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Abstract 

The problern of underdetermined blind source sepa- 
mtion is addressed. A n  adnanced classification method 
based upon competitive leainin,g is proposed for au- 
tomatically determining the number of active sources 
over the obseruatior~. Its ihtroduction in  underdeter- 
mined blind source separation successfully overcomes 
th,e drawbock of an existing method, in which the goal 
of sepamtiny more sources than the number of avail- 
able mixtures is achiezled by exploiting the sparsity of 
the non-stationaq sources in the time-frequency do- 
main. Sim,ulation studies are presented to support the 
proposed approach. 

1 Introduction 

The aim of blind source separation.(BSS) is t o  sep- 
arate. a nuniber, k ,  of unknown sources from m mea- 
surement, signals. The word 'blind' in the statement 
refers t o  the lack of a priori information about the in- 
put sources and the cliannels between the sources and 
the measurement sensors. This blindness on one hand 
iniplies that the problem can be difficulty, hut 011 the 
other hand makes BSS a powerful tool; as it could be 
applied in a wide range of applications where priori 
ktiowledge is difficiilt or impossible to  achieve; for ex- 
ample where array calibration would be impractical. 

Assuming that the input sources ,are statistically 
independent, many BSS algorithms resort to the ap- 
proach of independent component analysis, e.g., the 
JADE algorithm, [4], and the natnrd gradient algo- 
rithm, [l]. By attempting to restore the mutual in- 
dependence property of t,he sources, signal separation 
is achieved suhject to a possible scaling and permut,a- 
tioii ambiguity. Besides the niutnal iiidepeildence as- 
sumption, it isl moreover, a convention to  assume that 

-there exists at least as many sensors as sourcesl i.e., 
k 5 m. When this assumption is violated, the prohiem 
isterrned underdetermined BSS in the !iteratore. I n  [3], 
assuming the soyrce distribution is sparse and the ele- 
ments of the mixing matrix are uniformly distributed, 

~ - ~ 

an algoritlim which jointly estimates the mixing matrix 
and the sources is proposed. However, this sparsity a.. 
sumptioii for the soiirces may not hold in many appli- 
cations. In [5 ] ,  an alternative approach is proposed by 
noticing that the received signals will be colinear with 
the corresponding steering vector (i.e., the column of 
the mixing matrix associated with that source) if only 
a single source is prcscnted at a given time instant. Re- 
cently, an underdetermined BSS method is proposed by 
exploiting .the information in the time-frequency (t-f) 
domain. Assuming that sourccs are orthogonal in the 
t-f domain, the t-f representations of different sources 
can be separated by clustering the t-f points which are 
associated with the same steering vectors, [6].  This al- 
gorithm requires, however, that  the number of sources 
be known a priori and often leads to  phantom sources 
being identified; because of the rough classification em- 
ployed. In'this paper, by applying an advanced classifi- 
cation method called self-splitting competitive learning 
(SSCL) algorithm, [7], not only is the performance of 
the time-frequency method greatly improved hut also 
tlie newly proposed approach is able to separate dif- 
ferent sources even when the nuniber of active sources 
is not known. This advantage makes the proposed ap- 
proach applicable in many practical applications. 

2 Data Model 

A multi-input and multi-output (MIMO) system 
is employed. The nieasiirement signals are typically 
modelled as linear instantaneous mixtures for simplic- 
ity. Denote ( . ) T ,  (.)" and (.)* as the operations of 
transpose, conjugate transpose arid complex conju- 
gate respectively. For an array of m sensors, at dis- 
crete. time instant t ,  the measurement signal x ( t )  = 
1x1 ( t )  x2 ( t )  . . . z, (t)]' is written as 

x ( t )  = As (t) + n(t) (1) 

where s (t) ,= [sl ( 6 )  s2 ( t )  . . . s k  (t)]' is tlie source vec- 
tor contributed from k sources, A is an m x k mixing 
matrix and n (1 )  is the zero mean additive noise which 
maybe present in the measurement. As the mutual 
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independence property is lost after linear mixing, an 
unmixing matrix is introduced in independent compo- 
nent analysis to restore this property. Denote B as 
the unmixing matrix, which is of dimension IC by m. 
The unmixing output y ( t )  is the estimator of the input 
sources subject to a scaling and permut,ational amibi- 
guity. 

