

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Real-time VLSI architecture for bio-medical monitoring
V. A. Chouliaras, S. Hu, R. Summers, A. S. Echiadis, V. Azorin-Peris, I. King and J. Zheng

Abstract - This paper discusses the architecture and
implementation of SSS2, a high-performance real-time signal
processing system developed with a hybrid ESL/RTL
methodology and targeted to biomedical image processing.
Traditional methodologies, as well as new tools, such as
Cebatech’s C2R untimed-C synthesizer have been employed in
the design of the system. The SSS2 platform specifies a
parametric number of scalar processing elements, based on
multiple 32-bit Sparc-compliant engines, augmented with LE2,
an ESL-designed 2-way LIW/SIMD accelerator. LE2, which is
purely designed in C, exposes a consistent interface to its SIMD
datapath directly which is directly derived from the C-source
of open-source image processing codes. It is synthesized to
Verilog RTL with C2R. Behaviorally-synthesized SIMD
datapaths are then ‘plugged-in’ into the exposed LE2 datapath
interface. The LE2 memory interface can be either a cache-
based configurable vector load/store unit or a multi-banked,
multi-channel streaming local memory system. Results drawn
from this work strongly suggest a shift towards a hybrid
approach in designing multi-core systems for high bandwidth
streaming and for dealing with large scale medical image
transfers and non-linear bio-signal processing algorithms.

I. INTRODUCTION
n a clinically diagnostic environment, in-vitro and in-vivo
assessment could be critical for the clinicians to make key
medical decisions and perform medical interventions

safely, accurately and quickly as these will be based on hard
facts, derived in real-time from physiological data. Existing
VLSI architectures are capable of delivering a practical
solution to processing in real-time physiological data,
particularly in biomedical image processing. They are thus
invaluable in blood perfusion monitoring and oxygen
consumption mapping. This unique capability afforded by
high performance processing platforms, will drive surgical
decisions such as the precise identification of a tumor
boundary and it’s subsequent removal (with guaranteed
safety margins) thus prolonging human life and reducing
post-operative risks and complications.

VLSI platforms based on embedded processor cores with
a fixed Instruction-Set-Architecture (ISA) have been widely
used in the past. Such architectures present a good
compromise for the execution of general-purpose code, such
as the user interface, protocol processing and an embedded
operating system. However, they lacked considerably in the
area of Digital Signal Processing (DSP), as needed by
almost all of the core image processing algorithms needed

for real-time biomedical monitoring. To increase the signal
processing capability of such systems, system architects
typically utilize a number of additional embedded DSP
cores, in parallel to the main scalar processor core, to
accelerate the performance and the critical parts of the
application. This nevertheless comes at the expense of
increased silicon area and utilization of a convoluted
programming model due to the multiple address spaces,
ISAs, and ‘mailbox-type’ communications. A possible
solution to these issues is the hardwired implementation of
the core DSP functionality; however this involves the
development and validation of thousands of lines of parallel
code at the register transfer level (RTL) and results in
solutions that are of high performance yet, they are only
tuned to the task at hand and offer little or no
programmability. The latter is a serious deficiency in the
targeted biomedical market as well as in more contemporary
markets such telecoms and consumer; the latter are
characterized by short time-to-market and associated market
windows and ever-evolving standards.

The authors are with the Department of Electronic and Electrical

Engineering, Loughborough University, Loughborough, LE11 3TU, UK.
(0044 (0) 1509 227 113); e-mail: v.a.chouliaras@lboro.ac.uk).

Over the past few years, a promising processing paradigm
has been increasingly utilized in such high performance
SoCs. This paradigm has the form of configurable,
extensible processors which allow the extension of their
architecture (programmers model and ISA), and
microarchitecture (execution units, streaming engines,
custom coprocessors) by the system architect [1].
Configurable and extensible processors offer, on top of the
very high performance, the added advantage of post-
fabrication adaptability to evolving standards through the
careful choice of custom ISA and execution/storage
resources. Such diverse applications range from traditional
consumer applications, such as video coding [2] [3] and
audio processing [4], to less obvious domains, such as
RTOS acceleration [5].

