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Abstract: Measuring various metrics of high speed and high capacity networks pro-
duces a vast amount of information over a long period of time, making the conventional
storage of the data practically inefficient. Such metrics are derived from packet level

information and can be represented as time series signals.

Thus, they can be ana-

lyzed using signal analysis techniques. This paper looks at the Wavelet transform as a
method of analyzing and compressing measurement signals (such as delay, utilization,
data rate etc.) produced from high-speed networks. A live system can calculate these
measurements and then perform wavelet techniques to keep the significant information
and discard the small variations. An investigation into the choice of an appropriate
wavelet is presented along with results both from off-line and on-line experiments.
The quality of the decompressed signal is measured by the PSNR and a comparison of
compression performance is presented against the lossless tool bzip2.
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1 INTRODUCTION

This paper is motivated by the need to measure the perfor-
mance of high-speed communication networks of the future
and particularly of the UKLight experimental network.
The UKLight initiative is a 10 Gbps, high capacity research
network facility that interconnects JANET, the UKs re-
search and educational network, with NetherLight and
StarLight research networks in Amsterdam and Chicago
respectively.

The purpose of the UKLight venture is to create an inter-
national experimental testbed, giving researchers the op-
portunity to access facilities located on different continents
and participate in Grid-nature projects where huge data
sets are transfered between distant sites. Additionally, re-
searchers can deploy in the testbed altered and enhanced
versions of transport and network layer protocols and ex-
amine their impact on the network.

The MASTS (Measurement and Analysis in all Scales of
Time and Space) project has been initiated to provide a
traffic monitoring system for the UKLight network capa-
ble of recording data at various time scales and replying

to real-time queries. At the heart of this project is the
need to develop an efficient method of on-line analysis and
reduction of information, spanning the early stages of the
network’s operation and onwards.

Monitored network data allows network managers and
operators to gain valuable insight into the health and sta-
tus of a network, and if interpreted correctly, can assist
in planning upgrades and remedial action to keep the net-
work operating in a near optimum manner. Whilst such
data is useful for real-time analysis, there is often a need
to post-process historical network performance data. Such
analysis is useful if ongoing long-term problems or if more
detailed analysis of a previous situation needs investiga-
tion.

Monitoring and measuring various metrics of high speed
and high capacity networks produces a vast amount of in-
formation over a long period of time. These metrics de-
scribe the status and performance of the network in terms
of utilization, congestion, packets lost, etc. The storage
of the produced measurements is practically inefficient, as
it requires a large number of storage devices. This itself
significantly increases the cost for measuring high-speed



networks. For this reason, there is a need to derive an
efficient method of data reduction in order to reduce and
store the enormous amount of measurements describing
the monitored traffic.

Compression of monitored performance data is an at-
tractive option to reduce long-term storage requirements.
However, selection of a suitable compression mechanism is
a non-trivial activity. Conventionally, lossless compression
algorithms have been utilised for this purpose, however it
is generally accepted that higher compression ratios are
achievable using lossy algorithms. These of course cannot
support perfect regeneration of the original data. However,
if the important and significant elements of the original
data are preserved, lossy compression becomes attractive.

The work described in this paper considers this issue
and proposes the use of the Wavelet Transform as a first
step in the compression of a time-series of delay or utiliza-
tion measurements. Using the Wavelet Transform in the
manner described in the paper allows useful further com-
pression to be obtained over competing lossless algorithms,
whilst providing controlled degradation of the signal. The
degradation ensures that the important characteristics of
the source data are retained along with the signal energy
in the regenerated signal. Furthermore, the use of the
Wavelet Transform allows later analysis of the measure-
ment data to be implemented efficiently.

The rest of the paper is structured as follows. In section
2, the advantages of wavelet analysis over other transfor-
mation techniques are discussed along with information on
wavelet analysis implementation. In section 3, the method-
ology of the wavelet coefficient thresholding and compres-
sion algorithm are discussed. In section 4, eight differ-
ent mother wavelets are compared against each other in
order to choose an appropriate wavelet in terms of effi-
ciency, quality of results and energy preservation. Section
5 presents results from off-line experiments and the pro-
posed compression algorithm is compared against the loss-
less compression tool bzip2. Section 6 discuses a monitor-
ing platform for live calculation and compression of mea-
surements and practical results are presented by compress-
ing sampled traffic recorded from a live network. Finally,
conclusions and ideas for future work are given in section

7.

2 INTRODUCTION TO WAVELET ANALYSIS

2.1 Related Work

So far, wavelets have been generally used to detect net-
work performance problems. They have been applied to
traffic rate signals in order to infer the time scale associ-
ated with the dominant RTT through the examination of
the energy function of the detail coefficients (Huang et al.
(2001)). They have also been used for de-noising one-way
delay signals in order to detect shared congestion between
different flows by Kim et al. (2004a). Barford et al. (2002)
show that wavelet filters are quite effective at exposing the

details and characteristics of ambient and anomalous traf-
fic. Kim et al. (2004b,c) analyze the correlation of desti-
nation IP addresses of outgoing traffic at an egress router.
Based on statistical historical margins, estimated after us-
ing wavelet analysis, sudden changes are detected.