Y ( t )  = Bx ( t )  (4 
In the approach of t-f analysis, as we will mention 
below, rather than directly looking for the unmixing 
matrix B;  signal separation is achieved in two stages, 
i.e., the separation of t-f representations from different 
sources and the synthsis of tlic sourcc signals from the 
corresponding separated t-f representations. 

3 A t-f underdetermined BSS method 
and the problem of classification 

Time-frequency analysis is a useful tool in processing 
non-stationary signals. With an appropriate t,-f trans- 
form: a one-dimensional function of time is niapped 
into a two-dimensional function of time and freqiiency. 
By so doing, more information of the input sources can 
be revealed. In the method of [GI, a quadratic t-f rep- 
resentation is employed. Denote d (U, 1) as the signal- 
independent kernel function. The discrete-time form of 
Cohen's class of t-f representation for sigilal 2; ( t ) ,  [2]: 
which corresponds to the i n t o  term in the quadratic 
t-f representation: is given by 

zi (t + v - I )  2: (t + U + I )  e--jRaf' 

The cross t-f representation of two signals zi ( t )  and 
zj ( t )  is written as 

zj ( t  + U - I )  2; (t  + U  + 1 )  e - jaTf i  

The extension of the t-f reprcscntation to accommodate 
vector signals leads to; [GI and [2], 

x (t + v ~ 1 )  XfJ (t + v + I )  e--34afi 

where 4 ( I J , ~ )  is a matrix whose ( i ,  j ) t h  entry d,, (U, I )  is 
the kernel associated with the it'' and the j t h  measure- 
ment sensor output. Notice that D,, ( t .  f )  is related to 
that of the input sources by the following relationship, 

D,, ( t .  f) = AD,, ( t ,  f )  AH (6) 

m 
d ie re  Dss ( t ,  f) = Er-, E,=-, +(U, 1 )  s ( t  + U  - 1 ) .  
sH ( t  + v + I )  e-j4=f' is the t-f matrix of the input 
sources. For underdetermined BSS: under the or- 
thogoiiality assuniption that the t-f distributions of 
different sources do not overlap, only one diagonal 
entry of D,, ( t ;  f )  will bc different from zero. Hence, 
if at the point ( t i , f i ) ,  only source-j is present, the t-f 
representation D,, ( t i ,  f i )  can be expressed as: [GI: 

D,, (ti, f ; )  = D,js j  (t i;  f i )  a,.: (7) 

where a, is the j t h  column of the mixing matrix A ;  
i.e.: tlie steering vector of soiirce-j. It can bc observed 
that tlic scalar D8,3, ( t :  f )  and the vector aj arc in fact 
the principal eigenvalne and eigenvector of the matrix 
D,, ( t i ,  f ? ) .  Moreover, if two t-f points are associated 
with the presence of the same source: in principle, the 
principle eigen vector of mat,rix D,, ( t i ,  f i )  should re- 
niain the same. classification according to the princi- 
pal eigen vectors t,hcrefore provides a way to  separat,e 
the signal spectra. The soiirce signals can be synthe- 
sized with the estimator of DSjs i  (t; f ) ,  for j = 1. . . k ,  

A crucial problem in this approach is in the classifi- 
cation of the set of eigen vectors obtained at, different 
t-f points. In ['.I: two normalized vectors 4 and Zp are 
allocated into two different classes if the angle between 
them is larger than a certain threshold, i.e., 

[GI. 

arccos (5T.j.) > E (8 )  

T 
where ;;j = [Re(a3)% I ~ n ( a j ) ~ ]  and ll%jII = 1. How 
ever: this approach often gives more classes t,lian the 
nuinber of sources: as indicated by the aiithors, [6] .  
To avoid artificial sources: further thresholding is sug- 
gested and for its operation the knowledge of the num- 
ber of active sonrces is necessary. As siich inforniation 
is likely t,o be unknown in many applications, to enable 
the algorithm to operate in a completely 'blind' fash- 
ion, better classification techniques are required. In the 
following section, the SSCL algorithm is introduced for 
this purpose. 