A third proposition for the modeling and to a lesser
extent, implementation of high performance SoCs, comes
from a number of vendors in the form of co-design
environments and RTL synthesis systems for electronic
system-level (ESL) design languages such as SystemC [6].
This presents an interesting prospect for designing and
modeling the consumer ASIC in a parallel language and in
the process, creating an executable specification for high-
speed validation, as well as for the final implementation.
Extending the SystemC concept, the authors in [7] discuss
an object-oriented system-level design specification and
implementation flow based on the transformation of UML to
SystemC. Similarly, SystemC based at transaction-level has

I

978-1-4244-2255-5/08/$25 ©2008 IEEE

Proceedings of the 5th International Conference on Information Technology and Application in Biomedicine, in conjunction with
The 2nd International Symposium & Summer School on Biomedical and Health Engineering
Shenzhen, China, May 30-31, 2008

463

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on May 05,2010 at 15:30:11 UTC from IEEE Xplore. Restrictions apply.

been used successfully in a co-design flow to model
complex SoCs [8]. In [9], the authors propose NetC as a
means of modeling and evolving Networks-on-Chip while
producing cycle-accurate models in SystemC, whereas the
authors in [10] utilize SystemC as both a modeling language
and an implementation medium for a high-performance
Network-on-Chip architecture.

Fast Fast
CCD/CCD/
CMOSCMOS

LED LED
IlluminatorIlluminator

It is only very recently that the introduction of powerful,
system-level behavioral synthesis technology [11], has
enabled a full, untimed C-based flow to be used directly to
transform complex application sources into hardwired
silicon, without the need for a single or multi-core
programmable platform. In that respect, this work utilizes
that flow, along with a more traditional (and laborious) RTL
codebase to propose a configurable, 2-way Long Instruction
Word (LIW) architecture that can easily adapt to the data
and instruction parallelism, typically found in medical
imaging processing codes.

The novelty of our work is three-fold: Firstly, this work
fuses the configurable processor and ESL implementation
domains in a novel way through using the later as the
implementation medium of custom SIMD extensions.
Secondly, it discusses the micro-architecture of a novel, high
performance, configurable, extensible ASIC processor (a 2-
way LIW/SIMD) which is capable of exploiting a moderate
amount of instruction level parallelism (ILP) and substantial
amounts of data level parallelism (DLP), typically found in
image filtering applications. The later form of parallelism is
enabled by a new, C-based VLSI synthesis flow. Finally, a
configurable number of such LE2 augmented Sparc
processors are brought together in a cache-coherent
ecosystem which includes a multi-bank, multi-client local
memory subsystem to satisfy the demands of the LE2
accelerators. The whole microelectronics system, known as
the SSS2 platform, provides the core image processing
capability of the Oximap tomographer [12].

II. REQUIREMENTS FOR BIOMEDICAL MONITORING
The presented biomedical image processing system consists
of three core subsystems: a) The optical subsystem, b) the
electronic subsystem, and c) the micro-electronic subsystem.
More specifically, the optical subsystem comprises of a
high-speed image sensor coupled to an optical lens, and a
multi-wavelength illumination unit which consists of large
arrays of high-brightness light emitting diodes (LED).

Fig. 1: Biomedical Imaging Platform Architecture.
 The electronic subsystem provides accurate control of the
constant current source and directly drives the LED arrays
with high-current pulse trains, as well as it converts and
distributes the supply voltage to the other subsystems.

Fig 2: Analog Electronics Subsystem.

Finally, the microelectronics processing subsystem consists
of a Field Programmable Gate Array (FPGA) device in
which the processing platform resides, a 1Gb DDR2
memory and a USB2.0 module which handles the
communication with a computer. The control of the image
sensor is also handled in this subsystem, where the sensor
signals are fed into a 16-bit A/D converter.

(a)

(b)

464

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on May 05,2010 at 15:30:11 UTC from IEEE Xplore. Restrictions apply.

Fig 3: a) Camera Control FPGA b) Main microelectronics platform

The performance of the whole system is greatly
dependent upon the sensitivity of the image sensor.
Typically, image sensors are more sensitive in the visible
light spectrum (400-700nm) and their sensitivity, or
quantum efficiency (Q.E.), gradually drops in the near-
infrared region (>750nm). The selection of the image sensor
is extremely important as the system employs wavelengths
from 600nm to 1200nm, therefore the sensor must have a
high Q.E. in the near-infrared region in order to be able to
register the plurality of information contained in biological
signals. Also, depending on the application of this platform,
the sensor sensitivity can have a high or a low impact on the
quality of information. For example, measurement of blood
perfusion over a tissue area does not require extremely high
sensitivity due to the strong light absorption characteristics
of chromophores in blood. However, measurement of blood
glucose will require a high sensitivity in order to be able to
distinguish the weak light absorption of glucose between
different wavelengths.
This real-time biomedical signal processing platform can be
applied to numerous applications, with each particular
application presenting its own requirements for sensitivity
and algorithmic complexity. In order to provide flexibility in
terms of the application, the system is designed such that to
provide maximal sensitivity and processing power in order
to meet the expectations of high-end applications, while
providing backward compatibility to more conventional and
less demanding biomedical signal processing algorithms.

