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ABSTRACT

This paper addresses the underdetermined blind source se-
paration problem, using a filtering approach. We have deve-
loped an extension of the FastICA algorithm which exploits
the disparity in the kurtoses of the underlying sources to es-
timate the mixing matrix and thereafter the recovery of the
sources is achieved by employing the ¢1-norm algorithm.
Also, we demonstrate how promising FastICA can be to ex-
tract the sources, without utilizing the ¢1-norm algorithm.
Furthermore, we illustrate how this scenario is particularly
suitable to the separation of the temporomandibular joint
(TMIJ) sounds, crucial in the diagnosis of temporomandibu-
lar disorders (TMDs).

1. INTRODUCTION

Blind source separation (BSS) is the problem of estimating
the source signals from their mixtures, without explicit a
priori knowledge of the medium and the source signals. If
the number of mixtures is less than the number of sources,
the problem is termed as underdetermined BSS (UBSS). Ty-
pically, it comprises of two stages: 1) blind identification
of the mixing matrix 2) source extraction. Mathematically,
BSS can be defined on the basis of the following generative
model:

x(t) = As(t) + v(1) (1)

where x(f) represents the mixture signals detected by m sen-
sors at discrete time instant 7, i.e. x() = [z1(¢), z2(t), ...
,Zm (t)]T € R™, and the source vector s(f) = [s1(t), s2(1), ...
,5n(t)]T € R™ where T denotes the transpose operation. A
is the instantaneous mixing matrix (of size m x n ) that re-
flects the mixing characteristics of the medium, while v(z)
represents the additive noise vector. However, we do not
consider v(¢) because the noise is modelled as an additional
source. We employ both sparse and independent component
analysis (SCA and ICA). ICA is a tool for BSS with the as-
sumption that the sources are independent and unmixing is
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achieved by y(¢) = Bx(t), where B is the so-called separa-
ting matrix (of size n x m ) and y(¥) is a vector of dimen-
sion n containing the independent components at discrete
time instant z. Likewise, SCA estimates the sparsest solu-
tion s(#) pertaining to (1) [1]. We address the problem of
underdetermined BSS, where A is a 2 x 3 matrix as this per-
tains to the problem of separating temporomandibular joint
sounds from two noisy observations (two sensor/mixture si-
gnals and three source signals). As in many standard ICA
and SCA algorithms, we make the following assumptions:
Al: All the source signals are mutually statistically inde-
pendent and super-Gaussian.

A2: The mixing matrix is full column rank.

A3: kurt(sa), kurt(ss) > kurt(s1) where s; is the ith
source and kurt(.) denotes the kurtosis.

A4: The two highly super-Gaussian source signals are sparse.
AS: The third source signal (with low kurtosis) has a sub-
stantially lower variance as compared to the other two sources,
i.e. var(sz), var(ss) > war(sy) where var(.) denotes
the variance.

The organization of the paper is as follows; the next sec-
tion deals with the background of the TMD BSS problem.
Section 3 provides the details of our algorithm with justi-
fications of its steps. Section 4 evaluates the performance
of our algorithm against two algorithms, notably k-means
clustering [2] and the algorithm of Li et al. [1]. Lastly, we
demonstrate that FastICA can be promising to extract such
sources, followed by our conclusions in Section 5.

2. BACKGROUND

2.1. Sparsity

Sparsity refers to the situation where a relatively small num-
ber of source signals is active over any particular time inter-
val. For the case of a single active source, sparsity can be
mathematically described as:

{si(t); i=1,..,n}

si(t) # 0 when s;(t) >> s,(t) Vj # i (2)
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where s; is a given source signal and s; is another source
signal.

2.2. FastICA

This algorithm has not previously been employed to solve
the underdetermined BSS in the context of TMD. FastICA
maximizes the non-Gaussianity of the signals by utilizing

higher order statistics such as kurtosis and negentropy (Neg(.)).

