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Abstract—A steady-state performance analysis of the fractional
tap-length (FT) variable tap-length least mean square (LMS) algorithm is
presented in this correspondence. Based on the analysis, a mathematical
formulation for the steady-state tap length is obtained. Some general
criteria for parameter selection are also given. The analysis and the asso-
ciated discussions give insight into the performance of the FT algorithm,
which may potentially extend its practical applicability. Simulation results
support the theoretical analysis and discussions.

Index Terms—Adaptive filters, steady-state performance analysis, vari-
able tap-length LMS algorithm.

I. INTRODUCTION

The least mean square (LMS) adaptive algorithm has been exten-
sively used as a consequence of its simplicity and robustness [1], [2].
In many applications of the LMS algorithm, the tap length of the adap-
tive filter is kept fixed. However, in certain situations, the tap length
of the optimal filter is unknown or variable. According to the analysis
in [3] and [4], the mean square error (MSE) of the adaptive filter is
likely to increase if the tap length is undermodeled. To avoid such a
situation, a sufficiently large filter tap length is needed. However, the
computational cost and the excess mean square error (EMSE) of the
LMS algorithm will increase if the tap length is too large; thus, a vari-
able tap-length LMS algorithm is needed to find a proper choice of the
tap length.

Several variable tap-length LMS algorithms have been proposed
in recent years. Among existing variable tap-length LMS algorithms,
some are designed to not only establish a suitable steady-state tap
length, but also to speed up the convergence rate [3], [5]. These
methods are based on the assumption that the unknown optimal filter
has an impulse response sequence with an exponentially decaying en-
velope, which limits their utility. Other methods are more general and
are designed to search for the optimal filter tap length at steady-state
[6]–[9]; a summary of these works is given in [10]. As analyzed in
[10], the fractional tap-length (FT) algorithm is more robust and has
lower computational complexity when compared with other methods.
A convex combination structure of the FT algorithm has been proposed
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in [11] to establish the optimal tap length in high-noise conditions, in
which two filters are updated simultaneously with different parame-
ters, so that the overall filter can obtain both a rapid convergence rate
from the fast filter and a smooth curve for the steady-state tap length
from the slow filter.

Although the FT method has many advantages in comparison to
other methods, and can be potentially used in many applications, no
steady-state performance analysis has been given in the literature, due
to the nonlinearity between the output error and the tap length. Thus, the
choice of the algorithm parameters is difficult. In this correspondence,
we provide a steady-state performance analysis of the FT algorithm. At
first, the fractional tap-length update equation is rewritten, which gives
insight into the fractional tap-length evolution process. Based on this
equation, a mathematical formulation of the steady-state tap length is
then obtained. Some general guidelines for the parameter choice are
also given, which highlight the practical applicability of the FT algo-
rithm. As will be confirmed in the simulations, the guidelines for the
parameter choice are reasonable and useful.

The remainder of the correspondence is organized as follows. In
Section II, we formulate the FT variable tap-length LMS algorithm.
The steady-state performance analysis of the FT algorithm and some
guidelines for parameter selection are given in Section III. Simulations
are performed in Section IV to illustrate the analysis and discussions.
Section V concludes the correspondence.

II. FT VARIABLE TAP-LENGTH LMS ALGORITHM

The FT variable tap-length LMS algorithm is designed to find the
optimal filter tap length. In agreement with most approaches used to
derive algorithms for adaptive filtering, the design problem is related
to the optimization of a certain criterion that is dependent on the tap
length. For convenience, we shall formulate the LMS algorithm within
a system identification framework, in which the unknown filter cL
has an unknown tap lengthLopt, which is to be identified. In this model,
the desired signal d(n) is represented as

d(n) = x
T
L (n)cL + v(n) (1)

where xL (n) is the input vector with a tap length of Lopt; v(n) is
a zero-mean additive noise term uncorrelated with the input, n denotes
the discrete time index, and ( � )T denotes the transpose operation. In
this correspondence, all quantities are assumed to be real valued.

