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Abstract

This paper considers statistics based on spectral regression estimators for testing for seasonal
unit roots in a time series. An advantage of the frequency domain approach is that it enables
serial correlation to be treated nonparametrically, thereby facilitating an explicit focus on the
frequencies at which unit roots are of interest. The limiting distributions of the proposed
test statistics are derived and their size and power properties are explored in simulation
experiments.
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1. INTRODUCTION

When time series are observed on a seasonal basis, for example, quarterly or monthly, there
emerges the possibility of there being unit roots at seasonal frequencies. Such unit roots
are characterised in the time domain by the presence of certain roots in the autoregressive
representation of the series lying on the unit circle, and in the frequency domain by poles
in the spectral density at the seasonal frequencies. Most, if not all, approaches to testing
for seasonal unit roots have been based upon time domain regression procedures, and many
represent appropriate extensions of the methods employed for testing for a single unit root
at the zero (long run) frequency. Frequency domain approaches to seasonal unit root testing
appear to have been rather neglected, but, as we shall amplify below, this is not the sole
reason for exploring this approach here.

As demonstrated by Phillips (1987), testing for a unit root at the zero frequency can
be carried out using a straightforward regression of a variable on its lag, with any neglected
(stationary) dynamics captured by the disturbance process. The limiting distribution of the
resulting t-ratio, however, suffers from nuisance parameter dependencies that are a reflection
of the dynamics in the disturbance, thus making inference difficult. One of the main ap-
proaches to this problem (among many) is to augment the regression with lagged differences
in an attempt to remove the serial correlation from the disturbance (the augmented Dickey-
Fuller approach). The latter approach has been extended to seasonal unit root testing by
Hylleberg, Engle, Granger and Yoo (1990), henceforth denoted HEGY. The key ingredient
from a practical point of view is to include a sufficient number of lagged (seasonal) differ-
ences as additional regressors in order to whiten the residuals, so that critical values from
standard distributions (certain functionals of Wiener processes) can be used for inference.
Failure to do so can result in invalid inferences being drawn. Furthermore, the outcome of
such tests can be sensitive to the number of lagged differences employed.

An alternative time domain method of eradicating nuisance parameters from the limiting
distributions is to make nonparametric adjustments to the test statistics, as suggested by
Phillips (1987). The same goal can also be achieved by casting the regression in the frequency
domain, which effectively transforms serial correlation into a type of heteroskedasticity and
which can be handled by nonparametric spectral density estimators. This frequency domain
regression approach was used by Choi and Phillips (1993) in testing for a unit root at the zero
frequency, and we extend their methods to the case of testing for unit roots at the seasonal
frequencies. One of the advantages of doing so is that it is not necessary to be concerned
with selecting the appropriate number of lagged variables to include in the regression, which
always takes the same form in the frequency domain. Another advantage is that the set-
up allows for unit root testing in autoregressive moving average (ARMA) models as well as
purely autoregressive models. The key ingredient to the successful operation of the frequency
domain regression approach is the ability to consistently estimate certain spectral density
functions. Our simulation evidence suggests that this can be achieved straightforwardly and
that the frequency domain tests are at least as powerful in finite samples as those based on
a correctly specified time domain regression.

The paper is organised as follows. Section 2 defines the model and estimators, and
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obtains the limiting distributions of the proposed test statistics, which is achieved via a
sequence of lemmas that provide some intermediate results. Section 3 provides simulation
evidence concerning the size and power properties of the tests, assessing the impacts of
different kernel functions and bandwidths in the spectral density estimation, and comparing
the frequency domain tests with the corresponding tests from a correctly specified time
domain regression. Section 4 concludes with some comments concerning further extensions
of these methods, and two appendices provide proofs of all lemmas and theorems.

2. THE MODEL AND TEST STATISTICS

Consider a univariate process wt having the autoregressive representation

φ(L)wt = εt, t = 1, 2, . . . , T, (1)

where εt ∼ IID(0, σ2
ε ), L denotes the lag operator, T denotes sample size, and φ(z) =

1−
∑p

j=1 φjz
j is a polynomial of order p, where p ≥ s, the number of seasons. It is convenient

to express the polynomial φ(z) as the product of two lower-order polynomials in the form
φ(z) = as(z)b(z). In this representation as(z) is a polynomial of order s having 0 ≤ s1 ≤ s

roots on the unit circle and s − s1 roots outside the unit circle, while b(z) is a polynomial
of order p − s that has all its roots outside the unit circle. It is, therefore, the polynomial
as(z) that captures possible seasonal integration in the process wt. The issue addressed here
is that of testing the number of roots of as(z) that lie on the unit circle. For concreteness
we focus on the case s = 4, which is appropriate for testing for seasonal unit roots with
quarterly data. The general methods, however, can be straightforwardly extended to other
values of s as required.

With the factorisation of φ(z) described above and s = 4 it is possible to write (1) as

a4(L)wt = ut, (2)

where ut = c(L)εt is a stationary random disturbance in which c(z) = 1+
∑∞

j=1 cjz
j = b(z)−1.

Following Hylleberg, Engle, Granger and Yoo (1990), the polynomial a4(z) = 1 +
∑4

j=1 ajz
j

can be decomposed as

a4(z) = −β1zα1(z)− β2zα2(z)− β3zα3(z)− β4zα4(z) + (1− z4), (3)

where α1(z) = 1 + z + z2 + z3, α2(z) = −(1 − z + z2 − z3), α3(z) = −z(1 − z2) and
α4(z) = −(1 − z2). The coefficients β1, . . . , β4 correspond to the roots 1, −1, i =

√
−1

and −i respectively in the sense that if βj = 0 then a4(z) possesses the corresponding root.
Matching the coefficients in (3) with those of a4(z) yields the relationships a1 = −β1+β2+β4,
a2 = −β1−β2+β3, a3 = −β1+β2−β4, and a4 = −β1−β2−β3−1. Alternatively, solving these
expressions for the βj in terms of the aj yields β1 = −a4(1)/4, β2 = −(1−a1+a2−a3+a4)/4,
β3 = −(1− a2 + a4)/2 and β4 = (a1− a3)/2. The point to note about the representation (3)
is that the term (1 − z4) is not multiplied by another polynomial, as in Hylleberg, Engle,
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Granger and Yoo (1990), in which a representation of φ(z), rather than just a4(z), is sought
and which results in a term of the form a∗(z)(1−z4), where a∗(z) is a finite polynomial. This
term is required by HEGY to account for the additional terms in the polynomial involving
b(z), which in our approach has already been incorporated within the disturbance term ut.

Let yt = (1 − L4)wt and define the variables yjt = αj(L)wt (j = 1, . . . , 4). Then, using
the representation (3) for a4(z), (2) may be written as the regression model

yt =
4∑

j=1

βjyj,t−1 + ut, t = 1, 2, . . . , T, (4)

which is in the form of the HEGY regression1 but with one notable exception. In the HEGY
approach, the aim is to produce a white noise disturbance, and hence their representation
of φ(z) yields a variable on the left hand side which may be denoted a∗(L)yt and which
incorporates the dynamics that are effectively associated with b(z). In the spectral regression
approach adopted here such dynamics are assigned to the disturbance term ut and are treated
nonparametrically via the use of appropriate spectral density estimates.

It is convenient to further define the vectors xt = [y1,t−1, y2,t−1, y3,t−1, y4,t−1]′ and
β = [β1, β2, β3, β4]′. Then (4) may be written as the regression model

yt = x′tβ + ut, t = 1, 2, . . . , T. (5)

The frequency domain tests of the restrictions βj = 0 (j = 1, . . . , 4) considered here are
based on the frequency domain regression estimator of β defined by

β̂ =

 1
2M

M∑
j=−M+1

f̂xx(ωj)f̂ûû(ωj)−1

−1  1
2M

M∑
j=−M+1

f̂xy(ωj)f̂ûû(ωj)−1

 . (6)

In the above definition of β̂, f̂ab(ω) denotes a nonparametric estimate of the spectral density
function of two (possibly vector) random processes at and bt, given by

f̂ab(ω) =
1
2π

M∑
n=−M

k

(
n

M

)
Cab(n)e−inω, (7)

where k(·) is a kernel function (or lag window), M is a bandwidth parameter, ωj = πj/M ,
and

Cab(n) =


T−1

T−n∑
t=1

atb
′
t+n, n ≥ 0,

T−1
T∑

t=|n|+1

atb
′
t−|n|, n < 0.

