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ABSTRACT

This paper introduces an algorithm for computing a QR 

decomposition of a polynomial matrix. The algorithm 

proceeds to perform the decomposition by following the 

same strategy in eliminating entries of the matrix as is used 

in the Givens method for a QR decomposition of a scalar 

matrix. However scalar Givens rotation matrices can no 

longer be applied. Instead, a polynomial Givens rotation is 

introduced, enabling the QR decomposition of a polynomial 

matrix. Convergence of the algorithm is discussed and 

through simulations the capability of the algorithm is 

assessed.

Index Terms— Polynomial matrix, paraunitary matrix, 

polynomial matrix QR decomposition

1. INTRODUCTION

Polynomial matrices have many applications in the field of 

control, but in recent years they have also been used 

extensively in the areas of digital signal processing and 

communications. Examples of their applications include 

broadband adaptive sensor array processing, MIMO 

communication channels, broadband subspace 

decomposition and also digital filter banks for subband 

coding or data compression [1,2]. In the context of this 

paper, polynomial matrices arise when a set of signals are 

received at an array of sensors over multiple paths and with 

different time delays. This is referred to as convolutive 

mixing and the mixing matrix required to express this takes 

the form of a polynomial matrix where each element is a 

finite impulse response (FIR) filter. 

If, instead, the received signals are instantaneously 

mixed, then there are no time delays in the propagation of 

the signals from the sources to the sensors and a scalar 

matrix is sufficient to describe the mixing. In this situation 

the QR decomposition algorithm can be used for identifying 

communication channels based on second order statistics. 

This would involve working directly on the data matrix, 

with no need to form a covariance matrix for the signals, as 

required if using the Eigenvalue Decomposition (EVD). 

This technique can be extended to broadband signal 

processing, where polynomial matrices are now observed, 

by using a suitable algorithm for computing the QR 

factorisation of a polynomial matrix.

This paper firstly discusses polynomial matrices and 

the QR factorisation of a scalar matrix. Subsequently the 

concept of a polynomial Givens Rotation is introduced, 

before detailing the Polynomial QR algorithm. Finally 

through simulations the capability of the algorithm is 

demonstrated.

2. POLYNOMIAL MATRICES

A polynomial matrix is simply a matrix with polynomial 

elements. However it can alternatively be thought of as a 

polynomial with matrix coefficients and so a polynomial 

matrix )(zA , where the indeterminate variable of the 

polynomial is, in this case, z
−1

used to represent a unit 

delay, can be expressed as follows: -
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where 21, ttZt ≤∈ and qpCt ×∈)(A is the matrix of  

coefficients to z
−t

. The polynomial coefficient in the (i,j)
th

element of )(zA corresponding to a delay of z
−t

will be 

denoted as aij(t) and the order of the polynomial matrix can 

be calculated as (t2 − t1), where the values of the parameters 

t1 and t2 are not necessarily positive. The underline notation 

in equation 1 is used to denote a polynomial, whether it is a 

matrix, vector or scalar, to avoid confusion with the 

notation used for the z-transform of a variable. Let the set 

of polynomial matrices, with complex coefficients, be 

denoted by 
ba

C
×

where a denotes the number of rows and b

the number of columns. 

The paraconjugate of the polynomial matrix )(zA is 

defined to be:-

)/1()(
~ T

* zz AA = (2)
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where * denotes the complex conjugation of the coefficients 

of each polynomial element and 
T

denotes matrix 

transposition. A polynomial matrix )(zA is said to be 

paraunitary if the following is true:

ΙAAAA == )()(
~

)(
~

)( zzzz (3)

Finally, the Frobenius norm of the polynomial matrix )(zA

is defined to be:
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3. QR FACTORISATION OF A SCALAR MATRIX

The QR factorization of a scalar matrix qp
C

×∈A is given 

as follows:

A = QR (5)

where ppC ×∈Q is a unitary matrix and qpC ×∈R is an 

upper triangular matrix. One method for computing the 

unitary matrix Q is by calculating a series of plane 

rotations, where each rotation will drive one of the elements 

beneath the diagonal to zero, [3]. The elements of the 

matrix below the diagonal are rotated to equal zero in a 

particular order to ensure that each element need only be 

eliminated once. There are several different orderings that 

can be implemented. However, for the purposes of this 

paper the elements are eliminated starting with the 

uppermost left element and then moving across elements 

beneath the diagonal in each row from left to right, before 

moving to the next row down. 

This technique of eliminating the elements beneath the 

diagonal in a specified order can be directly applied to 

polynomial matrices, even though each element now 

consists of a series of polynomial coefficients. All 

coefficients from the series need to be eliminated to ensure 

that the polynomial element is zero. Unfortunately this can 

no longer be achieved with a scalar Givens rotation matrix; 

instead a polynomial Givens rotation is required.