2.2 Wavelet Analysis Advantages

The Heisenberg uncertainty principle suggests that it is
impossible to know the exact frequency and the exact time
of occurrence of this frequency in a signal but it is possible
to obtain the frequency bands that exist in a time interval.
In other words, there is a trade off between the resolution
of the time and the frequency domain.

In contrast with other techniques that use a constant
window size to analyze a section of a signal (for example
DCT, STFT), wavelet analysis has the benefit of varying
the window size. This means that wavelets can efficiently
trade frequency resolution for time resolution or vice versa.
For this reason, wavelets can adapt to various time-scales
and perform local analysis. In essence, wavelets can reveal
both the forest and the trees (Misiti et al. (2004) Agbinya
(1996)).

The local analysis feature of the wavelets provides the
additional benefit of approximating an examined signal
compactly, i.e. with few coefficients. There has been a lot
of research conducted in image and speech signal process-
ing, describing the suitability of wavelets in compression
applications. Shapiro (1993); Chang et al. (2000); Agbinya
(1996) are a few examples.

The finite nature of the wavelet can describe local fea-
tures of the signal better than the infinite length of a si-
nusoid. Thus, another attribute of wavelet analysis is the
ability to detect characteristics of non-stationary signals,
i.e. stochastic (random) signals whose statistical proper-
ties change with time. Most interesting signals are non-
stationary signals.

2.3 Multi-resolution Signal Decomposition

The wavelet analysis transforms a given signal s[n] of n
samples into n/2 approximation (scaling) and n/2 detail
(wavelet) coefficients. The approximation coefficients rep-
resent the smoothed version of the signal (low frequency
bands), while the detail coefficients represent the detailed
version (high frequency bands).

The basic idea of wavelet analysis is that an average of
two samples of signal s at scale j produces an approxima-
tion coefficient at the next higher scale j+1. Whereas, the
difference between those samples produces a detail coeffi-
cient at scale j+1.

Thus, for a specific scale, approximation coefficients are
associated with the averages, whereas detail coefficients
represent the change of averages. In the case of the sim-
plest wavelet function, Haar, this can be expressed as:

S;l1] = 55[2]
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Wavelet Analysis can be used as a Multi-resolution Sig-
nal Decomposition (MSD) tool, decomposing a signal into
scales of varying time and frequency resolution.

Initially, the first level (or scale) of decomposition of the
multi-resolution analysis takes place. The same process
can be applied again on the resulting (n/2) approximation
coefficients yielding n/4 detail and approximation coeffi-
cients and so on for higher scales. The total group of de-
tail coefficients from scale 1 up to J and the approximation
coefficients at scale J compose the wavelet decomposition
tree at scale J.

3 METHODOLOGY

Wavelet analysis is not a compression tool but a transfor-
mation to a domain that provides a different view of the
data that is more eligible to compression than the original
data itself.

Fig. 1 shows the flow chart of the following algorithm
for analysis and compression of each examined signal. First
the signal is transformed into the wavelet domain (see sec-
tion 3.1) where the threshold is calculated (see section 3.2)
and applied (see section 3.3) on the wavelet coefficients.
Then, the thresholded coefficients are normalized (see sec-
tion 3.4) so that each coefficient can be stored in 1 byte
and finally run length encoding is applied (see section 3.5).
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Figure 1: Methodology flow chart

3.1 Quadrature Mirror Filter

In 1988, Mallat (1998) developed a Fast Wavelet Trans-
form (FWT) algorithm that became well known in the sig-

nal processing community as a two channel subband coder
using conjugate filters or quadrature mirror filters (QMF)
(see Fig. 2).

For the decomposition phase, two finite impulse filters
are used. The high-pass filter (HPF) produces the detail
coefficients and the low-pass filter (LPF) the approxima-
tion of the signal. The output of the LPF becomes the
input of the next pair of filters for further decomposition
at higher scales.

The QMF pair divides the input signal into low-
frequency and high-frequency components. The dividing
frequency is between 0 Hz and the maximum frequency of
the analyzed signal, which according to the Nyquist theo-
rem is half of the data sampling frequency.
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Figure 2: Quadrature Mirror Filter Bank

3.2 Thresholding

As was mentioned in section 2.3, detail coefficients actu-
ally reveal the changes of the average. In other words,
detail coefficients with large magnitude represent signifi-
cant changes in the original signal. These large magnitude
detail coefficients need to be preserved because they repre-
sent important characteristics of the signal and they should
be kept in order to preserve the quality of the signal (see
Chang et al. (2000) Kaur et al. (2002))

On the other hand, many of the wavelet coefficients pro-
duced from the wavelet analysis have an absolute value
close to zero. These small coefficients are likely at-
tributable to small variations of the signal and contain a
small percentage of the signal’s total energy. These small
coefficients can be discarded without a significant loss in
the quality of the signal and more importantly of the inter-
esting features. Thus, a threshold is required below which
all coefficients will be discarded.