(8)

1The variable y4t is denoted y3t by HEGY and y3t is HEGY’s y3,t−1.
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The variable ût = yt−x′tβ̂OLS denotes the residual from a time domain regression of yt on xt,
where β̂OLS is the ordinary least squares estimator. The estimated asymptotic covariance
matrix of β̂ is

VT =
1
T

 1
2M

M∑
j=−M+1

f̂xx(ωj)f̂ûû(ωj)−1

−1

. (9)

Two types of test statistic are considered for testing the individual null hypotheses that
βj = 0 (j = 1, . . . , 4). The first type of statistic is simply T β̂j (j = 1, . . . , 4) while the second
type is the t-ratio defined by

tj =
β̂j

V
1/2
T,jj

, j = 1, . . . , 4, (10)

where VT,jj denotes the j’th diagonal element of VT . Certain hypotheses concerning the
joint significance of the βj coefficients are also of interest. Here we shall focus on two of
these, namely that β3 = β4 = 0 and that β1 = β2 = β3 = β4 = 0. These hypotheses can
be tested using Wald statistics constructed from the unrestricted estimator β̂. The Wald
statistics will be denoted J34 and J1234 respectively, and are defined by

Ji = β̂′R′i
[
RiVTR

′
i

]−1
Riβ̂, i = 1234, 34, (11)

where R1234 = I4, R34 = [02, I2], 0n denotes an n× n matrix of zeros, In denotes an n× n

identity matrix, and VT is the covariance matrix defined in (9). The limiting distributions
of these statistics are derived under the following assumption concerning the process ut.

Assumption 1. The process ut in (2) is given by ut = c(L)εt where c(z) = 1 +
∑∞

j=1 cjz
j

satisfies
∑∞

j=1 j
2c2j <∞ and εt ∼ IID(0, σ2

ε ) with σ2
ε <∞.

Assumption 1 ensures, in particular, that certain partial sums of ut satisfy an invariance
principle. Assumption 1 is clearly satisfied by ut as defined earlier provided c(z) = b(z)−1

satisfies the appropriate summability condition for its coefficients. However, it also allows
for circumstances in which εt in (1) is not IID but is itself a linear process. The partial sums
of interest are

Pt =
t∑

j=1

uj , Mt =
t∑

j=1

(−1)juj , Ct =
t∑

j=1

cos
πj

2
uj and St =

t∑
j=1

sin
πj

2
uj ,

because under the null hypothesis that (1 − L4)wt = ut, the variables yjt can be expressed
in terms of these partial sums as follows:

y1t = (1− L)−1ut =
t∑

j=1

uj = Pt,
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y2t = −(1 + L)−1ut = −(−1)t
t∑

j=1

(−1)juj = −(−1)tMt,

y4t = −(1 + L2)−1ut = −
t∑

k=1

sin
[
(t− k + 1)π

2

]
uk = St cos

[
(t+ 1)π

2

]
− Ct sin

[
(t+ 1)π

2

]
,

the last line using the identity sin(x− y) = sinx cos y − cosx sin y with x = (t+ 1)π/2 and
y = kπ/2. The following invariance principles hold under Assumption 1.

LEMMA 1. Under Assumption 1, as T →∞:

(a) T−
1
2P[Tr] = T−

1
2

[Tr]∑
j=1

uj ⇒ σεc(1)W1(r),

(b) T−
1
2M[Tr] = T−

1
2

[Tr]∑
j=1

(−1)juj ⇒ σεc(−1)W2(r),

(c) T−
1
2

[
C[Tr] ± iS[Tr]

]
= T−

1
2

[Tr]∑
j=1

e±iπj/2uj ⇒
σε√
2
c(e±iπ/2) [W3(r)± iW4(r)] ,

where the Wj (j = 1, . . . , 4) are independent Wiener processes on r ∈ [0, 1] and [Tr] denotes
the integer part of Tr.

Letting cR and cI denote the real and imaginary parts of c(e±iπ/2) respectively, an immediate
implication of Lemma 1(c) is that

T−
1
2C[Tr] = T−

1
2

[Tr]∑
j=1

cos(πj/2)uj ⇒
σε√
2

[cRW3(r)− cIW4(r)] ,

T−
1
2S[Tr] = T−

1
2

[Tr]∑
j=1

sin(πj/2)uj ⇒
σε√
2

[cIW3(r) + cRW4(r)] .

The limiting distributions of the test statistics are derived under the assumption that
all the βj coefficients are equal to zero, in which case (1−L4)wt = ut. In this situation, the
individual null hypotheses would be interpreted as βj = 0 given the other βk (k 6= j) are
zero. It will be shown later, however, that the forms of limiting distributions are unaltered
even if the other βk 6= 0. The derivations of the asymptotic properties require a description
of the limiting behaviour of the spectral density estimates of the form (7), which in turn
are based on the sample autocovariance estimates in (8). The following lemma depicts the
appropriate asymptotics for the relevant sample autocovariances.
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LEMMA 2. Under Assumption 1 and assuming that (1 − L4)wt = ut, the following
sample moments converge to the stated limits as T →∞:

(a)
1
T 2

T−n∑
t=1

y1ty1,t+n ⇒ σ2
ε c(1)2

∫ 1

0
W 2

1 ,

(b)
1
T 2

T−n∑
t=1

y2ty2,t+n ⇒ (−1)nσ2
ε c(−1)2

∫ 1

0
W 2

2 ,

(c)
1
T 2

T−n∑
t=1

y4ty4,t+n ⇒


(−1)

n
2
σ2

ε

4

∣∣∣c(eiπ/2)
∣∣∣2 ∫ 1

0

[
W 2

3 +W 2
4

]
, n even,

0, n odd,

(d)
1
T 2

T−n∑
t=1

y1tyj,t+n
p→ 0, j = 2, 4,

(e)
1
T 2

T−n∑
t=1

y2tyj,t+n
p→ 0, j = 1, 4,

where
∫ 1
0 W

2
i (i = 1, . . . , 4) denotes the integral

∫ 1
0 Wi(r)2dr.

Note that, since y3t = y4,t−1, the Lemma also implicitly provides the appropriate re-
sults for the sample autocovariances involving y3t. In particular, the Lemma implies that
T−2∑T−n

t=1 y4ty3,t+n converges to a limiting functional of Wiener processes for n odd, given
by the result in Lemma 2(c) for n even. In addition to the above results for the con-
vergence of sample moments, it is also necessary to derive results for terms of the form
T−1∑T−n

t=1 yj,t−1ut+n that arise in the analysis of the spectral regression estimator. A key
step in achieving this is the limiting distributions given in Lemma 3.

LEMMA 3. Under Assumption 1, as T →∞:

(a)
1
T

T∑
t=1

Pt−1ut ⇒ σ2
ε c(1)2

∫ 1

0
W1dW1 + δ1(1),

(b)
1
T

T∑
t=1

Mt−1(−1)tut ⇒ σ2
ε c(−1)2

∫ 1

0
W2dW2 + δ2(1),

(c)
1
T

T∑
t=1

(
Ct−1 cos

πt

2
ut + St−1 sin

πt

2
ut

)
⇒ σ2

ε

2

∣∣∣c(eiπ/2)
∣∣∣2 ∫ 1

0
[W3dW3 +W4dW4] + δ3(1),

(d)
1
T

T∑
t=1

(
Ct−1 sin

πt

2
ut − St−1 cos

πt

2
ut

)
⇒ σ2

ε

2

∣∣∣c(eiπ/2)
∣∣∣2 ∫ 1

0
[W3dW4 −W4dW3] + δ4(0),

where
∫ 1
0 WidWj denotes the stochastic integral

∫ 1
0 Wi(r)dWj(r) and, defining γj = E(u0uj),

δ1(n) =
∞∑

j=n

γj , δ2(n) =
∞∑

j=n

(−1)jγj , δ3(n) =
∞∑

j=n

(−1)jγ2j , and δ4(n) =
∞∑

j=n

(−1)jγ2j+1.
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The results in Lemma 3 can be used to derive the limiting properties of moments of the form∑T−n
t=1 yj,t−1ut+n (j = 1, . . . , 4). These are presented in Lemma 4.

