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ABSTRACT 

Permutation of the outputs at different frequency bins 

remains as a major problem in the convolutive blind source 

separation (BSS). In this work a coupled Hidden Markov 

model (CHMM) effectively exploits the psychoacoustic 

characteristics of signals to mitigate such permutation. A 

joint diagonalization algorithm for convolutive BSS, which 

incorporates a non-unitary penalty term within the cross-

power spectrum-based cost function in the frequency 

domain, has been used. The proposed CHMM system 

couples a number of conventional HMMs, equivalent to the 

number of outputs, by making state transitions in each 

model dependent not only on its own previous state, but 

also on some aspects of the state of the other models. Using 

this method the permutation effect has been substantially 

reduced, and demonstrated using a number of simulation 

studies.  

1. INTRODUCTION 

Convolutive BSS of nonstationary signals has been 

introduced recently [1] [2]. In practical situations such as in 

radio telecommunications, telemetry, radar, sonar, and 

especially in the speech context the sources are often 

nonstationary. A number of methods have been presented 

to solve BSS for convolutive mixtures: (1) performing 

blind separation in the time domain by extending the 

existing instantaneous algorithms. There are, however,  two 

major problems with this method; first, it cannot cope with 

the nonstationary signals efficiently, and second the 

unmixing matrix may not be causal [3]. The later problem 

prevents an online separation of the sources. (2) 

Decomposing the problem rather than to learn the possibly 

huge filter all at once, i.e. the decomposition approach [4]; 

(3) exploiting the statistical special structure contained 

within the source signals to formulate various separation 

criteria [1]; (4) Transferring the mixtures into the 

frequency domain and apply BSS in each frequency bin, as 

an easy, effective and straightforward way to separate the 

nonstationary convolutive mixtures [5] [6] [2]. Assuming 

short-term stationarity of the data, a short term Fourier 

transform (STFT) is utilized to transform the signal 

segments into the frequency domain. In this case the 

convolutive BSS problem is totally or partially transformed 

into multiple short-term instantaneous problems. The 

instantaneous mixtures are then separated in every 

frequency bin. As for the other BSS methods, there are 

ambiguities due to the change in sign, scale, spectral shape, 

and permutation, but all except permutation can essentially 

be ignored. The permutation problem has been addressed 

in the literature and some solutions have been given [7]. In 

this paper a new method based on CHMM is developed. 

CHMMs have been introduced to better model multiple 

interacting time series processes [8]. The proposed CHMM 

system readjusts the permuted outputs by coupling a 

number of conventional HMMs, equivalent to the number 

of outputs, by making state transitions in each model 

dependent not only on its own previous state, but also on 

some aspects of the state of the other models. 

2. CONVOLUTIVE BSS IN FREQUENCY DOMAIN 

Consider N source signals are received by M sensors, 

where M≥N. The output of the jth sensor is modelled as a 

weighted sum of convolutions of the source signals 

corrupted by additive noise, that is  
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where jiph  is the P-point impulse response from source i

to sensor j (j = 1, . . ., M), si is the ith source signal, xj is the 

received mixture by the jth sensor, vj is the additive noise, 

and n is the discrete time index. xj are converted into 

frequency-domain time-series, Xj(ω,t), using the Discrete 

Fourier Transform. Assuming the mixing and the unmixing 

systems are time invariant [1], a linear convolution can be 

approximated by circular convolution if P«T;

),(V),(S)(H),(X ttt ωωωω +=   (3)  

where T
N tStSt )],(,),,([),(S 1 ωωω m=  and =),(X tω

T
M tXtX )],(,),,([ 1 ωω m  are the time-frequency 

representations of the source signals and the observed 

signals respectively. An unmixing matrix is then developed 

in order to reconstruct the source signals as 
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),(X)(W),(Y tt ωωω =     (4)  

Here T
N tYtYt )],(,),,([),(Y 1 ωωω �=  is the time-

frequency representation of the output signals. The 

parameters of )(W ω  are determined so that the outputs are 

mutually independent. 

