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Abstract

The problem of underdetermined blind source sepa-
retion is addressed. An advanced classification method
based upon competitive learning is proposed for au-
tomatically determining the number of active sources
over the observation. Its introduction in underdeter-
mined blind source separation successfully overcomes
the drawback of an existing method, in which the goal
of separating more sources than the number of avail-
able miztures is achieved by exploiting the sparsity of

- the non-stationary sources in the time-frequency do-
main. Simulation studies are pmsented to support the
proposed approach.

1 Introduction

“The aim of blind source separation. (BSS} is to sep-
arate-a number, k, of unknown sources from m mea-
surement signals. The word ‘blind’ in the statement
refers to the lack of a priori information about the in-
put sources and the channels between the sources and
the measurement sensors. This blindness on one hand
implies that the problem can be difficulty, but on the
other hand makes BSS a powerful ‘tool; as it could be
applied in a wide range of applications where priori
knowledge is difficult or impossible to achieve; for ex-
ample where array calibration would be impractical.

Assuming that the input sources are statistically
independent, many BSS algorithms resort to the ap-
proach of independent component analysis, e.g., the
JADE algorithm, [4], and the natural gradient algo-
rithm, [1]. By attempting to restore the mutual in-

dependence property of the sources, signal separation
" is achieved subject to a possible scaling and permuta-

tion ambiguity. Besides the mutual ihdependence as-
sumption, it is, moreover, a convention to assume that
“there exists at least as many sensors as sources, i.e.,
k < m. When this assumption is violated, the problem
is termed underdetermined BSS in the literature. In (3],
assuming the source distribution is ﬁpd,l“&:e and the ele-
ments of the mixing matrix are uniformly dlstrlbutedT

1

an algorithm which jointly estimates the mixing matrix
and the sources is proposed. However, this sparsity as-
sumption for the sources may not hold in many appli-
cations. In [5], an alternative approach is proposed by
noticing that the received signals will be colinear with
the corresponding steering vector {i.e., the column of
thé mixing matrix associated with that source) if only
a single source is prescnted at a given time instant. Re-
cently, an underdetermined BSS method is proposed by
exploiting the information in the time-frequency (t-f)
domain. Assuming that sources are orthogonal in the
t-f domain, the t-f representations of different sources
can be separated by clustering the t-f points which are
associated with the same steering vectors, [6]. This al-
gorithm requires, however, that the number of sources
be known a priori and often leads to phantom sources
being identified, because of the rough classification em-
ploved. In’this paper, by applying an advanced classifi-
cation method called self-splitting competitive learning
(SSCL) algorithm, [7], not only is the performance of
the time-frequency method greatly improved but also
the newly proposed approach is able to separate dif-
ferent sources even when the number of active sources
is not known. This advantage malkes the proposed ap-
proach applicable in many practical applications.

2 Data Model

A multi-input and multi-ontput (MIMO) system
is employed. The measurement sighals are typically
modelled as hnear mstantaneous mixtures for simplic-
ity. Denote (-)*, ()7 and ()" as the operations of
transpose, conjugate transpose and complex conju-.
gate respectively. For an array of m sensors, at dis-
crete time instant ¢, the measurement signal x{t) =

[£1 () 22 (2) ... m (1)]7 is written as
x (t) = As (£) + n(t) (1)
where s (t)'= [s1 (£) s2(2) ... s (£)]” is the source vec-

tor contributed from % sources, A is an m x k mixing
matrix and n (£} is the zero mean additive noise which
maybe present in the measurement. As the mutual
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independence property is lost after linear mixing, an
unmixing matrix is introduced in independent compo-
nent analysis to restore this property. Denote B as
the unmixing matrix, which is of dimension k by m.
The unmixing output y (£} is the estimator of the input
sources subject to a scaling and permutational ambi-
guity.

y (&) = Bx(t) (2)

In the approach of t-f analysis, as we will mention
below, rather than directly looking for the unmixing
matrix B, signal separation is achieved in two stages,
i.e., the separation of t-f representations from different
sources and the synthsis of the source signals from the
corresponding separated t-f representations.

3 A t-f underdetermined BSS method
and the problem of classification

Time-frequency analysis is a useful tool in processing
non-stationary signals. With an appropriate t-f trans-
form, a one-dimensional function of time is mapped
into a two-dimensional function of time and frequency.
By so doing, more information of the input sources can
be revealed. In the method of [6], a quadratic t-f rep-
resentation is employed. Denote ¢ (v,{) as the signal-
independent kernel function. The discrete-time form of
Colen’s class of t-f representation for signal =; (¢), [2],
which corresponds to the auto term in the quadratic
t-f representation, is given by

Z Z By (v, 1) (3)

l=—oc v=—00

ot v — Dol (E+ov ) e S

Doy, (t: f) =

The cross t-f representation of two signals x; (t) and
x; {t} is written as

33 (w0 % @)