LEMMA 4. Under Assumption 1 and assuming that (1− L4)wt = ut, as T →∞:

(a)
1
T

T−n∑
t=1

y1,t−1ut+n ⇒ σ2
ε c(1)2

∫ 1

0
W1dW1 + δ1(n+ 1),

(b)
1
T

T−n∑
t=1

y2,t−1ut+n ⇒ (−1)n
{
σ2

ε c(−1)2
∫ 1

0
W2dW2 + δ2(n+ 1)

}
,

(c)
1
T

T−n∑
t=1

y4,t−1ut+n ⇒



(−1)
(n+2)

2

[
σ2

ε

2

∣∣∣c(eiπ/2)
∣∣∣2 ∫ 1

0
(W3dW4 −W4dW3) + δ4(n)

]
,

n even,

(−1)
(n−1)

2

[
σ2

ε

2

∣∣∣c(eiπ/2)
∣∣∣2 ∫ 1

0
(W3dW3 +W4dW4) + δ3(n)

]
,

n odd,

where δ1(n), δ2(n), δ3(n) and δ4(n) are defined in Lemma 3.

Once again, since y3t = y4,t−1, Lemma 4 also implicitly provides the results for terms involv-
ing y3,t−1. The results in Lemma 4, allied to those in Lemma 2, are utilised in deriving the
asymptotic properties of the estimator β̂, which also requires the following assumption.

Assumption 2. The lag window k(x) is a bounded, even, function satisfying k(0) = 1
and k(x) = 0 for x /∈ [−1, 1]. As T → ∞, the bandwidth parameter M → ∞ but in a way
such that M/T

1
2 → 0

The restrictions on k(·) and M imposed by Assumption 2 are common in the literature; see,
for example, Hannan (1970) and Choi and Phillips (1993).

THEOREM 1. Under Assumptions 1 and 2 and assuming that (1− L4)wt = ut,

1
2MT

M∑
j=−M+1

f̂xx(ωj)fuu(ωj)−1 ⇒ diag {Hkk} (k = 1, . . . , 4),

1
2M

M∑
j=−M+1

f̂xu(ωj)fuu(ωj)−1 ⇒ [h1, h2, h3, h4]
′ ,
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as T →∞, where

H11 =
∫ 1

0
W 2

1 , H22 =
∫ 1

0
W 2

2 , H33 = H44 =
1
4

∫ 1

0

(
W 2

3 +W 2
4

)
,

h1 =
∫ 1

0
W1dW1, h2 =

∫ 1

0
W2dW2,

h3 =
1
2

∫ 1

0
(W3dW3 +W4dW4) , h4 =

1
2

∫ 1

0
(W3dW4 −W4dW3) .

Theorem 1 enables, in particular, the distribution of T (β̂ − β) to be derived. A key feature
of the results in Theorem 1 is that the limiting distributions are free of nuisance parameter
dependencies that may otherwise arise due to the serial correlation in ut. In effect these
nuisance parameters are eradicated by the frequency domain estimator of β in (5) in a way
not achieved by the OLS estimator, even though the frequency domain estimator utilises the
OLS residuals in constructing the spectral density estimates. The asymptotic properties of
the test statistics of interest are given in Theorem 2.

THEOREM 2. Under Assumptions 1 and 2 and assuming that (1 − L4)wt = ut, the
limiting distributions as T →∞ of the test statistics are given by:

T β̂1 ⇒

∫ 1

0
W1dW1∫ 1

0
W 2

1

, t1 ⇒ τ1 =

∫ 1

0
W1dW1[∫ 1

0
W 2

1

] 1
2
,

T β̂2 ⇒

∫ 1

0
W2dW2∫ 1

0
W 2

2

, t2 ⇒ τ2 =

∫ 1

0
W2dW2[∫ 1

0
W 2

2

] 1
2

,

T β̂3 ⇒
2
∫ 1

0
(W3dW3 +W4dW4)∫ 1

0

(
W 2

3 +W 2
4

) , t3 ⇒ τ3 =

∫ 1

0
(W3dW3 +W4dW4)[∫ 1

0

(
W 2

3 +W 2
4

)] 1
2

,

T β̂4 ⇒
2
∫ 1

0
(W4dW3 −W3dW4)∫ 1

0

(
W 2

3 +W 2
4

) , t4 ⇒ τ4 =

∫ 1

0
(W4dW3 −W3dW4)[∫ 1

0

(
W 2

3 +W 2
4

)] 1
2

,

J34 ⇒ τ2
3 + τ2

4 , J1234 ⇒
4∑

j=1

τ2
j .

The limiting distributions given in Theorem 2 are familiar in the literature on seasonal unit
root tests and seasonal cointegration. Variants can be found, for example, in Engle, Granger,
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Hylleberg and Lee (1993), Ghysels, Lee and Noh (1994) and Smith and Taylor (1998). The
key feature of Theorem 2 for the purposes of inference is that the limiting distributions are
free of nuisance parameters. Each distribution is expressed entirely in terms of standard
Wiener processes. This ‘optimality’ result is achieved here via the use of nonparametric
spectral density estimates to account for nuisance parameters that would otherwise arise
due to the serial correlation inherent in ut. Similar results arise in the time domain HEGY
regressions because such serial correlation is accounted for by incorporating lagged (1−L4)wt

terms as additional regressors so that the disturbance term in the regression is εt. In the time
domain the validity of these asymptotic distributions boils down to the ability to correctly
specify the order of the polynomial φ(z) in (1). In the frequency domain the key feature is
to be able to consistently estimate certain spectral densities.

The limiting distributions presented in Theorem 2 have been derived under the null
hypothesis that (1− L4)wt = ut, so that the tests of individual restrictions are to be inter-
preted as tests of the hypothesis that βj = 0 given that all other βk = 0 (k 6= j). The same
distributions hold, though, even if the other βk 6= 0.

COROLLARY TO THEOREM 2. The limiting distributions of the tests statistics T β̂j

and tj (j = 1, . . . , 4) remain valid even if βk 6= 0 (k 6= j).

The tests of individual restrictions in Theorem 2 therefore hold regardless of whether there
are unit roots at other frequencies or not.

3. EXPERIMENTAL EVIDENCE

The finite sample performance of the frequency domain test statistics can be assessed by
means of appropriately-designed simulations. The simulation results reported in this section
are aimed at addressing the following issues. The main focus is the size and power properties
of the tests. Many tests for unit roots have been found to suffer from potentially severe size
distortions and from lack of power, so this issue is also important in the context of seasonal
unit roots. Secondly, it is of interest to investigate how the properties of the tests are affected
by varying the bandwidth parameter M and the lag window k(·). Finally, a comparison of
the properties of the frequency domain tests with the time domain HEGY tests also seems
pertinent.

The model used to generate the simulated data to assess the size properties of the tests
is given by

(1 + ψL)(1− L4)wt = εt, εt ∼ NID(0, 1), (12)

where ψ ∈ {−0.5,−0.2, 0, 0.2, 0.5}. In terms of (1), φ(z) = 1+ψz− z4−ψz5, while in terms
of (2), a4(z) = 1 − z4 and c(z) = (1 + ψz)−1 =

∑∞
j=0(−1)jψjzj . The variable wt therefore

has unit roots at all four seasonal frequencies. A total of 10,000 replications were carried out
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with sample sizes T = 48, 100, 200 corresponding to 12, 25 and 50 years of quarterly data
respectively. The HEGY regression corresponding to (12) is

(1− L4)wt =
4∑

j=1

βjyj,t−1 − ψ(1− L4)wt−1 + εt,

where the yjt are defined prior to (4). Note that the HEGY regression is correctly specified
in these simulations, a situation that is not guaranteed in practise with real data. In addition
to the t-tests of the individual hypotheses that βj = 0, the HEGY regression is also used
to produce F -statistics for the hypotheses β1 = β2 = β3 = β4 = 0 and β3 = β4 = 0. These
statistics are denoted F1234 and F34 respectively. Critical values for the frequency domain
tests were obtained from an initial set of 40,000 replications with ψ = 0.2 Critical values for
the HEGY ti and F34 tests were obtained from Hylleberg, Engle, Granger and Yoo (1990),
while those for the F1234 test were obtained from Ghysels, Lee and Noh (1994). Note that the
normalised bias test statistics T β̂i are not usually carried out in the HEGY framework and
so we do not consider them here either. The power of the tests was assessed by generating
data according to

(1 + ψL)(1− 0.85L4)wt = εt, εt ∼ NID(0, 1), (13)

in which the roots are ±1.0415 and ±1.0415i.