For convenience of description, we assume that at steady state the tap
length of the adaptive filter is a fixed value and denoted by L;wL and
xL(n) are, respectively, the corresponding steady-state adaptive filter
vector and input vector. Also, we define the segmented steady-state
error as [10]

e
(L)
M (n) = d(n)�w

T
L;1:MxL;1:M (n); as n!1 (2)

where 1 �M � L; wL;1:M and xL;1:M (n) are, respectively, vectors
consisting of the first M coefficients of the steady-state filter vector
wL and the input vector xL(n). The mean square of this segmented
steady-state error is defined as �(L)M = Ef(e

(L)
M (n))2g. The underlying

basis of the FT method is to find the minimum value of L satisfying
[10]:

�
(L)
L�� � �

(L)
L � " (3)

where � is a positive integer less than L and " is a small positive value
determined by the system requirements. The minimum L that satisfies
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(3) is then chosen as the optimal tap length. A detailed description of
this criterion and another similar criterion can be found in [10].

Gradient-based methods can be used to estimate L on the basis of
(3). However, the tap length that should be used in the adaptive filter
structure must be an integer, and this constrains the adaptation of the tap
length. Different approaches have been applied to solve this problem
[6]–[10]. In [10], the concept of “pseudo fractional tap length,” denoted
by lf(n), is utilized to make instantaneous tap-length adaptation pos-
sible. The update of the fractional tap-length is as follows:

lf(n+ 1) = (lf(n)� �)�  (e
(L(n))
L(n) )2 � (e

(L(n))
L(n)��)

2 (4)

where  is the step size for the tap-length adaptation, and � is a pos-
itive leakage parameter [10]. As explained in [10], lf(n) is no longer
constrained to be an integer, and the tap length L(n + 1), which will
be used in the adaptation of the filter weights in the next iteration, is
obtained from the fractional tap length lf(n) as follows:

L(n+ 1) =
blf (n)c; if jL(n)� lf(n)j > �

L(n); otherwise
(5)

where b:c is the floor operator, which rounds down the embraced value
to the nearest integer and � is a small integer.

Next, we will give a steady-state performance analysis based on the
above formulation, which is the novel contribution in this correspon-
dence. Some general guidelines for the parameter choice will also be
provided.

III. STEADY-STATE PERFORMANCE

In the FT algorithm, the filter coefficients are updated as

wL(n)(n+ 1) = wL(n)(n) + �e
(L(n))
L(n) (n)xL(n)(n) (6)

where wL(n) and xL(n) are, respectively, the L(n)-tap adaptive filter
vector and the input vector, and � is the positive step size for the update
of the coefficients.

For convenience of analysis, we use a vector cN to denote the un-
known filter, where N is an integer larger than both the optimal tap
lengthLopt and the maximum value of the variable tap-length sequence
L(n), and cN is obtained by padding cL with zeros. This unknown
filter vector cN can be split into three parts:

c
0

c
00

c
000

where c
0 is the part modeled by w

0(n);w0(n) =

wL(n);1:L(n)��(n); c
00 is the part modeled by w

00(n);w00(n) =

wL(n);L(n)��+1:L(n)(n) and c
00 is the undermodeled part. We let

gN(n) denote the total coefficient error vector

gN(n) = cN �wN(n) (7)

wherewN(n) is obtained by paddingwL(n)(n) with zeros. Therefore,
gN(n) can be similarly split as

g
0(n)

g
00(n)

g
000(n)

:

The mean square deviation (MSD) between the optimal filter vector
and the adaptive filter vector is given by EfkgN(n)k22g, where k � k22
denotes the squared Euclidean distance.

