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Abstract

The work presented in this thesis is devoted to the study of mechanism of tyre force
generation and its influence on handling dynamics of ground vehicles. The main part
of the work involves the development of tyre models for use under steady-state and
transient operating conditions. The general capability of these models is assessed in a
full vehicle simulation environment. The interaction between tyre and vehicle

dynamics is critically evaluated and the observed vehicle behaviour is related to the
inherent characteristics of different tyre models.

In the field of steady-state tyre modelling, two versions of a numerical tyre model are
developed. The modelling procedure is carried out in accordance with the viscoelastic
properties of rubber, which influence the mechanical properties of the tyre structure
and play a significant role in the determination of friction in the tyre contact patch.
Whilst the initial simple version of the tyre model assumes a parabolic pressure
distribution along the contact, a later more elaborate model employs a numerical
method for the calculation of the actual normal pressure distribution. The changes 1n
the pressure distribution as a result of variations in the rolling velocity and normal
load influence mainly the levels of self-aligning moment, whilst the force
characteristics remain practically unaffected. The adoption of a velocity dependent
friction law explains the force generating behaviour of tyres at high sliding velocities.

The analysis is extended to the area of transient tyre behaviour with the development
of a tyre model appropriate for the study of transient friction force generation within
the contact patch. The model incorporates viscoelasticity and inertial contributions,
and incorporates a numerical stick-slip law. These characteristics are combined
together for the successful simulation of transient friction force generation. The
methodologies developed for the modelling of transient friction and steady-state tyre
force generation are combined and further extended in order to create a generic
transient tyre model. This final model incorporates a discretised flexible viscoelastic
belt with inertia and a separate fully-dynamic discretised tread, also with inertia and
damping, for the simulation of actual prevailing conditions in the contact patch. The
generic tyre model appears to be capable of performing under a variety of operating

conditions, including periodic excitations and transient inputs which extend to the
non-linear range of tyre behaviour.

For the evaluation of the influence of the aforementioned tyre models on the handling

responses of a vehicle, a comprehensive vehicle model is developed, appropriate for
use in handling simulations. The two versions of the steady-state models and the

generic transient model are interfaced with the vehicle model, and the response of the
vehicle to a step-steer manoeuvre 1s compared with that obtained using the Magic
Formula tyre model. The comparison between the responses is facilitated by the
definition of a new measure, defined as the non-dimensional yaw impulse. 1t is found

that the transience involved in tyre behaviour may largely affect the response of a
vehicle to a prescribed input.

Keywords: Tyre forces, viscoelastic contact mechanics of tyres, vehicle handling,
transient manoeuvres, combined lateral and longitudinal slip
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Chapter 1: Introduction

1.1 Handling, Stability and the Role of the Pneumatic Tyre

Modern ground vehicles are expected to satisfy a large number of requirements that
are very often in conflict with each other. For example, a passenger car needs to be
powerful and at the same time fuel efficient. It has to achieve high standards of
passive, and progressively active safety and protect passengers in case of collision,
while being lightweight and providing enough internal space. Handling qualities and
stability refer to the directional responsiveness of a vehicle and are related more than
any other factor to the original purpose of an automobile, being the safe transportation

of passengers and goods to desired destinations by responding smoothly to the driver’s

commands.

Handling and stability are frequently used as synonyms, without due distinction.
Although these two terms have a lot in common and are interrelated in many cases,

there are a few differences, which are worth identifying by attempting to provide them
with broad definitions.

The stability of a ground vehicle can be described as its performance under
manoeuvres, which result in alterations to the state of its motion in a generic, vectorial
sense. Performance, 1n this context, is related to the capability of achieving high
values of acceleration in braking, cornering, lane change and other manoeuvres, while

the driver maintains control over the vehicle. Stability can also be defined in a more
mathematical way. For example, by adopting some necessary simplifications, a
vehicle’s motion can be described by a linear system of differential equations. General
theories that describe the mathematical stability of such systems can then be employed

in order to assess the response of a vehicle to certain excitations.