In order to assess the effects of the choice of bandwidth and kernel function on the tests,
two kernels and two bandwidth values were used. The kernel functions were the Parzen
kernel, defined by

k(x) =


1− 6x2 + 6|x|3, |x| ≤ 0.5,
2 (1− |x|)3 , 0.5 < |x| ≤ 1,
0, |x| > 1,

and the Tukey kernel (also known as the Tukey-Hanning kernel), given by

k(x) =

{
0.5 (1 + cosπx) , |x| ≤ 1,
0, |x| > 1.

The bandwidth parameter was chosen to satisfy M = [T δ] + 1 for δ = {1/5, 1/3}. Xiao and
Phillips (1998) demonstrated that the optimal bandwidth for the estimators considered here
is O(T 1/3), while that for an alternative spectral estimator is O(T 1/5). Optimality in this
context refers to the value of M that minimises the asymptotic mean square error of the
estimator, and so is not directly related to optimal test performance, hence we consider both
values in our simulations.

[Tables 1, 2 and 3 about here.]

2Critical values can be obtained from the authors on request.
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The size properties of the tests are reported in Tables 1, 2 and 3. Table 1 contains
the results for the frequency domain tests based on the Tukey kernel, Table 2 the results
based on the Parzen kernel, and Table 3 the results for the time domain (HEGY) tests. In
all cases the nominal size of the tests is 0.05. The empirical size of the frequency domain
statistics is close to the nominal size when ψ = 0 but size distortions are apparent when
ψ 6= 0, although these distortions tend to reduce as sample size increases. This is partly to
be expected because the critical values were obtained for the case ψ = 0 and, asymptotically,
the distributions are invariant to the value of ψ. Such size distortions are also evident for
the frequency domain unit root tests in Choi and Phillips (1993). Another possible reason
for the size distortions can be gleaned from Figure 1, which plots the spectral density of u
for the different values of ψ used in the simulations. The spectrum is flat when ψ = 0 but
contains a peak at frequency π and a trough at the zero frequency when ψ > 0 while the
reverse is true when ψ < 0. These peaks and troughs are more difficult to estimate than
a purely flat spectrum, although critical values drawn from experiments using the correct
value of ψ would obviously eradicate the size distortions. It is interesting to note that the
empirical size of the time domain tests is close to the nominal value even for ψ 6= 0.

[Figure 1 and Tables 4, 5 and 6 about here.]

The power of the tests is reported in Tables 4, 5 and 6, the first two for the frequency
domain tests, the third for the time domain tests. On the whole, the frequency domain
tests based on the Parzen kernel appear to have higher power than those based on the
Tukey kernel, although the differences are fairly small and are not in an entirely uniform
direction. Also there are differences in the power performance between different values of
the bandwidth parameter, which is again not uniform and in some circumstances the tests
based on δ = 1/5 have higher power than those based on the optimal value δ = 1/3. There
are also notable differences in the power of the tests according to the value of the parameter
ψ. The power of the frequency domain tests of β1 = 0 declines with ψ while the reverse is
true of tests of β2 = 0. A partial explanation of this can be found by examining the spectral
density function of wt under the alternative hypothesis. Figure 2 depicts the logarithm of
the spectral density of w for each value of ψ considered in the experiments. As can be seen,
when ψ > 0, the frequency π corresponds to a sharp peak in the spectrum of w, which is
difficult to distinguish from a pole at this frequency, which would correspond to a unit root.
This means that it is harder for the tests to reject the (false) null hypothesis that β2 = 0
which explains the low power in this scenario. As ψ decreases in value and becomes negative,
the peak at frequency π becomes less accentuated and the corresponding expected increase
in power is borne out in the simulations. The reverse is true at the zero frequency, with the
peak more accentuated when ψ < 0, which explains the increase in the power of the test of
the null that β1 = 0 when ψ becomes positive.

[Figure 2 about here.]

A striking feature of the results in Tables 4, 5 and 6 is that the power of the frequency
domain tests is, in many instances, at least as high as the time domain tests, even at the
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smallest sample size (T = 48), although a uniform ranking does not emerge. The perfor-
mance of the tests of the joint hypotheses is particularly noteworthy. This is encouraging for
the use of frequency domain tests in practice, because they are based on a nonparametric
treatment of dynamics whereas, in the simulations, the time domain regression is correctly
specified. This suggests that the frequency domain nonparametric corrections work rather
well even when compared with correctly parametrised alternatives in the time domain.

4. CONCLUDING COMMENTS

In addition to deriving the asymptotic properties of frequency domain regression based tests
of seasonal unit roots, it has been demonstrated in simulations that the tests can perform
well in finite samples when compared to time domain regression based tests. This is quite
striking because the frequency domain tests rely on nonparametric spectral density estimates
to account for the serial correlation in the disturbances, whereas the time domain regressions
are correctly specified. Applications, and further comparisons, using real data are being
pursued by the authors.

There are many ways in which the methods can be extended. The model considered
here contains no deterministic terms, but it would be straightforward to include a constant,
time trend and seasonal dummies if required. The easiest way to deal with such determin-
istic terms is to detrend the data by a time domain regression prior to the regression in
the frequency domain. The limiting distributions would then be characterised by suitably
detrended Wiener processes. Such detrending is a valid procedure because the parameters to
be estimated in the frequency domain regression are independent of frequency, although it
would be of interest to also consider frequency domain detrending, along the lines detailed in
Corbae, Ouliaris and Phillips (2002) who show that time domain detrending is not efficient
if the regression of interest contains frequency-dependent parameters. Frequency domain
regression could also be employed in the estimation of parameters in seasonally cointegrated
models, and the results derived here could provide a basis for such a study.
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APPENDIX A: SUPPLEMENTARY LEMMAS

The following lemmas are required for the main proofs in Appendix B.

LEMMA A1. Let c(z) =
∑∞

j=0 cjz
j with

∑∞
j=0 j

2c2j <∞. Then:

(a) c(z) = c(−1) − (1 + z)c∗(z) where c∗(z) =
∑∞

j=0 c
∗
jz

j, c∗j = (−1)j ∑∞
k=j+1(−1)kck

and
∑∞

j=0 c
∗2
j <∞.

(b) c(z) = c(eiπ/2)− (1− e−iπ/2z)ĉ(z) where ĉ(z) =
∑∞

j=0 ĉjz
j, ĉj =

∑∞
k=j+1 e

i(k−j)π/2ck

and
∑∞

j=0 ĉ
2
j <∞.

Proof of Lemma A1. Taking each part in turn:
(a) Note that

c∗(z) =
c(−1)− c(z)

1 + z
=

[ ∞∑
k=0

(−1)kck −
∞∑

k=0

ckz
k

] ∞∑
k=0

(−1)kzk.

Picking out the coefficients on the powers of z in the resulting polynomial on the right hand
side yields the expressions for the c∗j . Now

∞∑
j=0

c∗2j =
∞∑

j=0

(−1)j
∞∑

k=j+1

(−1)kck

2

≤
∞∑

j=0

 ∞∑
k=j+1

∣∣∣(−1)kck
∣∣∣
2

=
∞∑

j=0

 ∞∑
k=j+1

ka |ck| k−a

2

for some suitably chosen constant a. The finiteness of the expression on the right hand side
of
∑∞

j=0 j
2c2j <∞ can be shown by following the steps in the proof of Lemma 2.1 on p.987

of Phillips and Solo (1992).
(b) In this case,

ĉ(z) =
c(eiπ/2)− c(z)
1− e−iπ/2z

=

[ ∞∑
k=0

eikπ/2ck −
∞∑

k=0

ckz
k

] ∞∑
k=0

e−ikπ/2zk.