For convenience of description, the input vector xN (n) is split sim-
ilarly to that of cN (n) and gN(n). With the above notation and sub-
stituting (1) and (7) into (2), and padding all the vectors in (1) and (2)
with zeros to make their lengths equal to N , we have

e
(L(n))
L(n) (n) =

x
0(n)

x
00(n)

x
000(n)

T
g
0(n)

g
00(n)

c
000

+ v(n) (8)

and

e
(L(n))
L(n)��(n) =

x
0(n)

x
00(n)

x
000(n)

T
g
0(n)

c
00

c
000

+ v(n): (9)

The term (e
(L(n))
L(n) )2 � (e

(L(n))
L(n)��)

2, which is the key term in the frac-
tional tap-length update (4), can then be written as

e
(L(n))
L(n)

2

� e
(L(n))
L(n)��

2

= [2v(n) + 2x0T (n)g0(n)

+ x
00T (n)g00(n) + x

00T (n)c00 + 2x000T (n)c000]

� [x00T (n)g00(n)� x
00T (n)c00]: (10)

This term can be expanded as

e
(L(n))
L(n)

2

� e
(L(n))
L(n)��

2

= 2v(n)x00T (n)g00(n)

A

� 2v(n)x00T (n)c00

B

+ 2x0T (n)g0(n)x00T (n)g00(n)

C

� 2x0T (n)g0(n)x00T (n)c00

D

+ [x00T (n)g00(n)]2

E

� [x00T (n)c00]2

F

+ 2x000T (n)c000x00T (n)g00(n)

G

� 2x000T (n)c000x00T (n)c00

H

: (11)

Substituting (11) into (4), the steady-state fractional tap-length update
equation can be rewritten as

lf(n+ 1)

= lf(n)� (�+ (A�B + C �D + E � F +G�H)) (12)

where terms A;B;C;D;E; F; G; and H are denoted in (11).
Next, a steady-state performance analysis will be given based on this

update equation.

A. Steady-State Performance Analysis

Before we perform the steady-state analysis, we shall assume that
the system has arrived at steady-state if the quantities Ef(e(L(n))

L(n) )2g

and Eflf(n)g tend to constants as n ! 1. To simplify the analysis,
we make several further assumptions.

A.1. At steady-state, the tap length will converge, or can be approx-
imately deemed to have converged to a fixed value L(1). As will be
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shown by the simulations, if all the parameters are set properly, the tap
length will slightly fluctuate around a fixed value. Also we assume that
at steady state, L(1) > Lopt. We justify that in most simulations,
if the parameter  is not chosen too small, the steady-state tap length
L(1)will be always larger than Lopt. This overestimate phenomenon
is also justified and discussed in [10] and can be seen in the simulations
in the next section.

A.2. Both the input signal x(n) and the noise signal v(n) are statis-
tically independent identically distributed (i.i.d.) zero-mean Gaussian
white signals with variances �2x and �2v , respectively.

A.3. The tail elements of the unknown optimal filter vector cL can
be deemed to be drawn from a random white sequence with zero mean
and variance �2c . This assumption is used to simplify the analysis. We
note that even for a filter with a decaying impulse response structure,
the tail elements can be approximately deemed as to have the same
variance if the tap length is long enough; thus, this assumption matches
the observations in many applications.

A.4. At steady state, the vectors g0(n) and g00(n), which are due to
the adaptive noise, are independent of xN (n). The justification of this
assumption is that the updates of g0(n) and g00(n) only depend on the
past input vectors, and from assumption A.2 we know that xN (n) is
independent of xN (j) if j 6= n; thus, g0(n) and g00(n) are independent
of xN (n) [12]. Also, in order to simplify the analysis, we assume that
at steady state

Ef
g0(n)

g00(n)

g0(n)

g00(n)

T

g = �2gI (13)

where I is the identity matrix and �2g is the variance of the elements of
g

0(n) and g
00(n).

