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Mode-Selective Amplification in a Waveguide Free
Electron Laser with a Two-Sectioned Wiggler

Michael G. Kong,Member, IEEE

Abstract— One important issue in waveguide free electron
lasers (FEL’s) involves an interaction of the electron beam with
one waveguide mode at two different resonant frequencies. Since
the low-frequency mode often has a higher gain, the usually
preferred high-frequency mode is suppressed as a result of mode
competition. In this paper, possible control of this mode competi-
tion is considered using a nonstandard wiggler magnet consisting
of two cascaded wiggler sections with different periods and field
strengths. It is demonstrated that with an appropriate differenti-
ation between the two wiggler sections the high-frequency mode
may be amplified preferentially. This mode-selective amplification
may be used to suppress the low-frequency mode. A small signal
gain formulation is developed for a waveguide FEL with such a
two-sectioned wiggler arrangement and numerical examples are
used to demonstrate its applicability to mode control in waveguide
FEL’s. Effects of wiggler field errors and electron energy spread
are also considered. It is shown that the requirement for wiggler
field errors and electron energy spread in the two-sectioned
wiggler arrangement is similar to that in the usual straight
wiggler configuration.

Index Terms—Free electron lasers, gain control, millimeter-
wave generation, mode competition, undulator, waveguides.

I. INTRODUCTION

COMPACT free electron lasers (FEL’s) in millimeter and
the infrared regions have recently commanded much

attention largely because of their small size and low cost re-
alized by using low-energy and/or low-current electron beams
[1]–[8]. Their output power is modest, usually at the kilowatt
level rather than megawatt level, but nevertheless adequate
for many applications in medicine and industry. Waveguides
are almost always employed to form the interaction region in
compact FEL’s and, as such, the electron beam can interact
strongly with many waveguide modes. Without an appropriate
control, unwanted modes may grow at the expense of a
preferred mode.

One type of mode competition involves an interaction of
the electron beam with one waveguide mode at two different
resonant frequencies, as shown in Fig. 1, where the electron
beam line intersects the dispersion curve of the waveguide
mode twice at point A and point B. This suggests that the
waveguide mode may grow at the two resonant frequencies
[1], [2], and hence there is a mode competition between the
low-frequency mode and the high-frequency mode. Although
radiation at high frequency is usually preferred, small signal

Manuscript received May 20, 1997; revised November 13, 1997.
The author is with the Department of Electrical Engineering and Electronics,

University of Liverpool, Liverpool L69 3GJ, U.K.
Publisher Item Identifier S 0093-3813(98)01475-1.

Fig. 1. Dispersion diagram in a waveguide FEL indicating two resonant
frequencies.

Fig. 2. Small signal gain of a waveguide FEL showing a higher gain for the
low-frequency mode.

analysis suggests that the low-frequency mode often has a
higher gain than the high-frequency mode [2], [9], [10],
as shown in Fig. 2. As a result, the low-frequency mode
grows at the expense of the desired high-frequency mode.
Depending on their relative strength, the competition between
the two resonant modes may extend into the large signal
regime where they have been observed to undergo a highly
nonlinear coupling [11]–[13]. This nonlinear interaction has
been shown experimentally to result in a substantial oscillation
at low frequency [11]–[13], although a recent theoretical
study suggests the possibility of utilizing the nonlinear mode
interaction to achieve an appreciable oscillation at high fre-
quency [14]. This contradiction highlights the fact that the
parametric dependence of the mode competition is yet to be
fully understood in the large signal regime, and therefore it is

0093–3813/98$10.00 1998 IEEE

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on August 26, 2009 at 06:59 from IEEE Xplore.  Restrictions apply. 



86 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 26, NO. 1, FEBRUARY 1998

preferable for the low-frequency mode to be suppressed in the
small signal regime.