Picking out the coefficients on the powers of z in the resulting polynomial on the right hand
side yields the expressions for the ĉj . As in part (a),

∞∑
j=0

ĉ2j =
∞∑

j=0

e−ijπ

 ∞∑
k=j+1

eikπ/2ck

2

≤
∞∑

j=0

 ∞∑
k=j+1

∣∣∣eikπ/2
∣∣∣ |ck|

2

≤
∞∑

j=0

 ∞∑
k=j+1

ka |ck| k−a

2

for some suitably chosen constant a. The finiteness of the expression on the right hand side
of
∑∞

j=0 j
2c2j <∞ can once more be shown by following the steps in the proof of Lemma 2.1

on p.987 of Phillips and Solo (1992). 2
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LEMMA A2. Under Assumption 1:

(a) T−
1
2

[Tr]∑
t=1

εt ⇒ σεW1(r),

(b) T−
1
2

[Tr]∑
t=1

(−1)tεt ⇒ σεW2(r),

(c) T−
1
2

[Tr]∑
t=1

e±itπ/2εt ⇒
σε√
2

[W3(r)± iW4(r)] ,

as T →∞, where W1, W2, W3 and W4 are independent Wiener processes on r ∈ [0, 1].

Proof of Lemma A2. Theorem 2.6 of Phillips and Solo (1992) shows that s−1
T S[Tr] ⇒

W (r), a Wiener process, as T →∞, if

(i) s−2
T UT

p→ 1, and

(ii) max
1≤t≤T

∣∣∣∣Zt

sT

∣∣∣∣ p→ 0,

where Zt denotes the random variable of interest, ST =
∑T

t=1 Zt, UT =
∑T

t=1 Z
2
t and s2T =

E(UT ) = E(
∑T

t=1 Z
2
t ). Taking each case in turn:

(a) This is demonstrated on p.977 of Phillips and Solo (1992).
(b) Let Zt = (−1)tεt so that Z2

t = (−1)2tε2t = ε2t . Then s2T = Tσ2
ε under Assumption 1,

while T−1UT
p→ σ2

ε as T →∞. Hence (i) holds, while

max
1≤t≤T

∣∣∣∣Zt

sT

∣∣∣∣ = max
1≤t≤T

∣∣∣∣∣(−1)tεt

σε

√
T

∣∣∣∣∣ ≤ max
1≤t≤T

∣∣∣∣ εt

σε

√
T

∣∣∣∣ p→ 0

since εt ∼ IID(0, σ2
ε ), thereby verifying (ii).

(c) Now let Zt = e±itπ/2εt = cos(πt/2)εt ± i sin(πt/2)εt ≡ ZR,t ± iZI,t, and note that ZR,t

and ZI,t are independent due to the orthogonality of cos(πt/2) and sin(πt/2) for integer
t. Taking ZR,t first, s2R,T = E(

∑T
t=1 cos2(πt/2)ε2t ) = σ2

ε

∑T
t=1 cos2(πt/2) = (T/2)σ2

ε . Since
cos2(πt/2) = (1/2)[1 + cos(πt)] it follows that

1
T

T∑
t=1

cos2(πt/2)ε2t =
1

2T

T∑
t=1

ε2t +
1

2T

T∑
t=1

cos(πt)ε2t
p→ 1

2
σ2

ε

as T →∞. Hence (i) is satisfied, while

max
1≤t≤T

∣∣∣∣∣ cos(πt/2)εt
(σε/

√
2)
√
T

∣∣∣∣∣ ≤ max
1≤t≤T

∣∣∣∣∣ εt

(σε/
√

2)
√
T

∣∣∣∣∣ p→ 0,

thereby satisfying (ii). Hence T−
1
2 (σε/

√
2)−1∑[Tr]

t=1 cos(πt/2)εt ⇒ W3(r) as required. An
almost identical procedure, but using the substitution sin2(πt/2) = (1/2)[1− cos(πt)], yields
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T−
1
2 (σε/

√
2)−1∑[Tr]

t=1 sin(πt/2)εt ⇒W4(r).
Finally, the independence of the Wiener processes is a consequence of Theorem 2.2 of Chan
and Wei (1988). 2

APPENDIX B: PROOFS OF LEMMAS AND THEOREMS

Proof of Lemma 1. The proofs are based on the approach of Phillips and Solo (1992),
allied with Lemmas A1 and A2. Taking each part of the Lemma in turn:
(a) This follows directly from Theorem 3.4(b) of Phillips and Solo (1992), the conditions for
which are identical to those in Assumption 1 (note that there is a typographical error in the
statement of that theorem – the factor c(1) is omitted).
(b) Expanding c(z) around the point z = −1 yields c(z) = c(−1)− (1+ z)c∗(z), where, from
Lemma A1, c∗(z) =

∑∞
j=0 c

∗
jz

j with
∑∞

j=0(c
∗
j )

2 <∞. Then

(−1)tut = (−1)tc(L)εt = (−1)t [c(−1)εt − (ε∗t + ε∗t−1)
]
,

where ε∗t =
∑∞

j=0 c
∗
jεt−j has E(ε∗2t ) < ∞ by the square summability of the c∗j . Summing

(−1)tut over t = 1, . . . , T gives

T−
1
2

T∑
t=1

(−1)tut = c(−1)T−
1
2

T∑
t=1

(−1)tεt − T−
1
2

T∑
t=1

(−1)t(ε∗t + ε∗t−1).

Note that
∑T

t=1(−1)t(ε∗t + ε∗t−1) = −ε∗0 + (−1)T ε∗T . To establish the invariance principle for
(−1)tut it is necessary to establish the convergence in probability to zero of

sup
r

∣∣∣∣∣∣T− 1
2

[Tr]∑
t=1

(−1)tut − c(−1)T−
1
2

[Tr]∑
t=1

(−1)tεt

∣∣∣∣∣∣ ≤ T−1/2 |ε∗0|+ T−
1
2 sup

r

∣∣∣ε∗[Tr]

∣∣∣ .
But the right hand side does converge to zero in probability since ε∗t = Op(1) under Assump-
tion 1 and Lemma A1. Hence the stated invariance principle follows from Lemma A2.
(c) Details are given for eitπ/2ut with the result for e−itπ/2ut following as the complex conju-
gate. Expanding c(z) around the point z = eiπ/2(= i) yields c(z) = c(eiπ/2)−(1−eiπ/2z)ĉ(z),
where, from Lemma A1, ĉ(z) =

∑∞
j=0 ĉjz

j with
∑∞

j=0 ĉ
2
j <∞. Then

eitπ/2ut = eitπ/2c(L)εt = eitπ/2
[
c(eiπ/2)εt − (ε̂t − e−iπ/2ε̂t−1)

]
,

where ε̂t =
∑∞

j=0 ĉjεt−j has E(ε̂2t ) < ∞ by the square summability of the ĉj . Summing
eitπ/2ut over t = 1, . . . , T gives

T−
1
2

T∑
t=1

eitπ/2ut = c(eiπ/2)T−
1
2

T∑
t=1

eitπ/2εt − T−
1
2

T∑
t=1

eitπ/2(ε̂t − e−iπ/2ε̂t−1).
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Note that
∑T

t=1 e
itπ/2(ε̂t−e−iπ/2ε̂t−1) = −ε̂0 +eiTπ/2ε̂T . To establish the invariance principle

for eitπ/2ut it is necessary to establish the convergence in probability to zero of

sup
r

∣∣∣∣∣∣T− 1
2

[Tr]∑
t=1

eitπ/2ut − c(eiπ/2)T−
1
2

[Tr]∑
t=1

eitπ/2εt

∣∣∣∣∣∣ ≤ T−1/2 |ε̂0|+ T−
1
2 sup

r

∣∣∣ε̂[Tr]

∣∣∣ .
The convergence in probability of this term to zero follows since ε̂t = Op(1) under Assumption
1 and Lemma A1. Hence the stated invariance principle follows from Lemma A2. 2