That will enable the FastICA to determine a vector b =
[b1,b2,....,bm]T € R™. Note that negentropy can be vie-
wed as a measure of deviation from a Gaussian distribution.
Consider the case where there are two mixture signals x(t) =
[z1(t); 22(t)]T. b; is the best possible linear combination of
the mixture signals z1(t) and z2(¢) to yield an independent
component y1 (t) with the maximum kurtosis.

y1(t) = arg bsug) (Neg(blxl(t) + b2$2(t))) 3)
1,02

FastICA searches for another b;; which is orthogonal to the
one previously found by utilizing deflationary orthogonali-
zation.
b/ b;;
b’'b;
Whenever these independent components fail to be the source
signals, FastICA has in fact achieved projection pursuit [3].
In analogy to least squares schemes which focus on high
variance signals, when the FastICA algorithm is applied to
UBSS mixtures of sources with highly disparate kurtoses
(assumption A3), the performance of the ICA algorithm will
be centered on those sources with maximum kurtoses.

b; 4)

bi; «— b;; —

2.3. The Temporomandibular Disorder problem

An illustration of a 2 x3 UBSS scenario portrays itself in the
source separation of TMJ sounds. TMD is a collective term
referring to medical problems related to the region of the
mandible (lower jaw) and the temporal bone (skull). Click
and crepitus are the two well-known TMJ sounds. The click
is normally associated with the perforation of the disc bet-
ween the mandible and the temporal bone. Also, the cre-
pitus hints the presence of a degenerative joint disease (e.g.
osteoarthrosis). Poor detection of these sounds leads to mis-
diagnosis of TMDs. The dental specialist has to distinguish
between the TMJ sounds such as click, crepitus and the
background noise/interferences such as movement of the
muscle (e.g. tongue). But the classification of these TMJ
sounds is inherently subjective and hard for the clinicians
to determine the correct pathology. This has led to contro-
versy as in [4, 5]. Thus, it is particularly difficult for the
dental specialist to diagnose TMD, when click, crepitus and
background noise are all present within the TMJ sounds.
For more information on TMDs, the reader should refer to

[5].

3. DEVELOPMENT OF THE ALGORITHM

In this section, we outline the underdetermined BSS algo-
rithm, and justify each step. Recall that our BSS problem is
constrained to 3 source signals and 2 mixture signals, with
the assumptions made in section 1. M denotes the window
size of the filters in terms of samples.

1. Temporally median filter (5) the mixture signals X to
yield F. The objective is to attenuate the effects of the
outliers (out of range peaks) with a small window of
3 samples. This results in a better estimation of A be-
cause FastICA relies on higher order statistics (kur-
tosis and negentropy), which in turn are sensitive to
outliers. The importance of attenuating these outliers
has been illustrated in [6].

ylt] = mediany (1 VL7 alt + K]} 5)

2. Apply FastICA to F to estimate two columns of the

mixing matrix A. Due to kurt(ss), kurt(sz) > kurt(sy),

the two highly super-Gaussian sources are estimated
and thereby their corresponding columns in A are es-
timated. The key observation is that in UBSS Fas-
tICA will focus on the high kurtoses sources.

3. Temporally mean filter (6) F with M greater than
twice the duration of the maximum period P,,,; du-
ring which the two highly super-Gaussian sources are
active. Although M is not known a priori, a large
window can be used due to assumption A4. Mean
filtering will mitigate the presence of the two highly
super-Gaussian source signals in both mixtures.

gitl =5 > hiK] ©6)

k=t—M+1

Consider the periods during which the two highly super-
Gaussian source signals are active. Over these per-
iods, we note the predominance of these two source
signals in the mixture signals. Similarly, when these
highly super-Gaussian sources are not active the third
source predominates in the mixture signals. Hence,
average-filtering with M > 2P,,,,, increases the weigh-
ting of the weakly super-Gaussian source signal in the
mixture signals during these periods over which the
highly super-Gaussian source signals are active.

4. Apply FastICA to estimate the third column of A per-
taining to the weakly super-Gaussian source signal.
Owing to the suppression of the two highly super-
Gaussian sources in the mixtures by mean filtering,
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FastICA will compute the estimation of the last co-
lumn of A. Due to its equivalence to projection pur-
suit (PP) [3], FastICA may fail to estimate the column

of A corresponding to the weakly super-Gaussian source.

PP can be modelled as:
Z = KX 7

where Z is the projected data, and K is the linear
transformation of the data X. PP is an exploratory
data technique projecting our raw data into a space
where the feature of interest (i.e. non-Gaussianity) is
maximized.

Thus, we estimate two independent components ins-
tead of one. Thereafter, the column corresponding to
the independent component with the minimum kurto-
sis is selected (due to the assumption AS) to form the
last column of the estimate of A, i.e. A.