There seems to be a slightly different use of the term handling by test/competition

drivers and research engineers. The former describe handling as the driver’s
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perception of the vehicle’s stability [1]. It reflects the confidence a driver may or may
not feel about the extent of a car’s responsiveness to his commands. Usually, this
feeling is related to the feedback provided via the steering wheel and the tendency of a
car to roll during cornering or dive during braking, but more experienced drivers may
also refer to a number of other subjective factors. A vehicle with good handling
qualities is almost always good in terms of stability, but the converse of this argument
is not necessarily held true. A stable vehicle may be described as poor in terms of
handling, if the feedback to the driver is rather hazy, reducing his anticipation of the
vehicle’s motion [1]. On the other hand, handling is frequently used by researchers

(for example in [2-4]) in order to describe stability issues. In this thesis, the term

handling is used hereinafter to encompass the handling as well as the stability qualities

of a vehicle.

Very often, advances in technology precede the evolution of science and this fact is
demonstrated dramatically in the area of ground transportation. It is believed that the
wheel was invented in Mesopotamia or Asia sometime around 3500-4000 BC. From
the early 19" century the importance of the independent steering of the front wheels of
horse-drawn carriages was appreciated and the well-known Ackerman steering
principle was soon established [5]. Nevertheless, the first attempts to study a vehicle’s
motion in a dynamic manner, paying attention to the relation of the forces involved
and the resulting path came almost a hundred years later, in the beginning of the 20%

century. Still, the importance of the forces generated on the contact patch between the
tyres and the road was fully appreciated only after 1930. Today the use of pneumatic

tyre has well established its position as the cornerstone in vehicle handling analyses.
Apart from its original purpose as a cushion between the vehicle and the rough road,
the tyre’s role in the generation of all major controlling forces, including longitudinal
traction, braking and lateral cornering forces is the factor that determines the handling
behaviour of a vehicle. This role is demonstrated more than anywhere else in the area
of racing. The choice of tyres hugely influences the overall performance of a

competition vehicle and the competition between major tyre suppliers is often more

interesting to follow than the rivalry between car manufacturers and drivers.

Arguably, the pneumatic tyre is one of the most successful human inventions and one

of the most difficult to study. For more than 50 years it has received enormous

2
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attention by many researchers (see for example the collection of research

achievements published in [6]) who have achieved insight into several aspects of tyre

behaviour and their effects on the handling qualities of vehicles. The present research
continues this evolutionary trend, mainly dealing with the steady-state and transient

responses of the pneumatic tyre and their relation with the handling performance of

ground vehicles.

It should be noted that throughout the present thesis, for the sake of brevity, the word

“Vehicle” is used in place of the most appropriate term: “Ground Vehicle”.

1.2 Brief Experimental and Theoretical Background

Both the nature of, and the importance of handling investigations have been addressed

in relation to the role of the pneumatic tyre in the mechanism of force generation. In

order to clarify the matter, handling and tyre dynamics are discussed further in the

following paragraphs.

In general, handling investigations are conducted experimentally, analytically or
numerically. Experimental testing usually involves driving a vehicle on a test track
and measuring several kinematic outputs such as lateral acceleration, yaw velocity,
roll angle and braking distance. Experimental investigations are most representative of
reality and when conducted by professional test drivers provide a spherical perception
of the vehicle’s handling performance. The drawbacks include high costs, the fact that
tests are carried out on the manufactured product and, for some tests, the possibility

that the results might be affected by the drivers’ subjective judgement. On the other
hand, analytical approaches and computer simulations allow engineers to investigate
the handling performance far ahead of the production phase, in a way that even the
first prototypes can be more or less optimised. Apart from that, it is possible to
investigate dangerous driving scenarios and precisely determine the effect of certain

parameters. Finally, simulations are most valuable in designing control strategies for

the improvement of the handling performance of ground vehicles.

Irrespective of whether handling tests are carried out on a test track or on a computer

in an office, they can be further divided into two categories, namely Steady-State or

3
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Transient handling investigations. In general, the former category involves cornering
at a constant radius with constant forward velocity. Given the magnitude of forward
velocity, the required steer-angle for negotiating a corner of known radius of curvature
is an important measure of the handling behaviour of a vehicle. As opposed to Steady-
State, transient handling refers to rapidly changing driving commands, such as step-

changes in the steer-angle, severe braking, hard acceleration, lane-change or a

combination of these.

For Steady-State predictions, relatively simple vehicle models, incorporating two or
three degrees of freedom can be used as a starting point for analytical or numerical

solutions. For instance, in analytical steady-state approaches, it is common practice [2]

to reduce the degrees of freedom of the full vehicle and concentrate on the lateral and
yaw velocities, assuming constant forward speed and steer-angle. For transient

analyses the approach is mostly numerical, and the models usually take into account
all the six possible motions of the vehicle in space. Depending on the level of detail
required, a more realistic representation of the suspension system may be included,

resulting in an increase in the number of degrees of freedom for the vehicle model.