It is worth considering a possible variation of Fig. 1 for
which point B is moved to the left of the origin by, for instance,
using a shorter wiggler period. In this case, the mode compe-
tition is no longer related to the high-frequency forward wave
mode of point A competing with the low-frequency forward
wave mode but instead with a low-frequency backward wave
mode [15], [16]. Since the backward wave mode is related
to the absolute instability, its suppression may be achieved
by employing a short-pulse electron beam [15]. However, for
waveguide FEL’s driven by long-pulse or CW electron beams,
this backward wave mode can lead to a significant absolute
instability and, as such, the mode competition is likely to be
favorable to the low-frequency mode even more [15], [16].
In other words, the mode competition between two forward
wave modes shown in Fig. 1 is in fact a less severe problem
for long-pulse waveguide FEL’s.

Techniques for the control of waveguide mode competition
are not likely to be useful for the competition between the
low-frequency mode and the high-frequency mode since they
belong to the same waveguide mode. One possible solution is
to choose a quality factor for the low-frequency mode that
is sufficiently small for its suppression, but this technique is
not applicable to the case where the wavenumber of the high
frequency is an integer multiple of that of the low frequency.
On the other hand, it should be possible to derive more sophis-
ticated cavity-based techniques capable of achieving a better
control of mode competition [17], [18]. With their control
mechanisms based on the cavity’s frequency selectivity, these
techniques can suffer from their limitation on the tunability of
the eventual FEL system [10] as well as their sensitivity to
beam/cavity misalignment especially at high frequencies [18].
An alternative approach is to control the mode competition
without enhancing the frequency selectivity of the device’s
radio frequency (RF) structure, and one example is to employ
a nonstandard wiggler consisting of two cascaded wiggler
sections with different periods and field strengths [19]. It
was shown that this magnet-based technique is capable of
suppressing the low-frequency mode considerably in the small
signal regime while maintaining approximately the same linear
gain for the high-frequency mode [19]. However, the proposed
technique was only discussed phenomenologically without
gain formulation. In this paper, the FEL interaction in such
a two-sectioned wiggler is analyzed with a small signal gain
formulation. It is shown that with an appropriate differentiation
between the two wiggler sections, the high-frequency mode
may be amplified preferentially, and this mode-selective ampli-
fication may be used to control mode competition in compact
FEL’s. The proposed technique is further examined for its
gain dependence upon wiggler field error and electron energy
spread in comparison with the case of a straight wiggler.

II. M ODE CONTROL WITH A TWO-SECTIONED WIGGLER

Suppose in a waveguide free electron laser the electron
beam only interacts strongly with one waveguide mode with all
other waveguide modes suppressed. With a sufficient electron

energy, the electron beam intersects the waveguide dispersion
curve at two resonant frequencies in a straight wiggler magnet,
as shown in Fig. 1. The slope of the electron-beam line may be
controlled by the wiggler field strength, and its intersection on
the wavenumber axis of Fig. 1 is given by Suppose
this waveguide FEL now employs a two-sectioned wiggler,
and in both of its wiggler sections the electron beam interacts
with the waveguide mode at two resonant frequencies. With
different wiggler periods and field strengths for the two wiggler
sections, the single electron-beam line for the case of a straight
wiggler in Fig. 1 splits into two beam lines of different slopes
and different intersections on the wavenumber axis, as shown
in Fig. 3. It is therefore possible to adjust the periods and
field strengths of the two wiggler sections so that the two beam
lines intersect the dispersion curve at an identical high resonant
frequency, whereas their low resonant frequency intersections
are apart. The implication of this arrangement is that either
of the two low-frequency modes receives an appreciable gain
only in one wiggler section and undergoes no significant
interaction in the other, while the desired high-frequency mode
is amplified in both wiggler sections. Therefore, by limiting
the amplification of the low-frequency modes to within only
one wiggler section, their growth should be suppressed.