=00 v="00

wi(trv =Dzl (t+v+1)e 0

DI;IJ‘ (t, f) =

The extension of the t-f representation to accommodate
vector signals leads to, [6] and [2],

Du(t,f) = D > o(u)x (5)

l=—00 v=—00

x({t+ov—Ox (t v e il
where @ (v, {) is a matrix whose (i, j)th entry ¢,; (v,1) is
the kernel associated with the i*" and the %" measure-
ment sensor output. Notice that Dy (¢, f) is related to
that of the input sources by the following relationship,

Dy (t.‘f) = Al (t:f)AH (6)
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where Des (8, f) =310 _ 302 @ Ds(t+v—1)-
st (t+v+1)e 41 is the t-f matrix of the input
sources. For underdetermined BSS, under the or-
thogonality assumption that the t-f distributions of
different sources do not overlap, only one diagonal
entry of Dy (¢, f) will be different from zero. Hence,
if at the point (;, f;), only source-j is present, the t-f
representation Dy (£, f;) can be expressed as, [61,

Dxx (ti:fi) = DSij (tldfl) aja&H (7)

where a; is the gt column of the mixing matrix A,
i.e., the steering vector of source-j. It can be observed
that the scalar D, .. (, f) and the vector a; are in fact -
the principal eigenvalue and eigenvector of the matrix
Dy (ts, fi). Moreover, if two t-f points are associated
with the presence of the same source, in principle, the
principle eigen vector of matrix Dy (2;, f;) should re-
main the same. Classification according to the princi-
pal eigen vectors therefore provides a way to separate
the signal spectra. The source signals can be synthe-
sized with the estimator of Dy, (£, f), for j =1...k,
[6].

A crucial problem in this approach is in the classifi-
cation of the set of eigen vectors obtained at different
t-f points. In 6], two normalized vectors a; and a; are
allocated into two different classes if the angle between
them is larger than a certain threshold, i.e.,

Arccos (ﬁ:{éjr) > (8)

T

where & = [Re(a,)™ Tm ()] and }&} = 1. How-
ever, this approach often gives more classes than the
number of sources; as indicated by the authors, [6].
To avoid artificial sources, further thresholding is sug-
gested and for its operation the knowledge of the num-
ber of active sources is necessary. As such information
is likely to be unknown in many applications, to enable
the algorithin to operate in a completely ‘blind’ fash-
ion, better classification techniques are required. In the
following section, the SSCL algorithm is introduced for
this purpose.

4 Self-Splitting Competitive Learning
in Underdetermined BSS

The objective of classification is to detect the hidden
structure within some data set Z. If two members of
the data set are judged to be similar (note that similar-
ity can be measured in various ways}, they will be as-
signed into one cluster, otherwise they will be allocated
into different clusters. In our application of underde-
termined BSS, the data set Z refers to the collection
of eigenvectors a; and ideally it should be partitioned
into k clusters, as there arc k& active sources present at
the system input.
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Assuming that the value of % is known, many clus-
tering algorithms have been proposed, e.g., the well-
known k-means algorithm. When the value of % is not
known, however, only a few methods are available in
the open literature. One of the widely used approaches
determines the number of clusters by testing the error
measure with respect to varying numbers of clusters.
The idea is based on the fact that the error measure
decreases monotonically as the number of clusters in-
creases and the error reduction becomes much slower
when a natural number of clusters has heen reached.
However, for a large data set, such an approach leads
to heavy computational complexity dué to the repeated
computation of the error measure with respect to dif-
ferent. numbers of clusters. In comparison, the SSCL
algorithm partitions the data set in a completely dif-
ferent way. The algorithm is proposed from the view
of competitive learning in neural networks, in which
several prototypes p; (A prototype corresponds to a
neuron in neural networks.) are competing to ‘win’ as
every member of Z is included in the examination. In
the ideal situation, each cluster is associated with a
prototype at its center. Therefore the problem of esti-
mating the right number of clusters in classification is
effectively the process of determination of the number

~of prototypes in competitive learing.

At the initialization stage of the SSCL algorithm,
the whole data set is consider to be a single prototype,
which will be split into further prototypes when a cer-
tain condition is met. The danger of this approach is
recognized by the author in [7]. That is, one prototype
might represent more than one cluster if the number of
prototypes is less than the natural number of clusters,
and as a result, none of the clusters could be correctly
identified. To avoid this problem, an asymptotic prop-
erty vector f; is suggested to guide the-learning of each
prototype p;. By discriminating the data in Z, each
prototype is able to represent only one cluster. Specif-
ically, only the data points inside the neighborhood of
pi will contribute to the learning of p; and the neigh-
borhood is determined with the help of the asymptotic
property vector f;. To ensure that enough members in
Z to be included in the learning of p;, the asymptotic
property vector f; should be initialized far away from
;. In terms of the learning of f; and p,, suppose at
some moment during the learning of p;, the member
selected from Z is a. The update of the asymptotic
property vector f; is written as

finew = fz + niéz (5 — fl) \Ij(r;u f!-a) (9)

i

_ lIps—£1 : i
where §; = (Hpj*'ﬁ”zﬂ'upi_fiuz) , the notation [,

stands for the Euclidean norm and the quantity ng
is the winning counter of f; that is updated by ng* =
ng, + 8;¥(py, £;,8). The function ¥ (p;, f;,a) is given

by

1 if

@@umaz{[) s — £ill, > llp, &l

otherwise

(10)
It can be observed that the above learning scheme
guides the asymptotic property vector f; to shift to-
ward the &, if 4 is in the neighbourhood of its associ-
ated prototype p; and gives up those data outside this -
area. As more and more members are included in the
learning, the asymptotic property vector f; approaches
pi: [7]- The update equation of p; is given by