In line with this philosophy of vehicle handling analyses, tyre behaviour may be
Investigated experimentally, analytically or numerically and, as already implied, the
distinction between Steady-State and Transient conditions applies in the case of
features of tyre behaviour as well. Broadly, Steady-State tyre analysis refers to the
generation of conditions similar to the ones observed in the neighbourhood of a wheel
of a vehicle operating under Steady-State conditions, whereas Transient tyre analysis
refers to the generation of conditions that characterise the neighbourhood of a wheel
of a vehicle operating under Transient manoeuvres. The most common exception to
this rough rule is related to braking. Although steady-state braking is an essential
ingredient in tyre behavioural analyses, when referring to the handling characteristics

of a vehicle as a whole, braking manoeuvres are mostly related to transient operating

conditions.

Steady State and Transient conditions alike may be generated experimentally with the

aid of specially designed tyre test rigs, consisting of rotating drums or flat belts, which
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represent the road surface and the necessary mechanisms, which support and move the

tyre-rim system.

Depending on the type of application, tyre data may be used in handling simulations
directly as obtained by experiments or it may be generated within the simulation
procedure, using tyre models of varying detail. In general, tyre models can be divided
into two main categories, namely empirical or physical. Empirical models use
analytical formulae, which are based on successful fitting of experimental
measurements in the form of empirical relations, while physical models attempt a

physical description of the tyre structure and the mechanics of its interaction with the

road surface in a fundamental manner, based on established physics rather than pure

observations or measurements.

1.3 Problem Definition

Prior to the broad expansion of powerful computer systems, handling studies were
carried out using simple linear differential equations in order to describe the vehicle’s
motion. This approach is demonstrated in research papers [2] and text books [6], [7]
and [8]. In this procedure the tyre behaviour is assumed to be linear, which is a valid
simplification for a vehicle operating under low acceleration levels. In recent years,
the evolution in the computer technology has enabled a more complex, non-linear
modelling of the vehicle and tyre. A presentation of modern simulation methodologies
1s given in [9]. Lagrangian dynamics provide a well-defined, consistent method for
modelling the entire vehicle in what has become known as a multi-body dynamics
approach [10], [11]. Several components, such as the suspension links, can be
modelled separately resulting in a non-linear system, incorporating hundreds of
degrees of freedom and, of course, including the corresponding kinematic constraints.
The Newton-Euler approach 1s less generic, as it lacks the ability to include the effect
of holonomic constraints [11] in the equations of motion. Nevertheless, it can provide
complex non-linear equations for the motion of the vehicle model. Regardless of the
modelling approach, the differential-algebraic system of equations can be solved

numerically on a modern computer with very high degree of accuracy. In terms of
modelling, the weakest link in this procedure remains the pneumatic tyre. Unlike the

vehicle itself, which is governed by the laws of rigid body motion in space, the tyre

d
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demonstrates an extremely complex behaviour which spreads into the areas of contact
mechanics, viscous friction, elasticity, vibration of structures, thermodynamics and

hydrodynamics, requiring a multi-physics approach to deal with its complex

behaviour.

Typically, tyre force generation i1s studied either under steady-state operating

conditions, or under transient manoeuvres. Even in steady state investigations, the
influence of a number of factors such as the normal pressure distribution along the
contact patch, the compliance of the tyre tread, belt and carcass and the friction
between the tyre tread and the road is not yet fully understood. Although some very
successful tyre models have been proposed (see for example [6]) and are widely used,

it seems that no tyre model describes fully the aforementioned features, their

interactions, and other relevant factors.

Most importantly, the steady state analysis and the role of the aforementioned factors
need to be expanded on in order to account for the various transient operating
conditions. Again, significant progress has been achieved and the transience related to
the complex deformation of the tyre under rapidly changing conditions have been
investigated with the aid of a variety of elaborate tyre models such as those presented
in [12-20]. In the majority of these approaches the models are primarily concerned
with the transient response of the structure of the tyre, with less emphasis on frictional
Issues. On the other hand, the models discussed in [21-25], aim in a more accurate
estimation of the friction forces. Finally, experimental studies [26-28] show the

dependency of friction on the operating conditions and suggest the existence of

phenomena such as stick-slip. In any case, the issue of fiction should be looked at

more closely with an emphasis on transient behaviour.