This two-sectioned wiggler technique is conceptually very
similar to the compound wiggler technique proposed for
lasing optical free electron lasers at a selected harmonic [20].
However, the compound wiggler technique realizes harmonic
selection by differentiating the combination of wiggler period
and harmonic number in its two constituent parts, while the
two-sectioned wiggler technique achieves mode control by
differentiating the combination of wiggler period and field
strength of its two wiggler sections. It is also of interest
to note that both configurations may be considered as a
special types of tapered wigglers [21], [22] or multicomponent
wigglers [23], [24], usually conceived to achieve a substantial
improvement in FEL device performance.

III. SMALL -SIGNAL ANALYSIS

Beam-wave interaction in waveguide FEL’s is, in general,
three dimensional, and usually the space charge effects are
important. For compact FEL’s driven by low current electron
beams, however, the space charge effects are not important,
and the interaction mechanism is dominated by waveguide
dispersion with a negligible field variation in the transverse
dimensions of the waveguide [1], [2], [4]–[6]. Hence, compact
waveguide FEL’s may be analyzed in the single-particle
regime with both the wiggler field and the radiation field
approximated by their on-axis values.

Consider a two-sectioned wiggler magnet with both sections
of the same length We assume that a rectangular waveguide
is used to form the interaction region and the electron beam
only interacts with its TE mode. The electric field of TE
mode has one transverse field component on axis given by [2]

(1)

where is the electron entrance phase with respect to the
electromagnetic wave. The wiggler field may be expressed by
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its on-axis expression

(2)

(3)

for the first and second wiggler sections, respectively. To the
first order of the radiation field, a direct integration of the
energy conservation law gives the energy change of a reference
electron at the exit of the first wiggler section as

(4)

where and are the
dimensionless field strength of the first wiggler section and the
electromagnetic wave, respectively; is the average axial
component of the normalized electron velocity; and

is the FEL detuning parameter of the
first wiggler section.

Now we consider the energy change of the reference elec-
tron in the second wiggler section. To this end, we need
to know the electron’s phase at the entrance of the second
wiggler section. Note that since the electron travels slower
than the electromagnetic wave, its phase lags behind the latter
in the first wiggler section. Under the synchronism condition

the electron slips a distance of behind
the wave at the exit of the first wiggler section with
and being the radiation wavelength and the number of
wiggler periods in the first section, respectively. This suggests
that the electron phase at the entrance of the second wiggler
section is, in general, with respect to the
electromagnetic wave. Thus to the first order of the radiation
field, the electron energy change in the second wiggler section
may be expressed as

(5)

where is the average axial component of the normal-
ized electron velocity in the second wiggler section,

is its dimensionless field strength, and
is its FEL detuning parameter.

The total energy change of the reference electron over the
entire wiggler magnet is the sum of its energy change in each
section. Therefore, from (4) and (5), we have

(6)

where and for compact expression of
derivation , and are introduced.
From (6), it is clear that to the first order of the radiation
field, the net energy change of the electron beam is zero.
Therefore, the electron energy change needs to be formulated

to the second order of the radiation field, and one method
is to use the classical FEL treatment of the second-order
perturbation analysis [25]. However, it has been shown that
the simple relationship between the first and the second order
perturbations of the electron energy suggested by Madey’s
theorem [26] is applicable to waveguide optical klystrons
[27]. Since waveguide FEL’s with a two-section wiggler
may be considered as a special version of waveguide optical
klystrons, Madey’s theorem should apply to the former as well.
Therefore, with

(7)

formulated from (6) and Madey’s theorem [26]

(8)

we have

(9)

with the gain function given by

(10)

The power gain for waveguide FEL’s is given by

(11)

where is the current of the electron beam and is the
propagating power of the radiation field. For TEmode,

, with being an effective cross-
sectional area of the radiation field. Consequently, the small
signal gain is formulated as

(12)

If the above equation is specified for the case of a straight
wiggler under the conditions of and

the gain function becomes

(13)

Consequently, the small signal gain is reduced to

(14)
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Fig. 3. Dispersion diagram in a waveguide FEL with a two-sectioned wiggler
magnet.

Note that is the total wiggler length in this case. The
above gain expression is therefore the same as that derived
for conventional waveguide FEL’s in [1] and [2].