Proof of Lemma 2. (a) From Lemma 1 and the continuous mapping theorem,

T−2
T∑

t=1

y2
1t = T−2

T∑
t=1

P 2
t ⇒ σ2

ε c(1)2
∫ 1

0
W 2

1 ,

while for n 6= 0,

T−2
T−n∑
t=1

y1ty1,t+n = T−2
T−n∑
t=1

y2
1t + T−2

n−1∑
j=0

T−n∑
t=1

y1tut+n−j

= T−2
T−n∑
t=1

P 2
t + op(1) ⇒ σ2

ε c(1)2
∫ 1

0
W 2

1

as required.
(b) Similar arguments can be applied to the autocovariances involving y2t, in which case
Lemma 1 and the continuous mapping theorem yield

T−2
T∑

t=1

y2
2t = T−2

T∑
t=1

(−1)2tM2
t ⇒ σ2

ε c(−1)2
∫ 1

0
W 2

2 ,

while for n 6= 0,

T−2
T−n∑
t=1

y2ty2,t+n = T−2
T−n∑
t=1

(−1)tMt(−1)t+nMt+n

= (−1)nT−2
T−n∑
t=1

M2
t + (−1)n

n∑
j=1

T−2
T−n∑
t=1

(−1)t+jMtut+j

= (−1)nT−2
T−n∑
t=1

M2
t + op(1) ⇒ (−1)nσ2

ε c(−1)2
∫ 1

0
W 2

2

as required.
(c) The derivations involving y4t are rather more involved. From the earlier representation
of y4t in terms of the partial sums Ct and St,

y4ty4,t+n = CtCt+n sin[(t+ 1)π/2] sin[(t+ n+ 1)π/2]
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+StSt+n cos[(t+ 1)π/2] cos[(t+ n+ 1)π/2]

−CtSt+n sin[(t+ 1)π/2] cos[(t+ n+ 1)π/2]

−StCt+n cos[(t+ 1)π/2] sin[(t+ n+ 1)π/2].

The following trigonometric identities are useful:

sin[(x± y)/2] cos[(x∓ y)/2] = [sinx± sin y]/2;

cos[(x+ y)/2] cos[(x− y)/2] = [cosx+ cos y]/2;

sin[(x+ y)/2] sin[(y − x)/2] = [cosx− cos y]/2;

see, for example, equations 1.314.1, 1.314.3, and 1.314.5, respectively, of Gradshteyn and
Ryzhik (1994). Setting x = [t+ 1 + (n/2)]π and y = (n/2)π yields

y4ty4,t+n = −(1/2)CtCt+n {cos[(2(t+ 1) + n)π)/2]− cos[(nπ)/2]}

+(1/2)StSt+n {cos[(2(t+ 1) + n)π/2] + cos[(nπ)/2]}

−(1/2)CtSt+n {sin[(2(t+ 1) + n)π/2]− sin[(nπ)/2]}

−(1/2)StCt+n {sin[(2(t+ 1) + n)π/2] + sin[(nπ)/2]} ,

from which it follows that

T−2
T−n∑
t=1

y4ty4,t+n = −1
2
T−2

T−n∑
t=1

(CtCt+n − StSt+n) cos[(2(t+ 1) + n)π/2]

+
1
2
T−2

T−n∑
t=1

(CtCt+n + StSt+n) cos[(nπ)/2]

−1
2
T−2

T−n∑
t=1

(CtSt+n + StCt+n) sin[(2(t+ 1) + n)π/2]

+
1
2
T−2

T−n∑
t=1

(CtSt+n − StCt+n) sin[(nπ)/2]

=
1
2
T−2

T−n∑
t=1

(CtCt+n + StSt+n) cos[(nπ)/2]

+
1
2
T−2

T−n∑
t=1

(CtSt+n − StCt+n) sin[(nπ)/2] + op(1),

the op(1) terms following by virtue of Lemma 3.3.6 of Chan and Wei (1988). Hence

T−2
T−n∑
t=1

y4ty4,t+n =


(−1)n/2 1

2
T−2

T−n∑
t=1

(CtCt+n + StSt+n) + op(1), n even,

(−1)(n−1)/2 1
2
T−2

T−n∑
t=1

(CtSt+n − StCt+n) + op(1), n odd.
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But, since Ct+n = Ct +
∑n−1

j=0 cos[(t+ n− j)π/2]ut+n−j and St+n = St +
∑n−1

j=0 sin[(t+ n−
j)π/2]ut+n−j , it follows that

T−2
T−n∑
t=1

CtCt+n = T−2
T−n∑
t=1

C2
t + op(1),

T−2
T−n∑
t=1

StSt+n = T−2
T−n∑
t=1

S2
t + op(1),

T−2
T−n∑
t=1

CtSt+n = T−2
T−n∑
t=1

CtSt + op(1),

T−2
T−n∑
t=1

StCt+n = T−2
T−n∑
t=1

CtSt + op(1).

Hence

T−2
T−n∑
t=1

y4ty4,t+n =


(−1)n/2 1

2
T−2

T−n∑
t=1

(
C2

t + S2
t

)
+ op(1), n even,

op(1), n odd,

and so the result in the Lemma follows.
(d), (e) The convergence of the cross autocovariances is a direct consequence of the results
on p.379 of Chan and Wei (1988). 2

Proof of Lemma 3. (a) This is a standard result in the literature; see, for example,
Phillips (1987).
(b) Squaring both sides of the equation Mt = Mt−1 + (−1)tut and summing yields

T−1
T∑

t=1

Mt−1(−1)tut =
1
2
T−1M2

T −
1
2
T−1

T∑
t=1

u2
t

⇒ 1
2
σ2

ε c(−1)2W2(1)2 − 1
2
γ0

=
1
2
σ2

ε c(−1)2
[
W2(1)2 − 1

]
+

1
2

[
σ2

ε c(−1)2 − γ0

]
.

Noting that (1/2)
[
W2(1)2 − 1

]
=
∫ 1
0 W2dW2 while

σ2
ε c(−1)2 = 2πfuu(π) =

∞∑
j=−∞

γje
−ijπ =

∞∑
j=−∞

γj(−1)j = γ0 + 2
∞∑

j=1

(−1)jγj

yields the desired result.
(c), (d) These results can be demonstrated jointly by using the results in Phillips (1988).
Let xt = (Ct, St)

′ and vt = [cos(πt/2)ut, sin(πt/2)ut]
′, so that xt = xt−1 + vt. Further,

define Γt,k = E
(
vtv

′
t+k

)
, Λ = limT→∞ T−1∑T

t=2

∑t−1
k=1 Γt,k, Σ = limT→∞ T−1∑T

t=1 Γt,0, and

Ω = Σ + Λ + Λ′. Phillips (1988) shows that T−1∑T
t=1 xt−1v

′
t ⇒

∫ 1
0 BdB

′ + Λ, where B is
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Brownian motion with variance matrix Ω. Parts (c) and (d) are obtained by selecting the
limits of the appropriate elements of

T−1
T∑

t=1

xt−1v
′
t =

[
T−1∑T

t=1Ct−1 cos(πt/2)ut T−1∑T
t=1 St−1 cos(πt/2)ut

T−1∑T
t=1Ct−1 sin(πt/2)ut T−1∑T

t=1 St−1 sin(πt/2)ut

]

and by working out the form of Ω and Λ in this particular case. First note that

Γt,k = E

(
cos(πt/2) cos(π(t+ k)/2)utut+k cos(πt/2) sin(π(t+ k)/2)utut+k

sin(πt/2) cos(π(t+ k)/2)utut+k sin(πt/2) sin(π(t+ k)/2)utut+k

)

=



(
(−1)

k
2 γk 0

0 0

)
, k, t even,

(
0 (−1)

k−1
2 γk

0 0

)
, k odd, t even,

(
0 0
0 (−1)

k
2 γk

)
, k even, t odd,

(
0 0

(−1)
k+1
2 γk 0

)
, k, t odd.