Consequently, there 1s a need for additional investigations towards attaining a better
understanding of tyre force generation under both steady-state and transient operating
conditions. A critical approach should be adopted, the inherent physical limitations of

proposed tyre models need to be assessed and the role of friction force generation

should be taken into account in a fundamental manner.
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1.4 Aim and Objectives

The aim and objectives of the present research follow directly from the problems
stated in the preceding section. A theoretical investigation of tyre Steady-State

dynamics serves as a starting point. The influence of certain parameters such as the
normal pressure distribution and the frictional properties of the contact between the
tread and the road will be investigated in parallel with the development of a new
brush-type tyre model, appropriate for Steady-State studies. The inclusion of the
aforementioned factors in the physical characteristics of the tyre model is of

fundamental importance and requires extensive analysis. An increasingly complex

treatment to the problem will be followed, based on the fundamentals of theory of
contact mechanics. Through this procedure, the inherent limitations of the proposed

brush-type models will be identified and assessed.

Based on the knowledge gained from the steady-state model, an expansion of the
theory in the area of transient tyre dynamics will be attempted. The key issue here is
the interaction between the mechanism of friction force generation within the contact

patch and the dynamics of the flexible structure of the tyre.

The influence of tyre dynamics on the handling behaviour of vehicles will be

evaluated by incorporating the models thus developed in a series of full vehicle

handling simulations. The results will be compared with those obtained by well

established and regarded empirical tyre models such as the widely used “Magic

Formula”.

Towards the achievement of the aims stated thus far, a set of well defined tasks have

been performed and are given below in the form of bullet points:

- Development of a new, yet simple Steady-State brush model of the tyre,

Incorporating anisotropic bristles represented by viscoelastic Kelvin elements. The

normal pressure distribution is assumed to be parabolic.

- Enhancement of the tyre model in order to facilitate the on-line calculation of the

normal pressure distribution depending on running conditions

7
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- Modification of the initial Steady-State model for the simulation of transient

conditions and the investigation of the role of the mechanism of friction generation

- Development of a new transient tyre model with flexible belt and carcass,

Incorporating a separate tread for the simulation of the friction generation mechanism

- Development of a vehicle model for the evaluation of the influence of tyre dynamics

in vehicle handling

1.5 Structure of the Thesis

The work is organised in six chapters. A brief description of the issues discussed in

each chapter is given below, in order to provide with an overall view of the approach
followed in the thesis.

Chapter 1 — Introduction: The role of the pneumatic tyre in the handling behaviour of
vehicles is addressed. Some fundamental ideas are presented and the areas of interest

are highlighted. As a result, the aim and objectives of the investigations are defined

and a brief description of the frame of work is given.

Chapter 2 — Review of Literature: The fields of tyre and vehicle dynamics have
received the attention of numerous researchers. This chapter attempts to provide a
critical review of the major findings. In particular, the areas of steady-state and
transient tyre and vehicle handling dynamics are covered with extensive references to
experimental, analytical and simulation techniques. Also, an extensive reference is

made to work carried out in the area of friction mechanics, since friction represents

the main limiting factor in the tyre-force generating procedure.

Chapter 3 — Steady-State Tyre Analysis: A physical description of the structure of the
pneumatic tyre is provided and some important modelling considerations are
discussed. These include the definition of coordinate systems and the representation of
tyre forces, possible ways of modelling various parts of the tyre as well as modelling

of viscoelasticity and friction. A separate section is dedicated to the “Magic Formula”

8
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tyre model, which serves as a benchmark throughout the work reported in this thesis.
The chapter closes with the step-by-step development of a simple and a more
elaborate steady-state brush model. The behaviour of the models is investigated and

the influence of several factors is analysed.

Chapter 4 — Transient Tyre Analysis: The necessity for the development of transient
tyre models is discussed. Special reference is made to the modelling of viscoelastic
friction between the tread and the road surface and the influence of some parameters
such as sliding speed is investigated. The initial steady state tyre model undergoes two
successive modifications, which result in two versions of a transient model, one with
independent and one with interconnected bristles. Simulation results provide some
insight into the qualities of the models. The rest of the chapter is dedicated to the

development of the final, most elaborate transient model with flexible belt and carcass

and a separate tread for the simulation of friction.