Gupta and Kaur (2002) proposed an adaptive threshold-
ing technique that is calculated from the absolute value of
the wavelet coefficients. This scheme is not based on sig-
nal denoising but rather tries to statistically identify sig-
nificant coefficients. Specifically, the standard deviation
(o) and mean (u) of the absolute value of non-zero detail
coefficients are first calculated. If the standard deviation
is larger than the mean, then the threshold is set to two
times the mean (2 * p), otherwise it is equal to the mean
minus the standard deviation (u— o). Thus, the threshold,
T, can be expressed mathematically as:
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Previous work by the authors (Kyriakopoulos and Parish
(2007)) has compared the above thresholding technique
against another widely used technique proposed by Birge
and Massart (see Misiti et al. (2004)). The results of the
comparison showed that the Birge-Massart threshold is not
well-suited for our needs as it can not restrain the mean
square error (MSE) at acceptable levels while the scale of
analysis increases. Indeed, the compression ratio is very
high for large analysis scales but this makes the recon-
structed signals very distorted.

2%,
u— o,

3.3 Applying the Threshold

The hard and soft thresholding techniques are two of the
most common ways of applying a threshold. In both cases
coefficients with absolute value smaller than the threshold
are set to zero. With the hard threshold all coefficients
with absolute value larger than the chosen threshold are
kept intact, while with the soft threshold, positive coeffi-
cients are reduced and negative increased by the value of
the threshold. In other words coefficients that have an ab-
solute value larger than the threshold are shrunk towards
zero, thus naming this method shrinkage as described by
Donoho (1995). The hard and soft threshold functions are
given below and are illustrated in Fig. 3 for threshold
T=0.5.

Frara(z) = { g, if Jx|>T 3)

otherwise

x—=T, if >0 andlz|>T
fsoft(x) = 0, Zf |.’E‘ <T (4)

z+T, if <0 andlzx|>T
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Figure 3: Hard and soft thresholding functions for thresh-
old T=0.5

Depending on the examined signal and the application,
the threshold technique has to be chosen carefully. Kaur
et al. (2002); Yoon and Vaidyanathan (2004) use soft
thresholding to avoid abrupt artefacts produced from the
discontinuity of hard thresholding (see Fig. 3) and to pro-
vide smoothness to the reconstructed signal.

Downie and Silverman (1998) recommend using the hard
thresholding technique rather than the soft technique as it

gives less MSE. The hard thresholding method performs
better as it offers a more precise reconstruction of sig-
nals that contain abrupt changes but also retains a large
amount of the original signal energy. Previous work by the
authors (Kyriakopoulos and Parish (2006)) has shown that
the hard threshold is more appropriate for compressing
computer network measurements as it gives considerably
better quality results. The hard threshold was applied in
the experiments described in this work.

3.4 Normalization

In order to improve the way that data are stored, normal-
ization of the coeflicients takes place. The aim is to use
just 8 bits to store each coefficient. However, with an 8 bit
variable only 256 values can be stored (values 0...255) or
127 values (i.e. 27 bits) saving one bit for the sign of the
wavelet coefficient. Thus, first the coefficient values have
to be normalised using the following formula:

romm scalingfactor) (5)

norm(x) = Tound(i
max — min

where x is a coefficient, min is the minimum value that ap-
pears in the array of coefficients and max the maximum.
The scaling factor in this case is 127, which is the max-
imum value of a signed number that can be stored in 1
byte. In order to avoid the detail coefficients being skewed
by the larger values of the approximation coefficients, the
normalization process is applied separately for the detail
and for the approximation coefficients.

3.5 Run Length Encoding

The simplest version of the run length encoding (RLE)
algorithm replaces a sequentially repetitive symbol with
the symbol itself followed by a number that indicates how
many times the symbol should be repeated. However, this
simple version of RLE expands single symbols into a pair
of symbol-run length.

In order to avoid this shortcoming, a more sophisticated
RLE implementation utilises a run length that is used only
for symbols that appear more than 2 times. This method
has beneficial effect only for symbols that appear 3 or more
times. However, the RLE limitation persists for symbols
that appear sequentially for just two instances and ex-
pand into symbol-symbol-run length triples. This version
of RLE is preferred to the previous one, because the prob-
ability of a symbol appearing twice is significantly lower
than appearing once.