5. Apply the ¢1-norm algorithm [1] to extract the source
signals.

6. If the ¢1-norm algorithm fails to yield satisfactory es-
timates of the sources, remove the mean-filtering (8)
of the last independent component found, i.e. the es-
timate of the least super-Gaussian source. Although,
we might expect this component to be a linear mix-
ture of the three sources, the source with the mini-
mum kurtosis is the predominant constituent (owing
to the suppression of the two highly super-Gaussian
sources by mean-filtering).

t—1

> plK] ®)

k=t—M+1

plt] = Mqlt] -

Therefore, to strengthen the presence of the source
with the maximum kurtosis as the independent com-
ponent, we can substract or add any two distinct sca-
led version of the source with the maximum kurtosis.
Applying FastICA to the two new mixtures improves
the estimate of the weakly super-Gaussian source. This
step is required, as the estimate of the super-Gaussian
noise of step 4 comprises of a significant influence of
the most super-Gaussian source, but not high enough
for FastICA to separate it from the super-Gaussian
noise. See the first two plots of Figure 3. Also, we
already have estimates of the highly non-Gaussian
sources from step 2.

4. EXPERIMENTAL RESULTS

In our study, we have considered the TMJ sounds to be
mixtures of the click, crepitus and a super-Gaussian noise.

‘Three sources: supergaussian noise, hard click and hard crepitus

Magnitude
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Magnitude
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Fig. 1. The super-Gaussian noise, the click and the crepi-
tus. Note the sparsity of the click (middle plot) where the
click occurs in the three excitation regions. Likewise for the
crepitus signal (last plot).

Thus, the task is to separate the click, the crepitus and the
super-Gaussian noise present within the two TMJ sound
mixtures. The click and crepitus were recorded using a spe-
cial stethoscope connected to a microphone placed at the
openings of the auditory canals to record the TMJ sounds
sampled at 8000 Hz. To model the noise, we generated
one with Laplacian distribution described by the following
equation:

1 -0
P(s) = greapl - 220 ©

where the variance 02 = 2\? and the mean y = 6.The
performance measure (PM) [6] is employed here to provide
an indication of the difference between the actual mixing
matrix A and the estimated A. However, PM requires both
A and A to have unit norm columns. 0 <PM<1 PM
equals to O if A = AP where P is a permutation matrix.

. 1 & . 1 <& .
PM(A,A) =1-(- > sup|ATAli+- > sup ATA)
i=1 7 j=1 "

(10
The kurtoses of the noise, click, and crepitus (measured
when each source exists separately) are respectively 3.0,
23.7 and 14.4. Figure 1 shows the sources, i.e. the weakly
super-Gaussian noise, click and crepitus from top to bottom.
A (generated randomly from a normal distribution) is given
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The performance of our extended algorithm of FastICA was
measured against the k-means clustering [2] and the algo-
rithm of Li et al. [1] as the SNR was varied (shown in Fi-
gure 2). Thereafter, we visually demonstrate the potential
of step 6 of the extended FastICA algorithm to extract the
sources in Figure 3.

Performance Measure between actual A and estimated A
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Fig. 2. PM of our extended FastICA plotted in ‘-*’ and
that of the k-means clustering in ‘-’ against SNR in dB. The
algorithm of Li failed to estimate the mixing matrix A

Remarks : The k-means algorithm has a reasonable perfor-
mance when its maximum PM is less than 0.14. The fluc-
tuation of the performance of the k-means algorithm arises
due to the initialization of the algorithm on which its conver-
gence depends. Our algorithm outperforms k-means (indi-
cated by its much lower performance measure). However,
the algorithm of Li [1] failed to estimate the mixing matrix
A. This is probably because the super-Gaussian noise source
is permanently active. One of the requirement of Li’s algo-
rithm is sparsity with respect to all the three signals.

5. CONCLUSIONS

This study has shown how filtering can assist in solving the
underdetermined blind source separation in the context of
TMDs. Although the common approach is geometrical such
as the k-means and the algorithm of Li [1] that exploit spar-
sity, our algorithm takes advantage of both the sparsity and
the statistical entities of the source signals. In that respect,
our algorithm is more efficient in its solutions than the k-
means and Li’s algorithms. Besides, the superiority of our
algorithm with respect to the k-means and Li’s algorithm

has been shown. We have also illustrated that we can exploit
the ability of FastICA in solving such an UBSS problem.

Estimates of sources
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Fig. 3. From top to bottom: Estimate of noise of step 4, final
estimate of noise, click and crepitus. Note the presence of
the most super-Gaussian source click in the first estimate of
the noise.
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