Also the tap length is constrained to be not less than a lower floor
value Lmin, where Lmin > �, during its evolution, i.e., if the tap
length fluctuates under Lmin, it will be set to Lmin. This operation is
necessary since L(n)�� is used as a tap length in the FT algorithm,
as can be seen in (4), and it should be positive.

Taking expectation of both sides of (12), we have

Ef(A�B + C �D + E � F +G�H)g = �
�


: (14)

Using assumptions A.1 and A.3, we have (15) and (16), shown at the
bottom of the page. With (15), it is straightforward to see that the terms
G and H in (14) will disappear at steady state. Using assumptions A.1,
A.2, A.3, and A.4, we know that the expectations of termsA;B;C; and
D will be zero at steady state, and (14) can be written as

Ef(A�B + C �D +E � F )g = �2x(Efkg
00(n)k22g � kc00k22):

(17)

It is straightforward to see that if L(1) > Lopt +�, it will imply
that (14) and (17) contradict each other, i.e., together with (16) we know

that the right-hand side (RHS) of (17) is larger than zero if L(1) >

Lopt +�, but the RHS of (14) is a negative value. We therefore con-
clude that L(1) � Lopt + �, so that by also exploiting assumption
A.1, the condition that Lopt � L(1) � Lopt+� will always be used
in the following derivations.

In a manner similar to [3] and [5], in order to speed up the conver-
gence rate of the FT variable tap-length LMS algorithm, the step size is
made variable rather than fixed, according to the range of � described
in [3]:

�(n) = �0=((L(n) + 2)�2x) (18)

where �0 is a constant. With this variable step size, the term
Efkg00(n)k22g can be derived as in (9) in Appendix I. Substituting
(16) and (9) into (17) yields

EfA�B + C �D + E � Fg

� �2x
��0�2v

(2� �0)Lopt�2x
� (Lopt +�� L(1))�2c : (19)

Utilizing (14) in (19), we have

�
�

�2x
�

��0�2v
(2� �0)Lopt�2x

� (Lopt +�� L(1))�2c : (20)

From (20), we obtain

L(1) � Lopt +��
�

�2x�2c
�

��0�2v
(2� �0)Lopt�2x�2c

: (21)

This equation gives a mathematical formulation of the steady-state
tap length. Since the steady-state tap-length value given in (21) will
seldom be an integer, in practice the steady-state tap length will fluc-
tuate around this value. This can be clearly seen in later simulations.
The steady-state MSE can then be easily obtained with the steady-state
tap length given in (21) by using the analysis results provided in [3].
In practice, the last two terms of the RHS of (21) will be small, and
the steady-state tap length will be close to the value Lopt +�, as will
be shown in the simulations in next section.

To avoid the undermodeling situation, the parameters should be
chosen to make L(1) > Lopt and obtain a small fluctuation of the
steady-state tap length. Next, we will give some guidelines for the
parameters choice.

B. Guidelines for the Parameter Choice

In this section, we give some general guidelines for parameter
choice. To choose the parameters properly, we need estimations of
the optimal tap length, the input variance, the noise variance, and the
desired system MSE. The availability of these estimations will be
application dependent and therefore outside of the scope of this study.

c
000 = 0 (15)

and

jc00k22 �
(Lopt +�� L(1))�2c ; if Lopt < L(1) � Lopt +�

0; if L(1) > Lopt +�
(16)
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With these estimated values, the parameters used in the FT algorithm
can be determined as follows.

1. The parameter � in (5) is not a crucial parameter, since it is just
used to obtain an integer value of the tap length for the coefficients
adaptation and can be easily set to a small integer.

2. The choice of the parameter �0 can be determined according to the
system MSE requirement. Similar to the step-size choice of the
LMS algorithm, �0 can be a large value in low-noise conditions
to obtain faster convergence of the MSE and should be small in
high-noise conditions to avoid a large MSE.