3.6 Examined Data

For the wavelet comparison investigation and the off-line
experiments (Sections 4 and 5 respectively) thirty delay
and thirty data rate signals of 1024 points were used.
The delay signals were measured on a research test bed.
Traffic generators were used to emulate a time of day pro-
file similar to that of a commercial network. Delay signals



are usually smooth with sudden discrete bursts spread over
the data.

The data rate signals are from a real commercial network
that generates around 25 TB of data per day and has data
rates between 300 Mbps and 1.4 Gbps. In a window size
of 2 seconds 30000 unique IP addresses may be observed
in that network.

4 WAVELET COMPARISON

The mother-wavelet chosen to analyze the network mea-
surement signals is of prime importance as some wavelets
offer better quality than others. However, there is no
wavelet that gives the best results for all kinds of signals.

Regarding speech and audio signals, Agbinya (1996);
Najih et al. (2003), among others, have found that for bet-
ter reconstruction quality wavelets with many vanishing
moments should be utilized, as they introduce less distor-
tion and concentrate more signal energy in the approxima-
tion coefficients. Wavelets with many vanishing moments
are described with many coefficients in the scaling and
wavelet functions, thus increasing the computation over-
head of the wavelet transform, the complexity of the algo-
rithm and most importantly the output file size.

Eight wavelets were chosen and compared against each
other in order to find out, firstly which one keeps more
energy in the wavelet coefficients and secondly which one
offers better reconstruction results after thresholding with
the technique described in section 3.2.

The following wavelets were compared: Haar, Meyer,
Biorthogonal 3.9 and Daubechies D4, D6, D8, D10, D12.
The index of Daubechies wavelets indicates the number
of coefficients. The number of vanishing moments each
Daubechies wavelet has is half of the number of coefficients,
i.e. D4 has 2 vanishing moments.

4.1 Wavelet Energy Attributes

The first task of estimating the percentage of kept energy
was split into two parts. The signals described above were
used as input and all eight wavelets were examined one by
one. In the first part, the flow chart in Fig. 4 was fol-
lowed in order to estimate the percentage of preserved en-
ergy in the approximation coefficients. The threshold was
such that only the approximation coefficients were kept
and all detail coefficients filtered out. The percentage of
kept energy for each signal was calculated by the L?-norm
recovery criterion (Misiti et al. (2004)) given in percentage
terms by:

(6)

12- X
PERFL2 = 100 « | 1orm(CXC)
12-norm(C)
where CXC are the coefficients of the thresholded decom-
position and C the coefficients of the original decompo-
sition. The I2-norm , |z|, of a vector z = (x1, 72, x3) is

defined as:

|2] = V@12 + 292 + 232
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Figure 4: Flow chart for Energy calculation in approxima-
tion coefficients.

Tables 1 and 2 show the percentage of kept energy in the
approximation coefficients at level 6 of the decomposition
for delay and data rate signals respectively.

For delay signals there is a significant difference in the
percentage of preserved energy among wavelets. For data
rate signals the percentage of kept energy is very similar
among wavelets. However, in both cases, the Haar wavelet
has the worst score in keeping the energy.

Even though the reconstruction quality depends largely
on the approximation coefficients, it also depends to some
extent on the detail coefficients preserved from the sug-
gested thresholding algorithm.

In the second part of the energy preservation investi-
gation, the flow chart in Fig. 5 was followed in order to
estimate the percentage of preserved energy after applying
the proposed threshold. In this case both approximation
and detail coefficients are preserved. Again, the percentage
of kept energy for each signal was calculated by equation

(6)-

Apply
et ol povosed  [of gt
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Figure 5: Flow chart for Energy calculation in thresholded
coefficients

Tables 3 and 4 show the percentage of kept energy in
the coefficients after applying the threshold described in
section 3.2 at level 6 of decomposition for delay and data
rate signals respectively.

For delay signals there is a significant difference in the
percentage of preserved energy among wavelets. For data
rate signals the percentage of kept energy is very similar
among wavelets. However, in both cases, the Haar wavelet
has the worst score in keeping the energy.

Table 3 shows that the Haar wavelet ranks third in keep-
ing the energy of delay signals after applying the proposed
threshold. This is a significant improvement in comparison
to the results of Table 1. For data rate signals (see Table
4) the inclusion of detail coeflicients adds a very small per-
centage to the preserved energy as most of the energy is
included in the approximation coefficients. In both cases,
the average preserved energy is very high. It should be
noted that including detail coefficients is essential for pre-
serving the signal characteristics.