III. LE2 PROGRAMMERS MODEL AND ISA
The programmers model specifies a parametric (VREGS, 16
max) number of vector registers, at 16-bit granularity. The
maximum vector length is a compile-time constant and can
be up to 4096 16-bit elements wide (VLMAX). There’s a
run-time (dynamic) vector length register (VLEN) which
identifies how many scalar elements of the source and
destination vector registers participate in the current
computation. The predicate register functions as a further
mask for up to VLEN elements. Finally, there are a
parametric number of scalar registers (SREGS, 16 max),
each 32-bit wide and two vector accumulators (VACC0/1),
each VLMAX. There are two vector accumulators, each 32-
bit wide and VLMAX/2 32-bit elements in length.

SR1
SR0

SR2
SR3

SR5
SR4

SR6
SR7

SR9
SR8

SR10
SR11
SR12
SR13
SR14

Scalar Register File

...

...

...

...

...

...

...

VR1
VR0

VR2
VR3

VR5
VR4

VR6
...
...
...
...
...
...
...
...

VR7

VR9
VR8

VR10
VR11
VR12
VR13
VR14

Vector Register File
Element 0 Element 1 Element 2 Element (VLMAX-1)

16 bits 32 bits

...

...

Element 0 Element 1 Element (VLMAX/2-1)
VACC1
VACC0

32 bits

pred
Predication Register

VV
Overflow Flag

1 bit

VLMAX bits

vlen
Vlen Register

8 bits

ovf

Vector Overflow
Register

VLMAX/2 bits

Fig. 4. LE2 coprocessor programmer’s model.

IV. RTL MICROARCHITECTURE
The LE2 engine is depicted in Fig. 5. It is a parametric, 8-
stage pipelined microarchitecture (Decode, address
generation, memrd1, memrd2, exec1,exec2, pre-wb, wb). It
is designed to be closely-coupled to either a Leon2 or Leon3
scalar engine, at stages 4 and 6 respectively, effectively
being in series to the scalar engine. The benefits of this
configuration include the zero-cycle latency when
transferring state to the main scalar core and the correct
operation under a multiple-exception-source regime. As
such, the vector processor presents a precise exception
model to the programmer. An interesting observation is the
use of vector lanes 0, 1 (2x16-bit) for the execution of scalar
operations thus dispensing with the use of a separate scalar
datapath for the non-vectorizable sections of the code.

Figure 5: LE2 microarchitecture (Green section identifies C2R-designed
blocks)

V. SOPC ECOSYSTEM
Fig. 6 depicts the larger system context which makes use of
multiple Leon2’s + the hybrid accelerator discussed above in
the context of the Oximap system. It consists of a parametric
number of such modified Leon2 CPUs, each with an
attached LE2 engine, in a cache-coherent configuration
(single AHB, transaction snooping and a write-through
cache).

A
H

B
2AP

B

S
TR

M
E

M

D
ire

ct
 A

H
B

 p
at

h

A
P

B

Fig. 6. The SSS2 SoPC.

The high-bandwidth data traffic of the data engines
(including both LE1 and LE2) is serviced by multi-bank,
multi-client, DMA-driven distributed memory blocks
(STRMEM). This is depicted in Fig. 7

465

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on May 05,2010 at 15:30:11 UTC from IEEE Xplore. Restrictions apply.

VI. CONCLUSION AND FUTURE WORK
This work presented the design, performance modeling

and implementation of a 2-way LIW/SIMD engine designed
with a hybrid RTL/ESL methodology and targeting high-
speed, real-time biomedical imaging applications. Our group
has also undertaken the task of a full RTL design of a
second vector engine targetting voice-over-IP (VoIP)
telephony applications. Through our experience with both
flows, we have built significant confidence in the use of
advanced tools such as C2R for the design of high-
performance programmable engines. In that respect, the LE2
engine is slowly being modified, with major RTL blocks
removed and replaced by C2R-logic; the behavioral
synthesizer is very mature and allows for precise control of
clocks and interfaces thus enabling the design of large-scale
programmable engines in a fraction of the time required by
existing methodologies. We will be reporting on our
findings in the near future.