4 Self-splitting Competitive Learning 
in Underdetermined BSS 

The objective of classification is t o  detcct the hidden 
structure within some data set 2. If two members of 
the data set are judged to be similar (note that similar- 
ity can be measured in various ways): they will be as- 
signed into one cluster: otherwise they will be allocated 
into different clusters. In our application of nnderde- 
terinined BSSl t,he data set Z refers to the collection 
of eigenvectors Xj and ideally it should be partitioned 
into k clusters, as there arc k active sources present at 
the system input. 
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Assuiiiiiig t,hat thc value of k is known, many clus- 
tering algorithms have been proposed, e.g.; the well- 
known k-nicans algorithm. When the valiie of k is not 
known: however, only a few methods' are available in 
the open literature. One of the widely used approaches 
determines the number of clusters by testing thc error 
nicasure with rcspect to varying mimbers of clusters. 
The idea is based on the fact that the error measure 
decreases monotonically as tlie nuniber of clusters in- 
creases and the error reduction beconies much slower 
when a matiiral number of clusters has been reached. 
However; for a large data set, such an approach leads 
to heavy computational complexity due to  the repeat,ed 
computation of the error measure with rcspect to dif- 
ferent nmnbcrs of clusters. In comparison, the SSCL 
algorithm partitions the data set in a completely dif- 
ferent way. The algorithm is proposed from the view 
of competitive learning in nenral netyorks, in which 
several prototypes pi (A prototype corresponds to a 
neuron in neural networks.) are competing to  'win' as 
every member of Z is included in the examination. In 
the ideal situation, each cluster is associated with a 
prototype at its center. Therefore the problem of csti- 
mating the right nuniber of clusters in classification is 
effectively the process of determination of the number 
of prototypes in competitive leasing. 

At the initialization stage of the SSCL algorithm, 
the whole data set is consider to be a single prototype, 
which will be split into further prototypes when a cer- 
tain condition is met. The danger of this approach is 
recognized by t,he author in [7]. That is, one prototype 
might reprcsent more than one cluster if the number of 
prototypes is less than the natural number of.clusters, 
and as a resnlt, none of the clusters could be correctly 
identified. To avoid this problem, an asymptotic prop- 
erty vector fi is suggested to guide the:learning of each 
prototype pi. By discriminating the data  in 2, each 
prototype is able to represent only onc cluster. Specif- 
ically, only the data points inside the neighborhood of 
pi will contribute to the learning of pi and the neigh- 
borhood is determined with the help of the asymptotic 
property vector fi. To ensure that enough members in 
Z to  he included in the learning of pi,' the asymptotic 
propcrty vector fj should be initialimd far away from 
pi. In t,erms of the learning of fi and pi: suppose at 
sonic moment during the learning of pi, the member 
selected from Z is S. The update of the asymptotic 
property vector fi is written 

1 
7% 

f?" = fi + --bi (a- f i )  q p i ,  f1:Z) (9) 

where 6i = ( lI*,-!;;~;Ll12 )', the notation l l . l 1 2  
stands for the Euclidean norm and the quantity nr. 
is the winning counter off ,  that is updated by "7" = 
n f ,  + GiU(pi,fi,Z). The fiirictioii Q(p,,fi ,S) is given 

(10) 
It can be observed that  the above learning scheme 
guides the asymptotic property vector fi to shift to- 
ward the Z? if Z is in the neighbourhood of its associ- 
atcd prototype pi and gives up those data oiitsidc this 
wea. As more and more members are iiiclutied in the 
learning, the asymptot,ic property vector f; approaches 
pi: [7]. The update equation of pi is given by 

pp"" = pi + a2 (I - pi) (11) 

where a, is some scalar whose value is rclated to pc. f, 
and Z, i.e.; 

According to cqn. (12) and (11); if the mcrnher I is 
far away from the neighborhood of pi: the value ai 

approaches to zero, which implies that S will have littlc 
influence on tlie learning of pi. Upon convergence of pz, 
the distance between pi and fi is smaller than a certain 
threshold value, which implies no more members within 
the data  set are eligible for the learning of pi. 