3. The parameter � should be as large as possible to obtain a fast
convergence rate of the tap length, but also much smaller than the
estimate of Lopt, so that the steady-state tap length formulated
in (21) will not be significantly biased from Lopt. For example,
� � 0:1Lopt will be a good choice for a wide range of optimal
tap lengths.

4. The leakage parameter � should not be too large, so that it will not
influence the initial tap-length convergence rate too much. The pa-
rameter� should not be too small either, so that once the tap length
is overestimated, � can make the tap length converge close to the
steady-state value as soon as possible. For example, � = 0:0001

is not a good choice, since it means that after 10 000 iterations, the
leakage parameter � will reduce the tap length by one tap, which
is usually too slow. Generally, values between 0.001 and 0.01 are
good choices for �.

5. The parameter  is the step-size parameter that controls the adap-
tation process of the variable tap length. Similar to the step size in
the LMS algorithm, a large parameter  will speed up the conver-
gence rate of the tap length, but will result in a large fluctuation of
the steady-state tap length. On the other hand, a small parameter
 can obtain a small fluctuation of the steady-state tap length but
lead to a slow convergence rate. Thus,  provides a tradeoff be-
tween the convergence rate of the tap length and the steady-state
tap-length variance. The choice of this parameter is important in
the FT algorithm. A detailed discussion for the choice of this pa-
rameter is as follows.

At first, to avoid undermodeling the optimal tap length, the steady-
state tap length of the FT method L(1) should not be less than Lopt.
Considering the fluctuation of the steady-state tap length, the parameter
 should be set properly so thatL(1) > Lopt+��, where � is a small
positive integer and can be chosen according to the system requirement
of the fluctuation of the steady-state tap length. For example, � = 2

is a reasonable choice. Substituting (21) into the inequality L(1) >

Lopt + ��, we can obtain the lower bound value l:

l =
�

(�� ��)�2x�2c �
�� �

(2�� )L

: (22)

Second, the parameter  should not be too large to avoid a large fluctu-
ation of the steady-state tap length. The update process for the steady-
state fractional tap length is formulated in (12). The fluctuation of the
steady-state fractional tap length is brought about by the fluctuation of
the term � + (A � B + C �D + E � F +G�H). It is straight-
forward to see in (12) that large variance of the term � + (A� B +

C � D + E � F + G � H), which is denoted as �2f , will result
in large fluctuations of the steady-state fractional tap length. To avoid
such a situation, a simple and intuitive approach is to make the stan-
dard deviation �f much smaller than the parameter � in (5), so that the
probability of the steady-state fractional tap length fluctuating outside

the range (L(1)��; L(1)+�) can be very small. A simple criterion
to satisfy such a requirement is

�f < �� (23)

where � is a small positive value and can be decided according to the
system requirement of the fluctuation of the steady-state tap length. The
derivation of the variance �2f is given in (51) in Appendix II. Using (51)
in (23) and after rearrangement, we obtain the upper bound value u:

u =

�
K �

K
�

K �

K
+ 4(� � +� )

K

2
(24)

where K2 and K3 are, respectively, formulated in (54) and (55).
The parameter � should be chosen so that the possibility of the tap-

length fluctuating under Lopt is nearly zero. In general, for high noise
condition, this parameter should be chosen small, and for low noise
condition it can be chosen larger. Examples for the choice of � can
be seen in the simulations in the next section. With the lower bound
value given in (22) and the upper bound value given in (24), the param-
eter  can then be easily chosen. According to the motivation of the
upper bound value u we know that values close to this value will be
good choices to avoid a large fluctuation of the steady-state tap length
while retaining as quick as possible convergence rate; thus, in practice
 should be chosen close to u and larger than l.

Since in practice, all the parameters �2x; �
2
v ; �

2
c , especially the pa-

rameter Lopt are unknown, approximate estimations of these param-
eters can be used in the calculations. Next, we will perform several
simulations to confirm the above analysis and discussions.