         Based on the separation in the frequency domain the 

multiple covariance matrices estimated at different time 

lags are simultaneously approximately diagonalized for the 

transformed convolutive mixtures. The separation criterion, 

or the cost function, is a minimisation of the squared error 

between the covariance matrix of ),(Y tω and the diagonal 

covariance matrix of the source signals ),(S tω , which is 

approximated by the diagonal covariance matrix of the 

output signals ),(Y tω  i.e.
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where ),)(W( kJ M ω  is defined as  

2
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where 
2

F
⋅  is the squared Frobenius norm, RY(ω,k) is the 

output covariance matrix, and diag(.) is an operator which 

zeros the off-diagonal elements of the matrix. Since W(ω)

= 0 leads to a trivial solution, the cost function is modified 

by effectively incorporating a penalty term using a 

constraint on W(ω) to prevent this degenerate solution at 

each iteration. Using a non-unitary matrix constraint with 

the form  

)](W)1(I][I)(W[),)(W( ωηηωω −−−= diagkJc  (7) 

where I is an M×M unitary matrix and η is a Lagrange 

multiplier. Then we have 
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where λ is a weighting factor. The parameter η provides a 

compromise between the separation performance and the 

convergence speed [2]. Regarding the least squares (LS) 

solution to minimise the above cost function the following 

update equation is achieved.  
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Some criteria have also been introduced for adaptation of 

the iteration step size )(ωµ [2].

      Although the algorithm effectively separates the 

independent components there is still indeterminacy in 

separating the actual sources due to the inherent 

permutation problem. In above method, when we try to 

combine the results from the individual frequency bins in 

the time domain, the permutation problem occurs because 

of the inherent permutation ambiguity in the rows of W(ω).

The existing methods try to solve the problem in the 

following ways: (1) Constraints on the filter models in the 

frequency domain [7] [1]; (2) exploiting the continuity of 

the spectra of the recovered signals [9]; (3) co-modulation 

of different frequency bins [10]; (4) using a time-frequency 

source model [7] and finally (5) using a beamforming view 

to align solutions [11]. Short-term stationarity of the 

signals is efficiently exploited here in construction of a 

CHMM model by coupling the sequential frames of the 

output signals. 

3. SOLUTION TO PERMUTATION PROBLEM 

USING CHMM 

The frequency-domain BSS (FD-BSS) algorithms are 

assumed to be invariant to scaling and permutation of the 

separated frequency bin signals. The scaling can cause the 

scaling of every frequency band to be different resulting in 

spectral deformation of the original sources. As suggested 

in [7] the scaling problem can be remedied by forcing the 

determinant of the unmixing matrices to unity. This 

prevents alteration of the spectral envelope, while 

preserving the separation. On the other hand permutation 

indeterminacy is still an open problem. In places where 

there is no severe spectral deformation and the number of 

sources is low, the uniformity of the spectrum may be 

exploited in readjusting the weights of the unmixing matrix 

to alleviate the problem. However, a systematic approach 

to the problem is required where the number of sources is 

high.   

To develop an effective solution to the permutation 

problem an effective way is to take the psychoacoustic 

model of the speech signals into account. As a simple 

manifestation of such a model is that the pitch frequency of 

the speakers are almost fixed and different from each 

other’s. Also, the third formant for each speaker does not 

vary dramatically, or it is slow varying. However, the 

position of the other formants can be predicted using a 

simple autoregressive model. The overall spectrum is then 

approximated. Here, a number of HMMs equivalent to the 

number of the sources, coupled to each other, can be used 

to effectively track the direction of separation and 

ultimately prevent permutation. The number of states in 

each layer is identical to the number of frequency bins. The 

proposed CHMM system is learned and classifies based on 

the peak value at each frequency bin. Figure 1 shows the 

model for a system of two sources.  
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Fig. 1. The proposed CHMM model for solving the 

permutation problem for two sources (C=2). Sp denotes the 

permutation state and Snp refers to the state where there is 

no permutation. 

The CHMM is trained based on the previous frames and 

the estimated spectrum of the current frame. T refers to the 

number of frequency bins in this case equivalent to the 

number of states in each layer. Snp is the state, which 

confirms that there is no permutation. Similarly, Sp is the 

state, which confirms that there is a permutation.  

3.1. CHMM Formulation 

The transition probabilities, aij, are determined as the result 

of a learning algorithm. In this model )( 1−tt SSP ,

probability of being in state tS  at time t subject to being in 

state 1−tS  at time t-1, for a standard HMM, is replaced by 
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c
t SSSSP −−− l . The major problem here is to 

estimate this joint probability density function (pdf). The 

best way to simplify the problem is to replace the joint pdf 

by a linear combination of marginal probabilities as 
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cc 'θ s are the coupling parameters 

representing the coupling strengths between the two 

objects c′  and c, Ccc ≤′≤ ,1 , where C is our number 

of layers equivalent to the number of the speakers. In the 

case of having two sources, cc
kkcc

′
−=

,1
' αθ , 10 −≤≤ Tk ,

and C=2. Thus the proposed CHMM is characterized by a 

quadruplet ),,,( BAπλ = , where π  is the initial 

condition, { }ijA α=  is the matrix of transition 

probabilities,  { }jbB =  is the symbol probability vector 

and { }cc′= θ  is the new interaction parameter in the 

CHMM formulation. For C HMMs coupled together, the 

extended forward and backward variables should be 

defined jointly across C HMMs as 

),,,,,(),,( ,,01 1
λα

CjtjttCt SSooPjj lll =    (10) 

and 

( )λβ ,,,,,),,( ,,111 1 CjtjtTtCt SSooPjj lll −+= . (11)  

Since the conventional modified variables require high 

computational complexity the following modified iterative 

method is used to calculate the forward variables 

inductively [12]. 