4. A POLYNOMIAL GIVENS ROTATION

An elementary polynomial Givens rotation (EPGR) takes 

the form of a Givens rotation preceded by an elementary 

time shift matrix as follows:  
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where c = cos(θ) and s = sin(θ). The aim of this matrix, 

when applied to the polynomial vector
12

)(
×∈Cza as 

demonstrated
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is to drive the polynomial coefficient )(2 ta to zero so that 

0)0(2 =′a . This condition is satisfied when the rotation 

angles are chosen as follows:

)0(

)(
tan

1

2

a

ta
=θ , ))(arg( 2 ta−=φ and ))0(arg( 1a−=α . (8)

Furthermore, following the application of the EPGR )0(1a′

is real and 
2

2

2

1

2

1 )()0()0( taaa +=′ . 

A series of EPGR’s can be applied iteratively to the 

vector a(z), as demonstrated in equation 7, to drive all 

coefficients of the polynomial element a2(z) arbitrarily close 

to zero. At each iteration the rotation angles θ, φ and α are 

chosen to zero the coefficient within a2(z) with maximal 

magnitude, this coefficient will be referred to as the 

dominant coefficient. If this coefficient is not unique, then 

any of the dominant coefficients from the element may be 

chosen. The complete series of EPGR’s required constitutes 

a complete polynomial Givens rotation, which will be 

denoted by the matrix G(z) with:
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where all coefficients of the polynomial element a2(z) have 

been driven arbitrarily close to zero over a series of 

EPGR’s. The polynomial Givens rotation matrix can 

therefore be calculated as follows:

)(ˆ)......(ˆ)( 1 zzz i GGG = (10)

where i is the number of EPGR’s required to drive all 

coefficients of the polynomial element sufficiently close to 

zero. Note that each of the EPGR’s is paraunitary and so 

the complete polynomial Givens rotation will also be 

paraunitary. 

In practice, it is not feasible to drive all coefficients of a 

polynomial element to zero, instead the coefficients are 

reduced until the magnitude of the dominant coefficient in 

a2(z) is sufficiently small, i.e.

ε<)(2 ta  (11)

where ε > 0 is a pre-specified small value. A proof of 

convergence for a complete polynomial Givens rotation step 

can now be easily deduced. 

With every application of an EPGR, to zero the 

dominant coefficient a2(t), the quantity 
2

1 )0(a′ will increase 

by the magnitude squared of the largest coefficient within 

the element. Furthermore, this quantity is bounded above by 
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the squared Frobenius norm of the vector a(z), 
2

)(
F

za , 

which remains constant throughout all iterations of the 

algorithm. As 
2

1 )0(a′ is monotonically increasing and 

bounded above, over a series of EPGR’s the condition set by 

equation 11 is guaranteed and the complete polynomial 

Givens rotation converges in this respect. 

A complete polynomial Givens rotation, as shown in 

equations 9 and 10, can similarly be applied to a 

polynomial matrix to drive one of the polynomial elements 

beneath the diagonal to zero. This technique forms the basis 

of the algorithm for performing the QR decomposition of a 

polynomial matrix.

5. THE QR DECOMPOSITION OF A POLYNOMIAL 

MATRIX

The Polynomial QR algorithm is a technique for factorising 

a polynomial matrix into an upper triangular and a 

paraunitary polynomial matrix. Let 
qp

Cz
×

∈)(A then the 

objective of the Polynomial QR algorithm is to find a 

paraunitary matrix 
pp

Cz
×

∈)(Q such that:

)()()( zzz RAQ = (12)

where 
qp

Cz
×

∈)(R is an upper triangular polynomial 

matrix. The polynomial matrix )(zQ is computed as a 

series of complete polynomial Givens rotations, each one 

designed to drive all coefficients of one of the polynomial 

elements situated beneath the diagonal to be sufficiently 

small. The order in which the polynomial elements are 

eliminated is the same as that of the scalar Givens QR 

method explained in section 3 of this paper. The algorithm 

can therefore be thought of as an extension of the 

conventional Givens QR method for factorising a scalar 

matrix by applying a series of unitary rotation matrices.

The polynomial QR algorithm operates in a finite 

number of steps, where at each step one complete 

polynomial Givens rotation matrix is applied to the 

polynomial matrix )(zA as follows:

)()(),()( zzkjz AGA =′ (13)

where the indices j and k define the position of the 

polynomial element that the complete Givens rotation is 

attempting to eliminate.