Chapter 5 — Tyre models in handling analysis: A relatively complex vehicle model 1s
developed for the study of vehicle handling behaviour. Some fundamental
considerations about coordinate systems, rigid body motions in space and the
implementation in vehicle dynamics are presented. The Newton-Euler approach is

chosen for the formulation of the differential system of equations and the numerical

procedure is also discussed. The tyre models developed in the previous chapters work

in combination with the vehicle model in a series of simulations.

Chapter 6 — Conclusion and Suggestions for Future Work: This chapter summarises
the major findings of the research. The advantages as well as the shortcomings of the
approach are pointed out and some suggestions for further improvement are given.
Possible expansion of the theory in other areas is discussed and a set of experimental

guidelines is proposed 1n order to investigate aspects of the theoretical predictions.
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Chapter 2: Review of Literature

2.1 Introduction

This chapter is dedicated to the achievements previously accomplished in the fields of
tyre and vehicle dynamics by other research workers. In particular, the issues of

steady-state and transient tyre force and moment generation, vehicle modelling and
handling performance are reviewed. A separate section is dedicated to the mechanics

of friction. This section follows the discussion of tyre modelling which points out the
special characteristics of tyre friction and the important issues that should be taken
into account. All publications retrieved, are included in the list of references, at the
end of the thesis. In the following pages the most representative approaches are
critically analysed, while a significant amount of supporting literature concerning, for
Instance, the modelling of friction, the viscoelastic behaviour of rubber or numerical

methods for use in vehicle dynamics may be referred to later in the thesis, when

dealing with these relevant issues.

The literature is divided into the following areas, according to the specific topics
discussed:

1) Steady-state tyre analysis
2) Transient tyre analysis
3) Mechanics of friction

4) Vehicle modelling
S) Vehicle handling analysis

2.2 Steady-State Tyre Analysis

The investigation of tyre force and moment generation is based on a significant
amount of experimental measurements. Ultimately, the goal is to describe the

procedure of force generation mathematically, with the development of tyre models of

10
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varying complexity. There are a large number of different aspects of tyre behaviour,

which should be taken into account and this has resulted in the development of tyre
models from different perspectives. As already mentioned, a first classification
separates steady-state from transient tyre models. Pacejka [6] suggests another very
convenient distinction between in-plane and out-of-plane models. In-plane tyre
models are concerned with force vectors, which ideally lie within the centre plane of
the wheel such as the braking force, rolling resistance and normal force, while out-of-
plane models deal with forces that lie outside this centre plane, such as lateral forces
and the resulting moments. Out-of-plane models are mainly related with the handling

dynamics of a vehicle, since tyre lateral forces are primarily responsible for the

change in the direction of a vehicle’s motion. Nevertheless, lateral forces depend
largely, not only on the vertical load of the tyre, but also on the possible application of
a simultaneous braking or traction force. Therefore, out-of-plane models always

incorporate a number of in-plane characteristics in order to account for the

aforementioned effects.

Traditionally, steady-state models, appropriate for handling applications, refer to out-
of-plane models able to calculate the tyre lateral force, the resulting self-aligning
moment and the longitudinal force (a conventionally in-plane characteristic) as
functions of a time-invariant lateral slip angle, camber angle and longitudinal slip.
Any analytical or numerical results are compared with experimental data obtained

from specially designed experimental rigs. A large number of variations of a basic
experimental concept can be found in literature. The following paragraph brietly

presents this concept together with a number of common variations and some typical

results.

2.2.1. Experimental Measurements and Results

Prior to discussing some of the most important steady-state modelling approaches, an

experimental background is given. The principle is similar for both steady-state and

transient measurements and will be covered only in this section.

Tyre testing rigs are described in text books [6], [29] and research papers [30-37].