It then follows that

Σ =

(
1
2γ0 0
0 1

2γ0

)
, Λ =

1
2

( ∑∞
k=1(−1)kγ2k

∑∞
k=0(−1)kγ2k+1

−
∑∞

k=0(−1)kγ2k+1
∑∞

k=1(−1)kγ2k

)
,

Ω =
1
2

(
γ0 + 2

∑∞
k=1(−1)kγ2k 0
0 γ0 + 2

∑∞
k=1(−1)kγ2k

)

Finally, noting that

σ2
ε

2

∣∣∣c (eiπ/2
)∣∣∣2 =

1
2

[2πfuu(π/2)] =
1
2

∞∑
j=−∞

γje
−ijπ/2 =

1
2

γ0 + 2
∞∑

j=1

(−1)jγ2j


yields the stated results. 2

Proof of Lemma 4. (a) This result is fairly standard in the literature and is given,
for example, by Phillips (1991).
(b) Note, first, that

T−n∑
t=1

y2,t−1ut+n = (−1)n
T−n∑
t=1

Mt−1(Mt+n −Mt+n−1).

Substituting Mt+n −Mt+n−1 = Mt −Mt−1 + (−1)t+nut+n − (−1)tut yields

T−n∑
t=1

y2,t−1ut+n = (−1)n
T−n∑
t=1

Mt−1(Mt −Mt−1)

+(−1)n
T−n∑
t=1

Mt−1

[
(−1)t+nut+n − (−1)tut

]
.
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Concentrating on the components of the second term, we obtain

T−n∑
t=1

Mt−1(−1)t+nut+n =
n∑

j=0

(−1)T−jMT−n−1−juT−j +
T−n−1∑
t=n+1

Mt−n−1(−1)tut,

T−n∑
t=1

Mt−1(−1)tut =
T−n∑
t=1

Mt−n−1(−1)tut +
n∑

k=1

(−1)k
T−n∑
t=1

ut−kut,

so that

T−n∑
t=1

Mt−1

[
(−1)t+nut+n − (−1)tut

]
=

n∑
j=0

(−1)T−jMT−n−1−juT−j

−MT−2n−2(−1)T−nuT−n −
n∑

t=1

Mt−n−1(−1)tut −
n∑

k=1

(−1)k
T−n∑
t=1

ut−kut

=
n∑

j=0

(−1)T−jMT−n−1−juT−j −MT−2n−2(−1)T−nuT−n −
n∑

k=1

(−1)k
T−n∑
t=1

ut−kut

due to the second term in the second line being null because Mt = 0 for t ≤ 0. Hence

T−1
T−n∑
t=1

y2,t−1ut+n = (−1)nT−1
T−n∑
t=1

Mt−1(Mt −Mt−1)

−(−1)n
n∑

k=1

(−1)kT−1
T−n∑
t=1

ut−kut + op(1)

and the result follows.
(c) Some care needs to be taken with respect to the treatment of the term involving y4t, so
more detail is provided. From the trigonometric representation of y4t in the proof of Lemma
2,

y4,t−1ut+n = −{Ct−1 sin(πt/2)ut+n − St−1 cos(πt/2)ut+n} .

The following trigonometric identities are useful:

sin(x− y) = sinx cos y − sin y cosx;

cos(x− y) = cosx cos y + sinx sin y;

see, for example, equations 1.313.1 and 1.313.5, respectively, of Gradshteyn and Ryzhik
(1994). Applying these identities with x = (t+ n)π/2 and y = nπ/2 results in

sin(πt/2) =

{
(−1)n/2 sin[(t+ n)π/2], n even,
(−1)(n+1)/2 cos[(t+ n)π/2], n odd,

cos(πt/2) =

{
(−1)n/2 cos[(t+ n)π/2], n even,
(−1)(n−1)/2 sin[(t+ n)π/2], n odd,
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Hence, for n even,

y4,t−1ut+n = −
{
(−1)n/2Ct−1 sin[(t+ n)π/2]ut+n − (−1)n/2St−1 cos[(t+ n)π/2]ut+n

}
= (−1)(n+2)/2 [Ct−1(St+n − St+n−1) + St−1(Ct+n − Ct+n−1)] ,

while for n odd,

y4,t−1ut+n = −
{
(−1)(n+1)/2Ct−1 cos[(t+ n)π/2]ut+n

−(−1)(n−1)/2St−1 sin[(t+ n)π/2]ut+n

}
= (−1)(n−1)/2 [Ct−1(Ct+n − Ct+n−1) + St−1(St+n − St+n−1)] .

The following two substitutions can now be made:

Ct+n − Ct+n−1 = Ct − Ct−1 + cos[(t+ n)π/2]ut+n − cos(πt/2)ut,

St+n − St+n−1 = St − St−1 + sin[(t+ n)π/2]ut+n − sin(πt/2)ut.

There are four terms now to consider, all of which can be handled in a similar way. Demon-
strating the technique for one of them, we have

T−n∑
t=1

Ct−1[Ct+n − Ct+n−1] =
T−n∑
t=1

Ct−1[Ct − Ct−1]

+
T−n∑
t=1

Ct−1 [cos[(t+ n)π/2]ut+n − cos(πt/2)ut] .

The components of the second term may be written

T−n∑
t=1

Ct−1 cos[(t+ n)π/2]ut+n =
n∑

j=0

CT−n−1−j cos[(T − j)π/2]uT−j

+
T−n−1∑
t=n+1

Ct−n−1 cos(πt/2)ut,

T−n∑
t=1

Ct−1 cos(πt/2)ut =
T−n∑
t=1

Ct−n−1 cos(πt/2)ut

+
n∑

k=1

T−n∑
t=1

ut−kut cos[(t− k)π/2] cos(πt/2).

Defining ct+n = cos[(t+ n)π/2] and st+n = sin[(t+ n)π/2] in order to save some space,

T−1
T−n∑
t=1

Ct−1[ct+nut+n − ctut] = −
n∑

k=1

T−1
T−n∑
t=1

ut−kutct−kct + op(1).
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Similarly,

T−1
T−n∑
t=1

St−1[st+nut+n − stut] = −
n∑

k=1

T−1
T−n∑
t=1

ut−kutst−kst + op(1),

T−1
T−n∑
t=1

Ct−1[st+nut+n − stut] = −
n∑

k=1

T−1
T−n∑
t=1

ut−kutct−kst + op(1),

T−1
T−n∑
t=1

St−1[ct+nut+n − ctut] = −
n∑

k=1

T−1
T−n∑
t=1

ut−kutst−kct + op(1).

Utilising these decompositions we obtain, for n even,

T−1
T−n∑
t=1

y4,t−1ut+n = (−1)(n+2)/2T−1

[
T−n∑
t=1

Ct−1(St − St−1)−
T−n∑
t=1

St−1(Ct − Ct−1)

]

−(−1)(n+2)/2
n∑

k=1

T−1
T−n∑
t=1

ut−kut [ct−kst − st−kct] + op(1),

while for n odd,

T−1
T−n∑
t=1

y4,t−1ut+n = (−1)(n−1)/2T−1

[
T−n∑
t=1

Ct−1(Ct − Ct−1) +
T−n∑
t=1

St−1(St − St−1)

]

−(−1)(n−1)/2
n∑

k=1

T−1
T−n∑
t=1

ut−kut [ct−kct + st−kst] + op(1).

Application of the results in Lemma 3 yields the required expressions. 2

Proof of Theorem 1. It is convenient to define

HM =
1

2M

M∑
j=−M+1

f̂xx(ωj)fuu(ωj)−1 and hM =
1

2M

M∑
j=−M+1

f̂xu(ωj)fuu(ωj)−1.