IV. NUMERICAL EXAMPLES

Based on the gain formulation developed in the preceding
section, a waveguide free electron laser is used to investigate
numerically the suggested mode-selective amplification in a
two-sectioned wiggler magnet. To this end, we consider first
a waveguide FEL with a straight wiggler magnet. Suppose we
employ an electron beam of 300 kV and 50 mA, anband
rectangular waveguide with internal waveguide dimensions of

cm and cm, and a wiggler magnet of
cm and Fig. 2 shows its small signal gain

as a function of frequency calculated from (14) for a wiggler
length of 96 cm. The high-frequency mode has a peak gain of
29% at 15.3 GHz, less than 32% for the low-frequency mode
at 7.1 GHz. To obtain a mode-selective amplification for the
high-frequency mode, the straight wiggler magnet is replaced
by a two-sectioned wiggler of the same total length with each
wiggler section 48 cm long. The first wiggler section has a
period of cm and a field strength of
whereas the second wiggler section is essentially half of the
straight wiggler with cm and For the
parameters of this two-sectioned wiggler, the small signal gain
is calculated for the first section, the second section, and the
entire wiggler magnet using (10) and (12) and plotted as a
function of frequency in Fig. 4. The dispersion diagram of
this waveguide FEL is that shown in Fig. 3.

It is clear from Fig. 4 that the low-frequency mode obtains
a peak gain of 1.13% at 7.72 GHz in the first wiggler
section, whereas in the second its peak gain is about 3.84%
at 7.13 GHz. The frequency band for positive gain (signal
amplification) is very different for the low-frequency mode in
the two wiggler sections. In the first section, this amplification
frequency band is from 7.4 to 8.7 GHz, whereas in the second
section the interaction gain is positive from 7.0 to 7.6 GHz.
Therefore, the low-frequency mode is amplified over very
different frequency regions in the two wiggler sections and, as
such, its two individual amplification frequency bands overlap
for only 0.2 GHz from 7.4 to 7.6 GHz. This narrow frequency
range is similar to the overall amplification frequency band

Fig. 4. FEL gain in (a) the first section; (b) the second section; and (c) the
whole of a two-sectioned wiggler magnet.

of about 0.3 GHz from 7.1 to 7.4 GHz for the total gain of
the low-frequency mode. It is of interest to note that over
the whole wiggler magnet, the low-frequency mode reaches
its maximum gain of 8.41% at 7.23 GHz, where the low-
frequency mode obtains a negative gain in the first wiggler
section. This may be understood from the fact that the low-
frequency mode interacts strongly with the electron beam over
rather different frequency regions in the two wiggler sections
and, as such, the cross term (the third term) in the gain function
of (10) can be a large positive number at frequencies outside
the amplification frequency band of one wiggler section. Hence
it is possible for the total interaction gain to peak at a frequency
where the low-frequency mode has a negative gain in the first
wiggler section.

In contrast, the high-frequency mode has a very similar
frequency dependence of gain in the two wiggler sections.
Its peak gain is about 0.6% at 14.5 GHz in the first wiggler
section, and 3.5% at 14.8 GHz in the second. The amplification
frequency band is from 12.1 to 15.8 GHz for the first section
and from 13.2 to 15.8 GHz for the second. Thus these two
amplification frequency bands overlap almost perfectly from
13.2 to 15.8 GHz. It is therefore conceivable that the two
radiation fields generated in the two wiggler sections have very
similar characteristics, and their interference with each other
leads to a positive superimposition of the two radiation fields.
As a result, it is possible to achieve a total interaction gain that
is greater than a simple summation of the two individual gains
achieved separately in the two wiggler sections. Indeed, Fig. 4
indicates that over the whole wiggler, the high-frequency mode
is amplified from 14.4 to 15.8 GHz with a peak gain of 13.8%
at 15.2 GHz, almost four times as large as the higher value
of the peak gains achievable in one wiggler section. This is
also much higher than the peak gain of 8.41% for the low-
frequency mode. It is therefore evident that with an appropriate
differentiation of the two wiggler sections, the high-frequency
mode may be amplified preferentially.