Fig. 7. Distributed, multi-bank, multi-client local memory architecture

The system includes a custom, multi-core debug support unit
(MP-DSU), to provide debug access to the individual
processors, multiple LE1 VLIW processors (an 8-stage
implementation of the HPL-PD architecture [13], to be
discussed in a future journal), two DMA engines, serving
the AHB and the STRMEM. The latter is (global) memory-
mapped at address 0x30000000, thus being accessible by all
the processing elements and streaming engines. Finally,
there’s a configurable level-2 data cache (cascade
configuration), serving the base-band traffic (OS, control
code, LE1 IRAM streaming) and decoupling the external
DDR2 from the continuous write traffic of the multiple
write-through L1DC’s of the Leon2 engines.

The system has been prototyped in a PicoComputing E14
cardbus board (Fig. 8). The board is controlled from a host
x86 Windows laptop and full streaming capability (at 132
MB/s) into and out of the STRMEM is allowed.

ACKNOWLEDGMENT
The authors gratefully acknowledge Cebatech Inc. for the

donation of research licenses of their flagship C2R product
as well as unrestricted access to in-house expertise.

REFERENCES
[1] Leibson, S.; Kim, J, “Configurable processors: a new era in chip

design”, IEEE Computer, July 2005, vol.38, no.7, pp. 51-59
[2] Mbaye, M.; Belanger, N.; Savaria, Y.; Pierre, S, “Application specific

instruction-set processor generation for video processing based on
loop optimization”, IEEE International Symposium on Circuits and
Systems (ISCAS) (IEEE Cat. No. 05CH37618), 2005, Vol. 4, pp.
3515-3518, vol. 6

Fig. 8: Pico E14 prototyping board
A visual environment has been built to allow access to the

state of the multiple engines, download application code and
extract processed data streams from the SSS2 platform. The
platform is programmed in C and assembly, under Linux,
and via a make-automated process, the scripting-assisted
compilation phase produces a final file which is the image of
the global memory of the system. This is transferred by the
application programmer onto the STRMEM and the DDR2
of the SSS2 platform, as shown in Fig. 9; execution of the
individual processors is handled in a very intuitive and user-
friendly way.

[3] V. A. Chouliaras, J. L. Nunez, K. Koutsomyti, S. R. Parr, D. J.
Mulvaney, S. Datta, ‘On the development of a custom vector
accelerator for high-performance speech coding’, IEE Electronic
Letters, Vol. 40, Issue 24, 25 Nov. 2004, pg 1559-1561

[4] Bower, J, “A system-on-a-chip for audio encoding”, Proceedings of
the 2004 International Symposium on System-on-Chip, Nov. 2004
Page(s):149 - 155

[5] Zhenyu; Sindhwani, M.; Srikanthan, T. Edited by: Diessel, O.,
Williams, J., “RTOS acceleration on soft-core processors using
instruction set customization”, Proceedings of the 2004 IEEE
International Conference on Field- Programmable Technology, pp.
371-374

[6] http://www.celoxica.com/techlib/files/CEL-W050520101L-335.pdf
[7] Luo Juan; Cao Yang; Jiang Jian-Lin, 2005 International Conference

on Communications, Circuits and Systems. Volume II. Signal
Processing, Computational Intelligence, Circuits and Systems (IEEE
Cat. No. 05EX1034), 2005, pp. 1343-7, vol. 2

[8] Moussa, I.; Grellier, T.; Nguyen, G. Edited by: Wehn, N., Verkest, D
“Exploring SW performance using SoC transaction-level modeling”,
Proceedings Design, Automation and Test in Europe Conference and
Exhibition, 2003, pg. 120-125

[9] Liwei Ma; Yihe Sun, “On-chip network evolution using NetC”,
Proceedings of the 2005 IEEE VLSI-TSA International Symposium
on VLSI Design, Automation & Test (VLSI-TSA-DAT), pp. 249-252

[10] Bertozzi, D.; Benini, L., “Xpipes: a network-on-chip architecture for
gigascale systems-on-chip”, IEEE Circuits and Systems Magazine,
2004, vol.4, no.2, pp. 18-31

[11] http://cebatech.com/c2r.php Fig. 9: VB-based control GUI for SSS2 [12] www.oximap.co.uk
[13] www.trimaran.org

466

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on May 05,2010 at 15:30:11 UTC from IEEE Xplore. Restrictions apply.