Moore [29] divides tyre-testing equipment into two main categories, namely

w
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laboratory-based machines and field machines. The former consists of a wheel-hub
assembly pressed against a rolling drum or a flat rolling belt, as a means of simulating
the motion of a vertically loaded tyre rolling on the road surface. Joy et al [32]
describe a tyre test-rig, based on a rotating steel drum with a maximum
circumferential speed of 125 mph. The vertical load is imposed hydraulically on the
wheel supporting mechanism, which presses the tyre against the external
circumference of the drum. The design of the mechanism allows a range of slip angles
between 0 and 12 degrees, while the camber angle can vary in the range + 35 degrees.
A set of two dynamometers, which can operate alternatively as motors, is used for the

simulation of traction and braking. Dunlop Ltd [29] has used a drum testing machine,

where instead of the external, the internal drum surface is used. This arrangement

permits the formation of a water film for the evaluation of tyre performance in wet
conditions. Drum testing machines are favoured for their simplicity, low cost and the

potential of using different road surface samples, mounted on the drum. The major
drawback is the contact curvature imposed by the finite drum radius. This factor alters
the normal pressure distribution along the contact patch and as shown by Pottinger et
al [38], affects the cornering behaviour of tyres. To overcome this problem,
researchers have used rotating flat-belt machines. The Calspan Corporation’s machine
described in [30], [35], consists of a wide stainless steel belt supported by two 0.7 m
diameter drums. The belt is covered by a grit surface and is supported by an air-
bearing pad under the footprint of the tyre. Slip angle, camber angle and normal load

can be set automatically through a computer. Lagner [31] and Cabrera et al [37]

follow a similar approach, replacing the air-bearing with hydrodynamic water-

bearings.

The need for measuring forces generated by tyres rolling on virtually any type of road

has resulted in the development of field-testing equipment. Essentially, these
machines consist of the upper half (wheel supporting and moving mechanism) of the
laboratory machines, mounted on or pulled by dedicated vehicles. The drum or belt is
replaced by the real road and data is collected by on-board acquisition systems.

Gohring et al [36] use a mobile tyre testing apparatus and compare the results with
those obtained in the laboratory, using a drum-type machine. It i1s reported that the

results differ up to 40% in the measurement ot cornering stiffness and this 1s due to
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the interaction of two factors, namely the curvature of the drum and the difference in

the frictional characteristics between the drum surface and the real road surface.

In Steady-State measurements, side-slip angle, camber angle, longitudinal slip and
vertical load are kept constant. In addition, air pressure and temperature are monitored
through sliding electrical and pneumatic connections [29], [34]. Typically, graphs are
produced showing the lateral tyre force as a function of steady-state slip angle for a
given camber angle, longitudinal slip and normal load. The self-aligning moment, as a
result of the interaction between lateral force and pneumatic trail [6], is plotted against
the slip angle for the same conditions. Longitudinal forces are plotted against
longitudinal slip, for a predefined vertical load, side-slip and camber angles. Finally,
lateral force is also presented as a function of the longitudinal force for pre-specified
side-slip angles. Figures 2.1-2.4 illustrate some typical experimental results from
reference [36]. Figure 2.1 shows the non-linear increase in lateral force with the
increase in side-slip angle for four different load cases of a commercial vehicle tyre.
At high slip angles, towards the right end of the graph, if tyre friction was subjected to
the laws of friction as stated by Amontons and Coulomb [39-40], the maximum force
should be governed only by the normal load and the coefficient of sliding friction at a
given speed. In particular, the maximum values of the lateral forces should be
proportional to the normal load. However, it is clear that this is not the case, since, for
example, the maximum lateral force at a vertical load of 40 kN is only approximately

2.4 times higher than the maximum force at 10 kN. This behaviour influences greatly

the handling properties of vehicles and will be discussed thoroughly later. Figure 2.2
shows the variation of braking force with longitudinal slip for four different load
cases, while figure 2.3 plots the braking forces corresponding to six combinations of
simultaneous side-slip under the same vertical load. Apparently, not only the
maximum braking force is reduced with the increase of slip angle, but the shape of the
curve is altered as well. Figure 2.4 illustrates how the lateral force, corresponding to a
specific slip angle, varies with the increase in the braking force. By varying the side
slip angle, a parametric plot is obtained. The black line defined by the outer limits of
the plots constitutes the traction limit of the tyre under combined braking and
cornering manoeuvres for a specific vertical load. Finally, figure 2.5 illustrates an

example of self-aligning moment plotted against slip-angle for varying vertical loads,
as measured and fitted by Bakker et al [41].
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Figure 2. 5 Self aligning torque vs slip angle for different vertical loads (after [41])