IV. SIMULATION RESULTS

In this section, we will perform two simulations to support the anal-
ysis and discussions in the previous section. In the first simulation, a
low-noise condition is used while a high-noise environment is utilized
in the second simulation.

A. Low-Noise Case: SNR = 20 dB

The setup of this simulation is as follows. The impulse response se-
quence of the unknown filter is a white Gaussian sequence with zero
mean and variance 0.01. The tap length Lopt is set to 200. The input
signal is another white Gaussian sequence with zero mean and unit vari-
ance. The noise signal is a zero mean uncorrelated random Gaussian
sequence and scaled to make the SNR 20 dB. According to the param-
eter choice guidelines in Section III-B, the parameter � is set to 2. The
step size �0 is set to 0.5. The leakage parameter � is set to 0.005, and
� is set to 20. To obtain the lower bound value of , we set the param-
eter � = 2, and using the above parameter settings in (22), we have
l = 0:0314. Similarly, we have u = 17:954 by using � = 0:5 in
(24). To compare the performance with different values of , we use
 = 0:1u;  = u and  = 10u in the simulation, respectively.
Note that all these sets of  are larger than the lower bound value l.
The evolution curves of the tap length with different parameter  values
are shown in Fig. 1. The evolution curves of the EMSE with different
parameter  values are shown in Fig. 2.

It is clear to see from Fig. 1 that  = u provides a good tradeoff
between the convergence rate of the tap length and the steady-state
tap-length variance. The algorithm with a parameter  = 0:1u gives
a very smooth curve of the steady-state tap length, but the convergence
rate of both the tap length and the EMSE is very slow. The algorithm
with a parameter  = 10u provides a quick convergence rate, but the
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Fig. 1. Evolution curves of the tap length with different step sizes under a low-
noise condition, SNR = 20 dB.

Fig. 2. Evolution curves of the EMSE with different step sizes under a low-
noise condition, SNR = 20 dB.

tap length fluctuates greatly. When the tap length is undermodeled, i.e.,
L(n) < Lopt, the EMSE will increase, as can be seen in Fig. 2.

Substituting all the parameter sets into (21) we obtain the theoretical
values of the steady-state tap length L(1j  = 0:1u) = 219:65;
L(1j  = u) = 219:90 andL(1j  = 10u) = 219:93, which are
all close to Lopt +�. It can be seen from Fig. 1 that for the parameter
sets  = u and  = 0:1u, the simulation results of the steady-state
tap length match the theoretical values very well: the steady-state tap
length fluctuates around the theoretical value L(1), which confirms
(21).

B. High-Noise Case: SNR = 0 dB

In this simulation, a high-noise environment is used. The setup for
this simulation is as follows. The unknown filter is the same as that
in the previous simulation, which is a filter with an impulse response
sequence drawn from a white Gaussian sequence with zero mean and
a variance of 0.01, and a tap length of 200. The input signal is an-
other white Gaussian sequence with zero mean and unit variance. The
noise signal is a zero mean uncorrelated random Gaussian sequence,
and scaled to make the SNR 0 dB. According to the parameter choice
guidelines in Section III-B, the parameter � is set 2. The step size �0 is
set as 0.05 to obtain a small EMSE. The leakage parameter � is set to
0.005. � is set to 20.

Similar to the first simulation, in order to obtain the lower bound
value of , we set the parameter � = 2, and using the above parameter

Fig. 3. Evolution curves of the tap length with different step sizes under a high-
noise condition, SNR = 0 dB.

Fig. 4. Evolution curves of the EMSE with different step sizes under a high-
noise condition, SNR = 0 dB.

settings in (22), we have l = 0:0323. Similarly, we have u = 1:0255
by using � = 0:2 in (24). To compare the performance with different
values of , we use  = 0:1u;  = u and  = 10u in the simula-
tion, respectively. The evolution curves of the tap length with different
parameter  values are shown in Fig. 3. The evolution curves of the
EMSE with different parameter  values are shown in Fig. 4.