Each step, however, consists of an iterative process, 

where at each iteration an EPGR is calculated, designed to 

drive the dominant coefficient of the particular polynomial 

element, ajk(z), to zero. This is achieved by rotating ajk(z) 

with the corresponding diagonal element akk(z). At each 

iteration the EPGR takes the form of a pxp identity matrix 

with the exception of the four elements positioned at the 

intersection of rows j and k with columns j and k. These 

elements are given by the 2x2 sub-matrix 

)(ˆ ),,,(
z

tφθα
G shown in equation 6, where the rotation angles 

θ, φ and α are chosen, according to equation 8, to zero the 

dominant coefficient. Unlike the number of steps, each step 

does not take a fixed number of iterations. Instead each step 

runs until all coefficients from the element are sufficiently 

small and so the stopping condition demonstrated by 

equation 11 is satisfied. Once all coefficients of the 

particular polynomial element are sufficiently small, the 

algorithm moves onto the next polynomial element in the 

ordering replacing )(zA with )(zA′ .

The QR algorithm for scalar matrices drives all 

elements below the diagonal to zero. However the 

Polynomial QR algorithm, although driving the dominant 

coefficient at each iteration to zero, only ensures that all 

coefficients of an element are suitably small before moving 

on to the next polynomial element in the ordering. 

Therefore, through future rotations of the algorithm, these 

small coefficients could be rotated with other suitably small 

coefficients, forcing them to increase in magnitude. For this 

reason a proof of convergence for the algorithm does not 

simply follow from the proof of convergence given for one 

polynomial element. A complete proof has still to be found. 

However, no numerical problems have been encountered 

when applying the algorithm to a wide range of matrices.

7. RESULTS

A polynomial matrix 
34

)(
×

∈CzA of order 4 was generated 

and then used as input to the polynomial QR algorithm. 

The complex and real parts of the coefficients of each of the 

elements were randomly drawn from a normal distribution 

with mean zero and unit variance. Graphical 

representations for the polynomial output matrices to the 

algorithm, )(zR and )(zQ , can be seen in figures 1 and 2 

respectively, where a stem plot is used to demonstrate the 

amplitude of the series of coefficients for each of the 

polynomial elements. The value of ε, in equation 11, used 

to obtain these results was 0.01, allowing the algorithm to 

run for a total of 124 iterations over all 6 steps. 

With each delay step, at each iteration of the algorithm, 

the order of the polynomial matrices )(zQ and )(zR

increases, often after a series of iterations becoming 

unnecessarily large. Therefore throughout the algorithm the 

polynomial matrices were truncated, to stop their orders 

from becoming unnecessarily large and the algorithm slow

to implement. The method of truncation is similar to that 

used in [1] and [4]. A more detailed explanation to why the 

order can become unnecessarily large is also found in these 

papers. A suitable truncation method for a polynomial 

matrix )(zA , with coefficient matrices A(t) for t = t1,…, t2
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can be implemented as follows, find a maximum value for 

T1 and a minimum value for T2 such that the following 

condition is satisfied:
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then the coefficient matrices A(τ) for τ = t1,…, T1 and  

T2,…, t2 can be trimmed from the matrix. For the results 

demonstrated in this paper, a value of c = 0.0001 was used. 

This ensured that the order of the matrices were no longer 

unnecessarily large, but also that a good level of matrix 

decomposition was achieved. The relative error for the 

decomposition is defined to be:

F

F

z

zzz

)(

)()(
~

)(

A

RQA −

.                         (15)

This measure was calculated for the results demonstrated 

and was found to be 0.033.

The Frobenius norm, L, of all polynomial elements 

beneath the diagonal of the matrix A(z) is plotted over the 

series of 124 iterations and is shown in figure 3. The 

reduction of this measure, L, at each of the 6 steps, to zero 

one of the polynomial elements beneath the diagonal, can 

be seen in this graph. Clearly, by the final iteration of the 

algorithm, the matrix is suitably upper triangular with L = 

0.19.

8. CONCLUSION

A QR algorithm suitable for polynomial matrices has been 

introduced. In a similar approach to the Givens QR method 

for scalar matrices, the algorithm operates in a fixed 

number of steps. However, unlike the scalar method, each 

step in the polynomial QR algorithm must now operate as 

an iterative process. A proof of convergence for each step 

has been demonstrated in this paper. 

Other QR algorithms suitable for polynomial matrices have 

been developed; work is still being carried out on the 

convergence of these algorithms and examining the 

uniqueness of the solutions.
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Figure 1 – The upper triangular matrix )(zR obtained 

from the algorithm after 124 iterations.

Figure 2 – The paraunitary matrix )(zQ obtained from the 

algorithm.

Figure 3 – The Frobenius norm of all of the polynomial 

elements beneath the diagonal, L, plotted over the series of 

iterations. 
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