Table 1: Percentage of Preserved Energy in Approximation Coefs. for Delay Signals at Level 6

Wavelet | Haar D4 D6 D8 D10 D12 Meyer Bio 3.9
Min. % | 31.0 34.6 359 384 41.1 422 61.0 35.9

Max. % | 95.7 972 976 976 977 978 98.6 95.3

Avg. % | 63.34 69.68 71.58 73.59 74.61 76.08 86.22  73.38
Rank 8 7 6 4 3 2 1 5

Table 2: Percentage of Preserved Energy in Approximation Coefs. for Data Rate Signals at Level 6

Wavelet | Haar D4 D6 D8 D10 D12 Meyer Bio 3.9
Min. % | 99.1 994 995 99.5 995  99.6 99.8 99.1
Max. % | 99.8 999 99.9 999 999 99.9 100.0 99.9
Avg. % | 99.73 99.82 99.84 99.86 99.87 99.88 99.93 99.79
Rank 8 6 5 4 3 2 1 7
Table 3: Percentage of Preserved Energy in Thresholded Coefs. for Delay Signals at Level 6
Wavelet | Haar D4 D6 D8 D10 D12 Meyer Bio 3.9
Min. % | 97.06 96.88 96.57 9595 96.70 96.22  96.60 96.91
Max. % | 99.97 99.92 99.93 99.93 99.82 99.94 99.91 99.97
Avg. % | 98.44 98.37 9829 98.33 98.34 98.32 98.99 98.50
Rank 3 4 8 6 5 7 1 2

Table 4: Percentage of Preserved Energy in Thresholded Coefs. for Data Rate Signals at Level 6

Wavelet | Haar D4 D6 D8 D10 D12 Meyer Bio 3.9
Min. % | 99.88 99.92 99.92 99.93  99.93 99.94  99.96 99.89
Max. % | 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Avg. % | 99.99 9999 99.99 100.00 99.99 100.00 100.00  99.99
Rank 2 2 2 1 2 1 1 2

4.2 Wavelet Quality Attributes

For the second task of examining which wavelet offers best
reconstruction results, two phases were followed; the de-
composition and the reconstruction phases (see Fig. 6).
In order to measure the quality of the reconstructed sig-
nals with different wavelets, the inverse wavelet transform
was applied on the produced coefficients after thresholding.

The quality of the reconstruction signal was compared
with the original by using the PSNR value calculated from

MAX?

where MAX is the maximum value of the original signal
and MSE is the mean square error calculated from

(8)

N-1

1 2
MSEzﬁg

(9)

T, — T4

where z; is the i** sample from the original signal, Z; is the

it" sample of the reconstructed signal and N is the total

number of samples.
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Figure 6: Flow chart for wavelet quality comparison: (a)
Decomposition, (b) Reconstruction

Tables 5 and 6 show the average PSNR value after re-
construction at level 6 for the thirty delay and data rate
signals respectively.

As can be inferred from the tables, wavelets with more
vanishing moments do not provide higher PSNR values for
the reconstructed signals. Even though the Haar wavelet



Table 5: PSNR Values for Delay Signals after Reconstruction with Different Wavelets

Wavelet Haar D4 D6 D8 D10 D12 Meyer Bio 3.9
Min. PSNR | 32.8 32.1 31.6 31.5 31.3 317 31.0 314
Max. PSNR | 50.1 46.8 454 455 452 44.8 46.0 45.8
Avg. PSNR | 39.6 382 37.6 375 37 37 37.1 37.3

Rank 1 2 3 4 7 8 6 5
Table 6: PSNR Values for Data Rate Signals after Reconstruction with Different Wavelets

Wavelet Haar D4 D6 D8 D10 D12 Meyer Bio 3.9
Min. PSNR | 34.0 344 34.2 342 33.6 340 345 34.0
Max. PSNR | 57.2 599 59.0 59.1 58.0 587 57.9 60.4
Avg. PSNR | 53.4 51.6 51.7 49.7 50.8 51.5 53.0 50.4

Rank 1 3 4 8 6 5 2 7

misses some detail and does not always represent detail at
all resolution scales, it ranks first on average in both delay
and data rate signals in terms of quality of results.

Specifically, for delay signals, the Haar wavelet gives the
best PSNR for all signals and for data rate signals, it is
the best option on average. The better performance of the
Haar wavelet can be explained if we consider the fact that
the value of the produced coefficients simply indicates how
similar the selected wavelet is to the corresponding part of
the examined signal (Misiti et al. (2004)). The closer the
similarity the greater the value of the coefficient. Wavelets
have different characteristics and their forms can be seen
in Fig. 7.

For most cases, the wavelets are not as similar to the ex-
amined signals as is the Haar wavelet. For this reason, the
produced coefficients have smaller values which means that
more coefficients are thresholded during the compression
process. This does not happen as frequently when using
the Haar wavelet. As a result, the reconstruction quality
in those cases is better when using the Haar wavelet.
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Figure 7: Examples of different wavelet forms.

The Haar wavelet is the simplest wavelet algorithm that
can give perfect reconstruction and has the following ad-
ditional advantages Nievergelt (1999):

e It is conceptually simple
o Fast
e Memory efficient

e and is exactly reversible without producing edge ef-
fects.