The high-frequency mode achieves a greater gain than its
low-frequency counterpart because it experiences a significant
beam-wave interaction in both wiggler sections. Thus for
the high-frequency mode, the two-sectioned wiggler may be
considered as a straight wiggler twice as long as one wiggler
section. Based on such a consideration and the fact that the
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small signal gain is proportional to the cube of the wiggler
length, the total gain for the high-frequency mode over the
whole wiggler magnet was estimated to be eight times as large
as that achieved in one wiggler section [19]. This hypothesis
can be shown analytically if and
are assumed in (10). However, its prediction does not agree
with the numerical results shown in Fig. 4, where the high-
frequency mode has a total peak gain about four times as large
as that achievable within one wiggler section. Note that the
concerned numerical example does not satisfy the condition of

and and thus mathematically
its interaction gain should be different from the prediction of
the hypothesis. It should be noted, however, that the condition
of and implies two identical
wiggler sections in which the electron beam would radiate
equally and the radiation fields generated from the two wiggler
sections would interfere with each other most effectively to
give a maximum interaction gain. In other words, and

represent the condition for the maximum
achievable gain over a given wiggler length. However, such
a condition does not support any mode-selective amplification
since both the low-frequency mode and the high-frequency
mode achieve their maximum possible gain simultaneously.
Therefore, the mode selective amplification in a two-sectioned
wiggler is realized at the expense of maximum possible gain
with a greater gain reduction for the low-frequency mode.

V. WIGGLER FIELD ERRORS AND ENERGY SPREAD

In the preceding section, mode-selective amplification is
discussed for a monochromatic electron beam and a perfect
wiggler magnet with no field errors. However, any realistic
wiggler magnet has a finite field error, and any realistic
electron beam has a finite energy spread. These variations
in system parameters can reduce the FEL gain significantly.
Therefore, it is important to understand whether or not the
two-sectioned wiggler arrangement is more sensitive to these
variations than the usual straight wiggler configuration. To this
end, the small signal gain of the waveguide FEL of Fig. 4 is
calculated for different wiggler field strengths and plotted as
a function of frequency in Fig. 5. When the wiggler field of
the second wiggler section varies2% around its nominal
value of the high-frequency mode experiences
a visible change in both the peak gain and the peak gain
frequency, whereas there is very little change for the low-
frequency mode. At % the peak gain of the
high-frequency mode decreases to 13.5% from its nominal
value of 13.8% with the peak gain frequency shifted to 15.35
GHz from the nominal value of 15.21 GHz. When the wiggler
field increases to % the peak gain becomes
14.02% at 15.08 GHz. Thus as the wiggler field changes2%
around the nominal value of the peak gain changes
approximately the same amount of2% around the nominal
peak gain of 13.8%, whereas the peak gain frequency moves
within 0.14 GHz. Similar field variation in the first wiggler
section is found to result in a much smaller change in both
the peak gain and the peak gain frequency. To compare with
the case of a straight wiggler, the waveguide FEL of Fig. 2

Fig. 5. FEL gain in a two-sectioned wiggler with (a)aw2 = 98%� 0:4,
(b) aw2 = 0:4, and (c)aw2 = 102%� 0:4:

Fig. 6. FEL gain in a straight wiggler with (a)aw2 = 98% � 0:4, (b)
aw2 = 0:4, and (c)aw2 = 102%� 0:4:

is studied for the same amount of field variation, and its
effect on the small signal gain is illustrated in Fig. 6. For
the wiggler field variation of 2%, the peak gain is found to
change approximately 5% around the nominal value of 29%
and the peak gain frequency approximately0.2 GHz around
the nominal value of 15.3 GHz. These calculated changes in
the peak gain and peak gain frequency suggest that the effect
of variations in both the peak gain and peak gain frequency
should be less severe in a two-sectioned wiggler than in a
straight wiggler.