Tew

pre” =p; +a; (A —p;) (11)

where «; is some scalar whose value is related to p;, f;
and a, i.e.,

HWEM)*
Q; = 1+—_ 12
( o =i, a2

According to eqn. (12) and (11), if the member & is
far away from the neighborhood of p;, the value o;
appreaches to zere, which implies that a will have little
influence on the learning of p;. Upon convergence of p;,
the distance between p; and f; is smaller than a certain
threshold value, which implies no more members within
the data set are eligible for the learning of p;.

To detcrmine when the SSCL algorithm should split
one of its prototypes, a center property vector g; is
employed for each cluster, which are updated with the
k-means algorithm, as the exact arithmetic mean of
the input data points for which a prototype p; has so
far been the winner. If ||p; — g;|i» is larger than a cer-
tain threshold, it suggests that an extra cluster exists
which is trying to pull the cluster center from p; to
g:- For non-Gaussian distributed clusters, if a; is of
dimension m, a simple way to determine the threshold
is % (max (Siy, Slp ... Si,)), where Si; is the scale of
the 5* coordinate in the m dimension feature space,
[7]. Once the algorithm decides there should be an-
other new cluster, the current prototype is split into
two. One stays at its current location, the other is ini-
tialized at some distant location. For more efficiency
in the implementation, a distant property vector r; is
used and updated as the learning of p; continues. But,
in contrast to the asymptotic property vector f;, the
distant property vector r; will be updated to a distant
location from p;.The algorithm continues until no fur-
ther cluster is suggested by the splitting criterion.

The advantage of the SSCL algorithm is in its ca-
pability of automatically determining the number of
clusters in the data set and moreover its computational
simplicity when dealing with a large data set. Simula-
tion results of the introduction of the SSCL algorithm
in underdetermined BSS are shown below.
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Figure 1. Separating three polynomial fre-
guency modulated sources from two mix-
tures (a} Source-1 {b)} Source-2 (c) Source-3
(d) Sensor-1 (e) Sensor-2 (f} Unmixing output-
1 (fails) (g) Unmixing output-2 (fails) (h) Un-
mixing output-3 (fails) (i) Unmixing output-4
{successful)

5 Simulation

We assume a k = 3 sources and m = 2 sen-
sors system. The source signals are assumed to
be the frequency modulated signals as shown in Fig
1 (a)-(c). The kernel is selection as the Choi-
Williams distribution in quadratic t-f representa-
tion..; The mixing matrix is assumed to be A =

04407 09402 06+05:

0.6+0.60 0.7+02¢ 04403
of additive noise with signal to noise ratio of 20dB,
the received signals are shown in 1 (d)-(e). With the
rough classification method as {6], when the the thresh-
old value € in eqn (8) is set to 0.3, a number 4 of clusters
have been found, The unmixing outputs in Fig 1 (f)-
{1) show that although one phantom sources has been
generated, source separation is not successful. Source
separation is only successful when the threshold value
is reduced to 0.1. However, 14 phantom sources have
been generated, which is a rather large number com-
pared with the number of actual sources. With the
SSCL algorithm, we assume no knowledge of the num-
ber of sources. The algorithm finally splits into three
prototypes (clusters), which is a desirable result. The
t-f representations of different sources are successfully
separated, as shown in Fig 2 (a)-(c¢). Simulations have
also been carried out for linear chip sources and GMSK
sources, but due to the limited space they are omitted
here. But much improved performance of the SSCL
algorithm is confirmed.

. In the presence

6 Conclusion

We are interested in the problem of underdeter-
mined BSS by using t-f analysis, A major problem
of the current t-f method in [6] is in its identification

969 Proc. ISPA03

Figure 2. Successful source separation
of three polynomial frequency modulated
sources from two mixtures (a) Unmixing
output-1 (b) Unmixing output-2 (¢} Unmixing
output-3 .

of the phantom sources and further treatment to the
phantom sources requires knowledge of the number of
active sources, which might not be available in pratice.
By the introduction of the SSCL algorithm, not only
has the problem of phantom sources been overcome but
also the algorithm is able to operate in a complete blind
sense. The requirement of knowing the number of ac-
tive sources has been eliminated. Simulations results
confirm these improvements.
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