Because of the above advantages and the best recon-
struction results offered by the Haar wavelet, it was cho-
sen for the off-line and practical experiments discussed in
Sections 5 and 6.

5 OFF-LINE EXPERIMENTS

Off-line experiments were run with the signals, described
in section 3.6, fed as input to the wavelet thresholding al-
gorithm (Fig. 6a). Experiments were run on an Intel Core
Duo machine at 1.83Ghz and were aimed at producing re-
sults regarding the compression ratio (C.R.) and PSNR of
the de-compressed signal. For a level-6 wavelet analysis
and compression procedure, each signal of 1024 measure-
ments required on average 33 ms to complete.

From experimental experience, for both types of signals,
PSNR values less than 35 dB loose some of the important
signal characteristics while PSNR values less than 30 dB
are not acceptable. Along with numerical scores, figures
are provided to demonstrate how the decompressed signal
compares to the original. Additionally, the error is given
in the graphs separately for easier judgement.

5.1 Delay Signals

For delay signals, the C.R. between the original and the
compressed signal begins at 7.5 for level 1 and stabilizes



around 17 from level 6 and above. PSNR stabilizes after
level 7. The PSNR and C.R. average values of delay signals
for all analysis levels are given in Table 7.

Fig. 8 shows delay signal 30, which is a good represen-
tative of most delay signals, before and after the compres-
sion. Because the two signals are very similar, the error
between them is also provided for better judgment (lower
line). The signal is decomposed at level 10 and the recon-
struction quality is 37.85 dB while the C.R. is 13.7.

Fig. 9 shows signal 10, which differs from most delay sig-
nals because it is very bursty. Due to this fact, it includes
many high frequency components and it is the hardest de-
lay signal to compress. The algorithm is able to adjust
to this burstiness and produce a reconstructed signal with
very low error. PSNR is 44.3 dB and C.R. is 5.65.
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Figure 8: Delay signal 30 decomposed at level 10, PSNR=
37.85 dB and C.R.= 13.7.
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Figure 9: Delay signal 10 decomposed at level 10, PSNR=
44.3 dB and C.R.= 5.65.

5.2 Data Rate Signals

For the data rate signals there is no significant increase
in the C.R. as the level of decomposition increases. The
C.R. range is between 10.5 and 11.2 (see Table 8) in con-
trast with the wider range (7.5 to 17.4) for delay signals.
This happens because data rate signals have a lot of high
frequency components and the proposed algorithm tries to
keep a lot of detail coefficients in order to preserve the
signal quality. The PSNR and C.R. average values for all
levels of analysis for data rate signals are given in Table 8.

Fig. 10 shows an example of a data rate signal analyzed
at level 5. The reconstructed signal has very good quality,
giving PSNR=56.9 dB and C.R.=10.53.

Fig. 11 shows a more interesting case of a data rate
signal. This signal includes a spike, which is kept intact
after the compression. A characteristic of the proposed al-
gorithm is that it detects the spike as a more interesting
feature than the rest of the signal. As a result, the algo-
rithm’s first priority is to preserve this characteristic and
after this, the rest of the signal.

This actually means that the large coefficients represent-
ing the big spike will shift the threshold to higher values,
thus, filtering out more small magnitude coefficients. This
is the reason why PSNR is around 35 dB and there is higher
error for the rest of the signal in comparison to signal 20
(Fig. 10), which is similarly bursty but with no spike. The
high reconstruction error is accompanied by a high C.R.=
26.57.
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Figure 10: Data rate signal 20 analyzed at level 5, PSNR
= 56.9 and C.R.= 10.53.

Fig. 12 and Fig. 13 compare the C.R. results of the sug-
gested wavelet technique against bzip2. It is interesting
to examine the results from the wavelet transform against
a non-transform compression technique. For that reason
bzip2 was chosen, as it is an excellent lossless compression
tool and a natural option when no other obvious alterna-
tives exist for compressing network measurements. In com-
parison to other transform based compression techniques,
wavelets are preferred due to the advantages described in



Table 7: PSNR and C.R. Values for Delay Signals After Reconstruction

Level L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
Min. PSNR | 37.0 34.3 33,5 33.1 33.1 328 328 328 328 328
Max. PSNR | 54.6 53.1 52.6 51.8 50.9 50.1 49.7 485 485 485
Avg. PSNR | 44.3 42 41 405 40 39.6 39.2 39.2 39.2 39.2

C.R. 75 107 13.6 155 16.5 17 17 17 172 174

Table 8: PSNR and C.R. for Data Rate Signals After Reconstruction

Level L1 L2 L3 L4 L5 L6 L7 LS8 L9 L10
Min. PSNR | 39.0 37.2 36.4 364 354 34.0 34.0 332 327 327
Max. PSNR | 58.6 58.1 57.6 58.0 57.5 57.2 56.7 556 550 528
Avg. PSNR | 56.3 55.6 55.4 55.2 549 53.4 49 439 421 394

C.R. 105 108 11 11.1 112 11.2 11.1 109 10.7 11

Section 2.1.