1. Initialisation: 

)(.)( )(

1

)()()(

1

cc

j

c

j

c obj πα =                               (12) 

2. Induction: 

( )∑ ∑′
′′

−′= c i
cc

ij
c

tcct
c

j
c

t aiobj
),()(

1
)()(

).()()( αθα , t >1 

                  (13) 

3. Termination: 

( )∏ ∑= c j
c
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where )(
)(

t
c

j ob is the probability of observing ot in state j.

3.2. Training the CHMM 

Instead of using an EM algorithm [12], to avoid the 

computational complexity, an approach described by Baum 

[13] based on self-mapping transformation, for learning the 

CHMM is followed. The convergence of the algorithm has 

been guaranteed [13]. The transformation is motivated by 

the optimality condition of standard Lagrange multiplier 
method and leads to an iterative reestimation procedure. 

Based on the iterative optimisation procedure for learning 

the parameters [13] it can be verified that )( λOPP =  can 

be locally maximized when 
),( cc

ij
′α  is transformed to  
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By changing “→” to the  “=” sign the values for 
),( cc

ija
′

 are 

obtained.  Similar procedures can be followed to find π, B, 

and θ parameters. The algorithm takes only a few iterations 

(on the order of 0.5 seconds on a P4 PC) to learn and a 

negligible time to classify.  

4. EXPERIMENTAL RESULTS 

Similar to [2], for artificially convolved mixtures, the 

source signals are downloaded from the website 

http://medi.uni-oldenburg.de. Both signals are sampled at 

12kHz. The samples are 16-bit 2’s complement in little 

endian format. The sources are mixed using H11(z) = 1+1.9

z -1
 – 0.75 z –2

, H 21(z) = - 0.7 z -5
 – 0.3 z –6

 + 0.2 z –7
, H 12(z)

= 0.5 z –5
 + 0.3 z –6

 0.2 z –7
, H 22(z) = 0.8 – 0.1 z –1

. For a 

frame length of 6000 samples, the weights are initialised at 

W0(ω), a fixed µ =1, η =0.1 and λ = 0.01 (for the best 

result), we compared the results by comparing the error 
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as ]||sy||[ 22 −= Eε  with the results of the same method 

when the permutation is not considered, and also the results 

of Parra’s algorithm (λ = 0) in the following table. 

Table 1. The comparison between the three BSS systems, in 

terms of the estimation error: 

Parra’s method 

(λ = 0) 

Without CHMM 

(λ = 0.1) 

With CHMM 

(λ = 0.1) 

ε2 -25 dB -38 dB -40 dB 

A comparison between the spectrum of the separated 

signals without and with compensation of the permutation 

is given in Figure 2. From the figure it is clear that the 

permutation has been compensated for a number of bins; 

observe for example, the improved continuity in the 

spectrum of 2.(c) over the interval 1000-2000 Hz.  

Fig. 2. A comparison between the signals (only one of the 

signals), (a) the original signal and its spectrums, (b) the 

reconstructed signal without CHMM, and (c) the separated signal 

after using CHMM.

For the real room recording the microphone sounds are 

downloaded from http://www.esp.ele.tue.nl/. The room size 

was a 3.4 × 3.8 × 5.2 m
3
, and the microphones spaced 58 

cm apart. The sampling frequency and the bitrate were 12 

kHz and 16 bits/sample respectively. The subjective 

comparison verifies the improvement achieved as a result 

of application of the proposed CHMM to avoid the 

permutation problem. 

5. CONCLUSIONS AND FUTURE WORK 

A new method based on a CHMM has been presented here 

for solving the permutation problem of the convolutive 

BSS of nonstationary sources in the frequency domain. The 

objective (for when the source signals are available) and  

subjective results show a remarkable improvement in the 

system performance. The proposed CHMM can be 

modified to take all the psychoacoustic parameters of the 

speech signals into account. This will result in a more 

accurate system at the price of an increase in complexity 

and the computation time. The efficacy of this method is 

likely to vary with the nature of the speech interval. 
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