Again from Fig. 3 we can see that  = u provides a good tradeoff
between the convergence rate of the tap length and the steady-state
tap-length variance. The convergence rate of both the tap length and
EMSE with parameter  = 0:1u is too slow for the algorithm. The
algorithm with parameter  = 10u provides a quick convergence rate
of the tap length, but the fluctuation of the steady-state tap length is very
large. Once the tap length fluctuates under Lopt, EMSE will increase,
as can be seen in Fig. 4.

Substituting all the parameter sets into (21), we obtain the the-
oretical values of the steady-state tap length L(1j = 0:1u) =
214:6; L(1j  = u) = 219:0 and L(1j = 10u) = 219:4,
which are all close to Lopt + �. For  = u, the simulation results
of the steady-state tap length match the theoretical values very well,
which confirms (21).

To obtain both a fast convergence rate and a small steady-state EMSE
for high noise condition, the convex combination approach can be con-
sidered, in which two filters are updated simultaneously with different
parameters  = 10u and  = u, so that the overall filter can obtain

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on November 24, 2009 at 10:31 from IEEE Xplore.  Restrictions apply. 



844 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 2, FEBRUARY 2008

both a rapid convergence rate from the fast filter and a smooth curve
for the steady-state tap length from the slow filter [11].

V. CONCLUSION

A steady-state performance analysis for the FT variable tap-length
LMS algorithm is given in this correspondence. In this analysis, a math-
ematical formulation of the steady-state tap-length value is obtained,
and some general guidelines for the parameter choice are also given,
which aid the practical applicability of the algorithm. Simulation re-
sults show that the analysis is correct and the parameter choice guide-
lines are very useful. The analysis and discussion results can be widely
used in the applications of the FT algorithm.

APPENDIX I

According to the analysis in [3], we know that with a fixed tap length,
the steady-state value of EfkgN(n)k

2

2
g can be expressed as

EfkgN(n)k
2
2g =

(s� r)kc000k22 + t

1� r
(25)

where

r = 1� 2��2x + (L(1) + 2)�2�4x (26)

s = 1 + L(1)�2�4x (27)

and

t = L(1)�2�2x�
2
v : (28)

Moreover, the MSD can be divided into three parts [3]:

EfkgN(n)k
2
2g = Efkg0(n)k22g+Efkg00(n)k22g+ kc

000k22: (29)

Substituting (25) into (29), we have

Efkg0(n)k22g+ Efkg00(n)k22g =
(s� 1)kc000k22 + t

1� r
: (30)

Substituting (15), (26), (27), and (28) into (30), and with the approxi-
mation L(1) � L(1) + 2, we have

Efkg0(n)k22g+ Efkg00(n)k22g �
�0�2v

(2� �0)�2x
: (31)

With assumption A.4, we have Efkg0(n)k22g = (L(1)��)�2g and
Efkg00(n)k22g = ��2g , together with (31), we have

Efkg00(n)k22g �
��0�2v

(2� �0)L(1)�2x
: (32)

From the previous discussion, we know L(1) � Lopt + �, and in
practice � � Lopt; thus, if L(1) > Lopt; L(1) will be very close
to Lopt. Equation (32) can then be approximately written as

Efkg00(n)k22g �
��0�2v

(2� �0)Lopt�2x
: (33)

APPENDIX II

Note that all the following derivation is based on the con-
dition Lopt � L(1) � Lopt + �, and the terms G and
H are equal to 0 at steady state. The variance of the term
� + (A � B + C �D + E � F + G �H) is

�
2
f = Ef(�+ (A�B + C �D + E � F ))

�Ef�+ (A�B + C �D + E � F )gg2: (34)

From (14), we have

Ef�+ (A�B + C �D + E � F )g = 0: (35)