Each examined signal is located on the x-axis. The y-
axis shows the file size in bytes. On average, for delay
signals (Fig. 12) the suggested method (WT) achieves
compression 6.5 times more than bzip2 with the best score
being 11 times and the worst score 2.3 times. For data
rate signals (Fig. 13) the average compression is 4.7 times
more than bzip2 with the best score being 12 times and
the worst 4 times.

6 ON-LINE EXPERIMENTS

6.1 Practical Implementation

The full algorithm has been implemented in CoMo (Ian-
naccone et al. (2004)). CoMo is a passive monitoring plat-
form developed for the purpose of monitoring network links
at high speeds and replying to real-time queries regarding
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Figure 11: Data rate signal 16 analyzed at level 5, PSNR
= 35.4 dB and C.R.= 26.57.

network statistics.

CoMo has various modules that calculate one or more
network measurements. There are some built-in modules
that come with CoMo but it can also accept third-party
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Figure 12: Compression performance of the wavelet algo-
rithm against bzip2 for delay signals
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Figure 13: Compression performance of the wavelet algo-
rithm against bzip2 for data rate signals



modules. The proposed algorithm can be imbedded in
the modules and compress the calculated measurements.
When CoMo receives a query, the information is first de-
compressed and then shown to the end user.

CoMo’s first aim is to capture the packets that arrive at
the monitoring end. Then, the module-dependent statis-
tics of the packets (for example packet length) are binned
per second (or in any other specified time interval) thus
producing measurements per second (for example data
rate).

In order to examine the wavelet compression scheme
in practice, two CoMo modules are compared, one with,
and the other without compression. Both modules count
bytes per second (data rate) and store a timestamp for
each captured block of 1024 samples. More specifically,
packet information is aggregated per second and the result-
ing value represents one element of the 1024 signal sam-
ples. Thus, each block of samples spans a duration of 17.06
minutes. However, only one module performs compression
and passes the block of samples through the compression
algorithm while the next block of 1024 samples is being
captured and calculated.

As each data rate sample is generated in 1 second (an ag-
gregated measurement per second), the analysis and com-
pression processes are actually independent of the band-
width of the link being monitored. There is a window of
around 17 minutes for the analysis and compression phases
to complete before the next block of 1024 measurements
takes its turn. So, calculation time of the algorithm is not
an issue for the on-line implementation of the compression
algorithm, as a few milliseconds of processing time are ad-
equate for each block of measurements.

For the same reasons, the described system is scalable
to high data rates as long as the measurements are ag-
gregated. So, no matter what the bandwidth of the mon-
itored link is, there will always be 1024 samples in each
data block and each block will always span 17.06 minutes.
The compression and quality results of the reconstructed
signal only depend on the original signal characteristics
and attributes (for example if it is bursty or not) and not
on the bandwidth of the monitored link.

The window size of 1024 was chosen as it is a power of
two and wavelet algorithms are more efficient and simple
with signal lengths of power of two. There is no window
size better than others for all situations as the window size
is dependent on the characteristics and the type of each
examined signal. However, as a general rule, the bigger
the window-size the more the compression and the recon-
structed error are.

6.2 Practical Results

The experiment lasted for 8 days and CoMo was moni-
toring traffic recorded on a research group’s live network.
This network supported up to 20 users using a mixture
of machines running Windows, Linux and Mac operating
systems. Activities ranged from standard office and email
applications to real time media and games sessions and
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dedicated research related operations including remote log
retrieval. The overall traffic mix would be expected to
show considerable variation.

Times of very high network usage could occur and should
lead to spikes in the data traces. On a public network,
such spikes would be of considerable importance as they
indicate periods of high load and their further investigation
may indicate if changes to the network are required. On a
research network such as UKLight, analysis of the spikes
may indicate what impact a particular experiment has had
on a given network path. Preservation of these spikes for
later analysis is therefore of great importance.

The overall achieved compression for the whole signal is
34.5 times. The wavelet analysis, thresholding and com-
pression takes place up to level 6 of decomposition. Fig. 14
presents a segment of 34 minutes from the 8 day duration
experiment. This signal is characterized by discrete bursts
of data rate. Some bursts have amplitude of 70 kB/s while
others are half that size or less. The reconstruction keeps
intact the peaks and smoothes out the relatively small vari-
ation of the signal. PSNR for that segment is 55.9 dB.
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Figure 14: Data rate signal of 34 minutes compressed live
by CoMo. Error is given on the secondary y-axis on the
right (lower line). PSNR = 55.9 dB.

The 34 minute signal is actually analyzed as two blocks
of 1024 samples, i.e. two blocks of 17 minute duration.
Thus, it’s statistics and energy scaling behavior are pre-
sented in two different tables and two different figures.
Table 9 shows the statistics for the first part and Table
10 for the second part. Respectively Fig. 15 shows the
energy scaling behavior for the first part and Fig. 16 for
the second.