To detcrrnine when thc SSCL algorithm should split 
one of its prototypes, a center property vcctor gi is 
employcd for each clustcr, which are updated with thc 
k-means algorithm! as the exact arithmctic mean of 
the input data points for which a prototype pi has so 
far been thc winner. If llpi - gJ2 is larger than a cer- 
ta,in threshold, it suggests that an cxtra cluster exists 
which is trying to pull tlie cluster center from pi to 
gi. For non-Gaiissiari distributed clusters: if Z j  is of 
dimension m, a simple way to determine the threshold 
is t (niax(Sll,Slz SI,,))> where Sli is the scale of 
the ith coordinate in the m dimension feature space, 
[7]. Once the algorithm dccides t,here should be an- 
other new cluster, the current prototype is split into 
txo. One stays at. its current location, t,he other is ini- 
tialized at some distant location. For inore efficiency 
in the implementation, a distant property vector ri is 
used and iipdatcd as the  learning of pi continues. But, 
in contrast to  the asymptotic property vector f,, the 
distant property vector ri will be updated to a dist,ant 
location from pi.The algorithm continues until no fur- 
ther cluster is suggested by the splitting criterion. 

The advantage of the SSCL algorithm is in its ca- 
pability of automatically dcterrnining the nuniber of 
clusters in the data  set and moreover its cornputatioiial 
simplicity when dealing with a large data set. Simula- 
tion results of the introduction of the SSCL algorithm 
in underdetermined BSS are shown below. 
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Figure 1. Separating three polynomial fre- 
quency modulated sources from two mix- 
tures (a) Source-I (b) Source-2 (c) Source-3 
(d) Sensor-I (e) Sensor-2 (f) Unmixing output- 
1 (fails) (9) Unmixing output-2 (fails) (h) Un- 
mixing output-3 (fails) (i) Unmixing output4 
(successful) 

5 Simulation 

We assunie a k = 3 sourccs and m = 2 sen- 
sors system. The source signals are assumed to 
be the frequency modulated signals as shown in Fig 
1 (a)-(c). The kernel is selection its the Choi- 
Williams, dist,ribiition in quadratic t-f representa- 
tion..: The mixing matrix is assunicd to  bc A = 

. In the presence 1 0.4'+ 0.7i 0.9 <O.Zi 0.6 + 0.52 
0.6 + 0.6i 0.7 + 0% 0.4 + 0.3i 

of additive noise with signal to  noise ratio of ZOdB, 
the received signals are shown in 1 (d)-(e). With the 
rough classification method as [6], when the the thresh- 
old value E in eqn (8) is set to  0.3, a number 4 of clusters 
have been found. The unmixing outputs in Fig 1 (f)- 
(i) show that although one phantom sources has been 
gcncratcd, sourcc scparation is not successful. Source 
separation is only successful when the threshold value 
is reduced to  0.1. However, 14 phantom sources have 
been generated, which is a rather large number com- 
pared with the nnmber of actnal sources. With the 
SSCL algorithm, we assume no knowledge of the num- 
ber of sources. The algorithm finally splits into t,hree 
prototypes (clusters), which is a desirable result. The 
t-f representations of different sources are successfully 
separated, as shown in Fig 2 (a)-(c). Simulations have 
also bccn carried out for linear chip sources and GMSK 
sourccs, but due to  the limited space tliey are omitted 
here. But much improved performance of tlie SSCL 
algorithm is confirmed. 

6 Conclusion 

We are interested in t,he problem of underdeter- 
mined BSS by using t-f analysis. A major problem 
of the current t-f method in [6] is in its identification 

- -  
-I 

Figure 2. Successful source separation 
of three polynomial frequency modulated 
sources from two mixtures (a) Unmixing 
output-I (b) Unmixing output-2 (c) Unmixing 
output3 

. 

of the phantom sources and further treatmcnt t o  the 
pliantoni sources requires knowledge of the number of 
active sourcesl which might not be available in pratice. 
By the introduction of the SSCL algorithm, not only 
has the problem of phantom sources been overcome but 
also the algorithm is able to operate in a complete blind 
sense. The requircnient of knowing the number of ac- 
tive sources bas been eliminated. Siniulations results 
confirm tlicsc improvements. 
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