated.

‘We note that, although it was not explicitly identified, the algorithms
described in [5] are in fact equivalent to the Bayesian regularization
utilizing the Gaussian distributions as the priors, a common method to
combat overfitting [6]. This, however, may not be sufficiently effective
for the OFDM PHN cancellation. In our recent correspondence [7] and
further in [8], we proposed a new joint data detection and PHN can-
cellation algorithm based on minimum mean square prediction error
(MMSPE), where the hard decision is applied to the symbol estimates
at the end of each iteration. The hard decision process can effectively
filter the noise out of the symbol estimates and remove the associated un-
certainties due to the overfitting which would otherwise be carried for-
ward over the iterations. However, the hard decision imposes as a non-
linear constraint on the iterative procedure which may sometimes be too
strong such that some symbol estimates are forced into the wrong direc-
tion over the iterations, resulting in performance loss. As will be shown
in the simulation later in this correspondence, the MMSPE algorithm
has close performance to, if not worse than, those proposed in [S] when
the SNR is high (in which case there is little noise to be removed and
the negative effect of the hard decision becomes more dominant). This
motivates us to explore new methods to combat overfitting problem.

In this correspondence, we focus on the OFDM system with constant
modulus modulations such as the PSK. Embedding the deterministic a
priori information from the modulation that the data symbol must have
constant power into the MMSPE cost function as a constraint, we pro-
pose a constrained MMSPE (C-MMSPE) algorithm to jointly detect
the data symbol and cancel the PHN. The C-MMSPE algorithm can
better handle the overfitting and has significantly superior performance
to both the MMSPE algorithm and the algorithms described in [5]. The
idea of using constant modulus has been well understood in many com-
munications applications such as the Godard blind equalization [9], but
this is the first time to be applied to the OFDM PHN cancellation. Al-
though in general any prior information about the system, especially
deterministic knowledge, should greatly help to improve the model-
ling performance, it usually leads to some complicated constrained op-
timization problems with large computational complexity. Luckily in
the case of the OFDM PHN cancellation, we will show that the derived
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