For the 34 minute signal, as can be inferred from the ta-
bles, the relative errors for mean, standard deviation and
energy are very small. Fig. 15 shows a maximum en-
ergy divergence of 0.2 dB at scale 5 of decomposition. In
the graph the difference looks significant but this is due
the small scale in this particular figure. Fig. 16 shows a
maximum energy divergence of 0.12 dB at scale 5 of de-
composition. For all other scales, for both Fig. 15 and 16
the energy of the reconstructed signal is almost identical
to the energy of the original signal.



Table 9: Percentage Relative Error of Three Statistics for the First Part of 34 Minute Signal

Statistic Original  Reconstructed Percentage Error
Mean 1364.51 1365.52 0.074%
Standard deviation | 4511.83 4482.70 -0.64%
Energy 22218574 21959308 “1.16%

Table 10: Percentage Relative Error of Three Statistics for the Second Part of 34 Minute Signal

Statistic Original Reconstructed Percentage Error
Mean 1392.78 1392.86 0.005%
Standard deviation 4913.17 4879.3 -0.689%
Energy 26079122.39 25747639 -1.27%
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Figure 15: Energy behavior across scales for first half of
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34 minute on-line signal.

Another segment of duration 17 minutes is presented
in Fig. 17. The two high peaks at the beginning and
end of the signal are preserved and the small variation
from sample 150 up to 400 is smoothed. The medium
amplitude peaks in the region of sample 400 up to 950 are
also preserved but with more distortion in comparison to
the highest peaks. PSNR for this signal is 34.4 dB.
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Figure 17: Data rate signal of 17 minutes compressed live
by CoMo. Error is given on the secondary y-axis on the
right (lower line). PSNR = 34.4 dB.

Table 11 shows the percentage relative error for mean,
standard deviation and the energy between the recon-
structed and the original signal. The first two order statis-
tics are preserved with very high accuracy. Fig. 18 shows
the energy scaling behavior of the original and recon-
structed signals. The behavior is almost identical.

7 CONCLUSIONS

This paper proposes the use of wavelet analysis techniques
along with a wavelet coefficient thresholding method for
compressing computer network measurements such as data
rate and delay. Even though the compression is lossy, the
important characteristics of the examined signal are pre-
served along with its mean, standard deviation and energy.



Table 11: Percentage Relative Error of Three Statistics for 17 Minute Signal

Statistic Original Reconstructed Percentage Error
Mean 30712.799 30556.62 -0.5%
Standard deviation 107992.10 106930.84 -0.98%
Energy 12605569898 12367912005 -1.88%

In order to increase the compression, the detail character-
istics are smoothed out by discarding the corresponding
detail coefficients.

An evaluation of various wavelets with increasing van-
ishing moments was presented in order to determine which
wavelet is more appropriate for performing the analysis.
From experimental results, the Haar wavelet is found to
be the best option as it offers the best results in terms of
quality and compression ratio. Wavelets with many van-
ishing moments increase the computation overhead, the
complexity of the algorithm and the output file size.

The thresholding technique proposed by Gupta and
Kaur (2002) restricts the C.R. from exceeding a specific
range as the level of decomposition increases. As a re-
sult, the reconstructed signals have a limited distortion
that does not increase no matter what the depth of de-
composition.

For delay signals, the results show an average PSNR of
39.6 dB with a compression ratio of 17 at level 6 of decom-
position. In comparison to the compression performance
of bzip2 the proposed technique compresses on average 6.5
times more. For data rate signals, the average PSNR is
54.9 and the compression ratio is 11.2 at level 5. On av-
erage, the achieved compression is 4.7 times more than
bzip2.

Additionally, the algorithm can adapt and perform well
in the case of a very bursty signal, such as the case of Fig.
9. No parameter setting is required prior to the signal
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Figure 18: Energy behavior across scales for 17 minute
on-line signal.
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analysis and compression.

However, some improvements could be made in how the
algorithm deals with the threshold in cases that spikes oc-
cur in an already bursty signal such as that in signal 16
(Fig. 11). This would lead to more control over the qual-
ity of the reconstructed signal and more consistent PSNR,
values. A possible solution would be the embedded zero-
tree wavelet (EZW) transform proposed by Shapiro (1993).
The EZW can achieve high compression ratios by predict-
ing insignificant wavelet coeflicients across different scales.

For capturing, compressing and storing packet charac-
teristics, such as packet length, the algorithm could be
enhanced to perform faster due to the small inter-arrival
rate of the packets in a 10 Gbps network. This could be
done by implementing in a dedicated hardware (FPGA)
a faster algorithm of wavelet analysis, such as the lifting
scheme described by Sweldens and Schréder (1996).
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