Substituting (14) and (35) into (34), and using assumptions A.2, A.3,
A.4, and the mathematical formulation of terms A;B;C;D;E and F ,
it is straightforward to obtain that

�
2
f = 

2(�2A+�
2
B +�

2
C +�

2
D+�

2
E +�

2
F � 2EfEFg)��2: (36)

With assumptions A.2 and A.4 and using (33) in the mathematical for-
mulation of term A, we can obtain the variance of term A as

�
2
A =

4��0�4v

(2� �0)Lopt

: (37)

Similarly, with assumptions A.2 and A.3, and using (16) in the mathe-
matical formulation of term B, we obtain the variance of term B as

�
2
B � 4�2v(Lopt +�� L(1))�2c�

2
x: (38)

Substituting (21) into (38), we have

�
2
B � 4

��2v


+

��0�4v

(2� �0)Lopt

: (39)

Using assumptions A.2 and A.4 in the mathematical formulation of
term C , we can obtain the variance of term C as

�
2
C � 4�(L(1)��)�4g�

4
x: (40)

With A.4 and using (33), we have

�
2
g �

�0�2v

(2� �0)Lopt�2x
: (41)
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Substituting (41) into (40), and with the approximation Lopt �
L(1) � �, we have

�
2
C �

4��02�4v

(2� �0)2Lopt

: (42)

Similarly, with assumptions A.2, A.3, and A.4, and using (16), (21),
and (41) in the mathematical formulation of term D, and with the ap-
proximation Lopt � L(1) � �, we can obtain the variance of term
D as

�
2
D �

4�0�2v

(2� �0)

�


+

��0�2v

(2� �0)Lopt

: (43)

Since the term x
00T (n)g00(n) can be approximately deemed as a sum

of� i.i.d. random variables, from the central limit theory we know that
the probability density function (pdf) of this term will be very close to
a Gaussian distribution with a zero mean; thu,s termE can be approxi-
mately deemed as chi-squared distributed with one degree of freedom.
With assumptions A.2 and A.4, and using (9) we have the mean value
of term E

mE �
��0�2v

(2� �0)Lopt

: (44)

Thus, the variance of term E is

�
2
E = 2mE � 2

��0�2v

(2� �0)Lopt

: (45)

Similarly, the term x
00T (n)c00 can be approximately deemed as

Gaussian distributed; thus, term F can be approximately deemed as
chi-squared distributed with one degree of freedom. With assumptions
A.3 and A.4, and using (16) and (21), we have the mean value of term
F

mF �
�


+

��0�2v

(2� �0)Lopt

: (46)

Thus, the variance for term F is

�
2
F = 2mF = 2

�


+

��0�2v

(2� �0)Lopt

: (47)

With assumptions A.3 and A.4, the term EfEFg can be expanded as

EfEFg = Ef(x00T (n)g00(n))2(x00T (n)c00)2g

= Efx00T (n)g00(n)g00T (n)x00(n)x00T (n)c00

c
00T
x(n)g

� �
2
g�

2
cEfx

00T (n)x00(n)x00T (n)x00(n)g (48)

by approximating the instantaneous term c
00
c

00T with its statistical av-
eraging value.

The input signal is an i.i.d Gaussian sequence, thus Efx4g = 3�2x.
From (48) it is straightforward to obtain

EfEFg = �
2
g�

2
c (�(�� 1)�4x + 3��2x): (49)

Substituting (41) into (49), we have

EfEFg =
��0�2v�

2
c ((�� 1)�2x + 3)

(2� �0)Lopt

: (50)

Substituting (37), (39), (42), (43), (45), (47), and (50) into (36), we
have

�
2
f = 

2
K2

�


+K3 � �

2 (51)

where

K1 =
��0�2v

(2� �0)Lopt

(52)

and

K2 = 2 + 4�2v +
4LoptK1

�
(53)

and

K3 = 2K1K2 � 2K1�
2
c (�� 1)�2x + 3 : (54)
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