2.2.2 Modelling Approaches

Pacejka and Sharp [42] have conducted a comprehensive review of modelling aspects
in relation to the steady-state tyre force and moment generation. They distinguish two
main categories of models, namely physical and empirical tyre models. Physical
models are based on the mathematical representation of the most important physical
properties of the tyre and can vary in complexity. The simplest among the physical
models can be solved analytically, while the most complex models, incorporating
detailed representations of the tyre structure, are solved numerically and can be
computationally very time and memory intensive. Empirical models are based on the
use of formulae that fit successfully a wide range of experimental results, such as the
ones presented in the previous section. While providing little insight into the physics
of tyre behaviour, empirical models have become very accurate and are also
computationally very etfective. Another important observation mentioned in [42] 1s

the fact that all physical models require experimental identification of one or more

parameters. This can be considered as inevitable proof of the complexity of the

mechanics of the pneumatic tyre.
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2.2.2.1 Physical Models with Analytical Solutions

Temple and von Schlippe [43], [44], [45] propose a simple physical representation of
the tyre for the calculation of the steady-state lateral force. This model is based on the
assumption that the tread of the tyre is equivalent to a stretched string, restrained by
lateral springs which represent the sidewall, as shown in figure 2.6. The free ends of
the springs are connected to the wheel rim, which is travelling at a constant slip angle.
As a result, the string deforms laterally, while the circumferential distribution of the
lateral component of the force due to string tension is proportional to the second
derivative of the lateral displacement with respect to the circumference. Over the part
of the tyre not in contact with the ground, the distribution of lateral string force is
balanced by the distribution of lateral forces generated by the springs. By solving the
appropriate second order differential equation, the shape of the lateral deformation is
calculated as a hyperbolic function of the free circumference. This function can be
simplified to a pair of exponential functions, which describe the deformation of the
string in front and behind the contact patch area. The lateral force and the self-
aligning moment can be found easily by assuming a linear lateral displacement of the
string along the length of the contact patch and applying integration techniques. The
results are expressed as functions of the slope of the lateral displacement along the
contact patch. For small slip-angles this slope can be assumed equal to the slip-angle,
in which case both the lateral force and the self-aligning moment are proportional to
the slip angle. Clearly, the model assumes that the combination of vertical load and

lateral slip-angle is such that the tyre operates always in the linear range and does not

include any provisions for a sliding region within the contact patch.
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Figure 2. 6 Representation of the tyre as a stretched string (a) or bending beam (b) (after [44])

The cases of traction and braking are treated conceptually in a similar manner, by
Julien [43] and by Wong [44]. The tyre tread is represented by an elastic band, the
contact patch is assumed rectangular and the normal pressure distribution is
considered uniform along the length of the contact patch. In this model there is
provision for an adhesive, as well as a sliding zone within the contact patch. The
longitudinal force is calculated by integrating the corresponding longitudinal force
distribution along the length of the contact patch. The critical length after which the
tread starts sliding is calculated as the length up to the point where the longitudinal
force distribution becomes equal to the normal force distribution multiplied by the
peak value of the coefficient of friction. The total force is equal to the sum of the
elastic force developed in the leading adhesive region and the friction force developed
1n the trailing sliding region. The combination of a sliding and adhesive zone results in
a non-lincar model, able to depict the behaviour of the tyre at high slip ratios. A
fundamental observation 1s that the adaptation of a uniform pressure distribution
allows the entire contact area to be an adhesive region, when the slip ratio 1s low.
Therefore, the initial part of a traction or braking curve should always be linear. In
reality, the shape of the pressure distribution can vary from parabolic to trapezoidal
and always allows for a small sliding region towards the trailing end of the contact

patch. As a result, tyre force generation is, by definition, a non-linear problem.

Fiala [45] proposes a more elaborate physical model, which is still in use and is

offered as a standard model in multi-body software packages such as ADAMS. The
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tyre is modelled as a flexible ring connected to a rigid disc through circumferentially
distributed springs. When subjected to a lateral force, the ring deflects according to
Eulerian beam theory in pure bending. The lateral force is considered as a point force,
acting in the middle of the contact patch. By applying the corresponding boundary
conditions, the lateral deformation of the ring is calculated and approximated by a
quadratic polynomial through use of Taylor expansion. The contact area is assumed
rectangular and the normal pressure is taken to be uniform in the lateral direction and
quadratic along the length of the contact patch. The contact patch demonstrates an
adhesive zone, where the tread deforms linearly and the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>