Similarly the electron energy spread effect may be studied.
Figs. 7 and 8 show the small signal gains calculated at the
nominal electron energy of 300 keV, 1% less than 300 keV
and 1% greater than 300 keV for the two-sectioned wiggler
and its corresponding straight wiggler, respectively. For a
1% variation in electron energy in the two-sectioned wiggler,
the peak gain of the high-frequency mode changes about 2%
around its nominal value of 13.8% and the peak gain frequency
varies about 0.26 GHz around the nominal value of 15.2 GHz.
With the usual straight wiggler configuration, on the other
hand, 1% variation in electron energy leads to a 2.1% change
in the peak gain (around its nominal value of 29%) and a 0.23
GHz change in the peak gain frequency (around the nominal
value of 15.3 GHz). Therefore, the requirement for electron
energy spread and wiggler field error in a two-sectioned
wiggler is comparable to that in a corresponding straight
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Fig. 7. FEL gain in a two-sectioned wiggler with (a)Eb = 99%�300 keV,
(b) Eb = 300 keV, and (c)Eb = 101%� 300 keV.

Fig. 8. FEL gain in a straight wiggler with (a)Eb = 99%� 300 keV, (b)
Eb = 300 keV, and (c)Eb = 101%� 300 keV.

wiggler. This implies that the usual design consideration for
the latter in terms of its dependence on electron energy spread
and wiggler field error may be adapted directly for the former.

It is of interest to note that the 1% electron energy change
results in very little change in the peak gain and peak gain fre-
quency for the low-frequency mode in both the two-sectioned
wiggler and the straight wiggler. This may be understood from
the fact that the slope difference between the beam line and
the dispersion curve around the high-frequency intersection
(point A in Fig. 3) is much smaller than that near the low-
frequency intersection (point B or C in Fig. 3). This implies
that a given amount of electron energy change results in a
greater frequency shift for the high-frequency intersection and,
as such, the high-frequency mode is more sensitive to the
electron energy spread. Therefore, the high-frequency mode
is likely to suffer a greater gain reduction for a given electron
energy spread. One implication is that it is even more difficult
in practice for the high-frequency mode to compete with the
low-frequency mode in a straight wiggler magnet.

VI. CONCLUSIONS

In this paper, a small signal gain formulation was developed
to analyze a waveguide FEL with a two-sectioned wiggler
magnet. It was demonstrated that with an appropriate differ-
entiation between the two wiggler sections, the high-frequency
mode can be amplified preferentially so as to provide an effec-

tive means to suppress the unwanted low-frequency mode. In
addition, it was shown that the mode-selective amplification
was achieved by introducing different gain reductions to the
two modes. In some cases, this can reduce the gain of
the high-frequency mode considerably. Such an undesired
gain reduction may be overcome with gain enhancement by
introducing a drift section between the two wiggler sections
to form a waveguide optical klystron configuration [27], [28].
As an alternative to cavity-based mode control techniques, this
magnet-based technique is capable of suppressing the low-
frequency mode in the small-signal regime, and its practical
implementation is straightforward.

Numerical examples were used to demonstrate that the two-
sectioned wiggler arrangement has a similar requirement for
electron energy spread and wiggler field error to the usual
straight wiggler configuration in waveguide FEL’s. Therefore,
the usual design consideration for the latter in terms of its
dependence on electron energy spread and wiggler field error
may be adapted directly for the former. It was also found that
for a given electron energy spread and a given wiggler field
error, the high-frequency mode would suffer a much greater
gain degradation than the low-frequency mode and, as such,
the actual mode competition would be much less favorable
to the high-frequency mode than predicted in Fig. 2. This
further emphasizes the need to control linear gains of the
low-frequency mode and the high-frequency mode. It is worth
mentioning that with a similar gain control for a preferred
waveguide mode and any unwanted ones, the application of
this two-sectioned wiggler technique may be extended to mode
competition among different waveguide modes.
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