From the definition of f̂xx(λ) in (7) and making use of the Fourier series representation of
fuu(λ)−1, given by

fuu(λ)−1 =
1
2π

∞∑
g=−∞

dge
igλ, −π < λ ≤ π,

it is possible to write

T−1HM =
(

1
2π

)2 ∞∑
g=−∞

dg

M∑
n=−M

k

(
n

M

)
T−1Cxx(n)

1
2M

M∑
j=−M+1

ei(g−n)πj/M .
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Now
∑M

j=−M+1 e
i(g−n)πj/M = 2M if (g − n) = ±2lM for integer l, and is equal to zero

otherwise. Hence the non-zero terms determining HM are those for which n = g + 2lM
(l = 0,±1, . . .), and we may write

T−1HM =
(

1
2π

)2 ∞∑
g=−∞

dg

∞∑
l=−∞

k

(
g + 2lM
M

)
T−1Cxx(g + 2lM);

see Hannan (1963), Phillips (1991) and Choi and Phillips (1993) for alternative represen-
tations. Note that this expression only includes those Cxx(n) for −M ≤ n ≤ M because
k(x) = 0 for |x| > 1 i.e. k(n/M) = 0 if n = g + 2lM > M . As T →∞ and hence M →∞,
k((g + 2lM)/M) → k(2l) which is zero for all l 6= 0, and so it is only the l = 0 term that is
influential. Hence we are led to consider

T−1HM =
(

1
2π

)2 ∞∑
g=−∞

dgT
−1Cxx(g) + op(1)

since k(0) = 1 under Assumption 2. The limiting behaviour of the elements of T−1Cxx(g)
is provided in Lemma 2, which shows that all off-diagonal elements, with the exception of
those corresponding to y3 and y4, converge to zero. It is therefore necessary to demonstrate
that the diagonal elements of T−1HM converge to the stated limits, while the cross-product
terms involving y3 and y4 converge to zero.
H11: From Lemma 2 we obtain

T−1HM,11 ⇒ σ2
ε c(1)2

∫ 1

0
W 2

1

(
1
2π

)2 ∞∑
g=−∞

dg =
∫ 1

0
W 2

1 ,

since (1/2π)2
∑

g dg = (1/2π)fuu(0)−1 = 1/σ2 where σ2 = σ2
ε c(1)2 denotes the long run

variance of ut.
H22: Here, the limit depends on g, so that

T−1HM,22 ⇒ σ2
ε c(−1)2

∫ 1

0
W 2

2

(
1
2π

)2 ∞∑
g=−∞

dg(−1)g =
∫ 1

0
W 2

2 ,

since (1/2π)σ2
ε c(−1)2 = fuu(π) and (1/2π)

∑
g dg(−1)g = (1/2π)

∑
g dge

igπ = fuu(π)−1.
H33, H44: That T−1HM,33 and T−1HM,44 converge to the same limit arises because

T−2
∑

t

y3ty3,t+n = T−2
∑

t

y4,t−1y4,t−1+n = T−2
∑

t

y4ty4,t+n + op(1).

Concentrating on T−1HM,44 we obtain

T−1HM,44 ⇒ σ2
ε

4

∣∣∣c(eiπ/2)
∣∣∣2 ∫ 1

0

(
W 2

3 +W 2
4

)( 1
2π

)2 ∑
g even

dg(−1)g/2.

Noting that fuu(π/2) = (1/2π)σ2
ε

∣∣∣c(eiπ/2)
∣∣∣2 and that

fuu(π/2)−1 =
1
2π

∑
g

dge
igπ/2 =

1
2π

∑
g even

dg(−1)g/2
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yields the stated result.
Cross-products, y3 and y4: Lemma 2 implies that, since y3t = y4,t−1,

T−2
T−n∑
t=1

y3ty4,t+n ⇒


0, n even,

(−1)(n+1)/2σ
2
ε

4

∣∣∣c(eiπ/2)
∣∣∣2 ∫ 1

0

[
W 2

3 +W 2
4

]
, n odd.

Hence

T−1HM,34 ⇒ σ2
ε

4

∣∣∣c(eiπ/2)
∣∣∣2 ∫ 1

0

(
W 2

3 +W 2
4

)( 1
2π

)2 ∑
g odd

dg(−1)(g+1)/2 = 0,

the last summation being null since dg = d−g and hence dg(−1)(g+1)/2 = −d−g(−1)(−g+1)/2.
Cross-products, y4 and y3: This follows in a similar fashion to H34, but note that

T−2
T−n∑
t=1

y4ty3,t+n ⇒


0, n even,

(−1)(n−1)/2σ
2
ε

4

∣∣∣c(eiπ/2)
∣∣∣2 ∫ 1

0

[
W 2

3 +W 2
4

]
, n odd.

since T−2∑T−n
t=1 y4ty3,t+n = T−2∑T−n

t=1 y4ty4,t−1+n. Hence

T−1HM,34 ⇒ σ2
ε

4

∣∣∣c(eiπ/2)
∣∣∣2 ∫ 1

0

(
W 2

3 +W 2
4

)( 1
2π

)2 ∑
g odd

dg(−1)(g−1)/2 = 0

by the same argument as before.
This concludes the proof of the limiting form of T−1HM .

Turning to hM , similar arguments lead to the expression

hM =
(

1
2π

)2 ∞∑
g=−∞

dgCxu(g) + op(1),

and the convergence of hm to the limits stated in the Theorem will be demonstrated using
the results of Lemma 4. Taking each element in turn:
h1: From Lemma 4,

hM,1 ⇒ σ2
ε c(1)2

∫ 1

0
W1dW1

(
1
2π

)2 ∞∑
g=−∞

dg +
(

1
2π

)2 ∞∑
g=−∞

dgδ1(g + 1)

=
∫ 1

0
W1dW1 +

(
1
2π

)2 ∞∑
g=−∞

dgδ1(g + 1).

Note that δ1(g + 1) =
∑∞

j=0Eu0uj+g+1, and so we may write, as in Phillips (1991),

∞∑
g=−∞

dgδ1(g + 1) =
∞∑

g=−∞

 ∞∑
j=0

Eu0uj+g+1

 dg =
∞∑

j=0

Eu0vj ,
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where vj =
∑∞

g=−∞ uj+g+1dg. Now Eu0vj =
∫ π
−π e

ijλfuv(λ)dλ, where fuv(λ) is the cross
spectral density between u and v and is given by

fuv(λ) =
1
2π

∞∑
k=−∞

e−ikλEu0vk =
1
2π

∞∑
k=−∞

e−ikλEu0

∞∑
g=−∞

uk+g+1dg

=
1
2π

∞∑
m=−∞

Eu0ume
−imλ

∞∑
g=−∞

dge
i(g+1)λ

= fuu(λ)eiλ2πfuu(λ)−1 = 2πeiλ,

the second line following by substituting m = k + g + 1. This implies that

Eu0vj = 2π
∫ π

−π
ei(j+1)λdλ =

{
(2π)2, j = −1,
0 otherwise,

and hence

∞∑
g=−∞

dgδ1(g + 1) =
∞∑

j=0

Eu0vj = 0,

from which it follows that h1 =
∫ 1
0 W1dW1 as required.

h2: Again from Lemma 4,

hM,2 ⇒ σ2
ε c(−1)2

∫ 1

0
W2dW2

(
1
2π

)2 ∞∑
g=−∞

dg(−1)g +
(

1
2π

)2 ∞∑
g=−∞

dg(−1)gδ2(g + 1)

=
∫ 1

0
W2dW2 +

(
1
2π

)2 ∞∑
g=−∞

dg(−1)gδ2(g + 1).

Recall that δ2(g + 1) =
∑∞

j=0(−1)j+g+1Eu0uj+g+1, so that

∞∑
g=−∞

dg(−1)gδ2(g + 1) =
∞∑

g=−∞
(−1)g

 ∞∑
j=0

(−1)j+g+1Eu0uj+g+1

 dg

=
∞∑

j=0

(−1)j+1Eu0

∞∑
g=−∞

(−1)2guj+g+1dg

=
∞∑

j=0

(−1)j+1Eu0vj = 0

in view of the earlier results concerning Eu0vj . Hence h2 =
∫ 1
0 W2dW2 as required.

h3, h4: These two terms are similar, in view of Lemma 4(c). Considering h4,

hM,4 ⇒ σ2
ε

2

∣∣∣c(eiπ/2)
∣∣∣2 ∫ 1

0
(W3dW4 −W4dW3)

(
1
2π

)2 ∑
g even

dg(−1)(g+2)/2

+
σ2

ε

2

∣∣∣c(eiπ/2)
∣∣∣2 ∫ 1

0
(W3dW3 +W4dW4)

(
1
2π

)2 ∑
g odd

dg(−1)(g−1)/2
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+
(

1
2π

)2 ∑
g even

dg(−1)(g+2)/2δ4(g) +
(

1
2π

)2 ∑
g odd

dg(−1)(g−1)/2δ3(g)

= −1
2

∫ 1

0
(W3dW4 −W4dW3) +

(
1
2π

)2 ∞∑
g=−∞

dg(−1)[
g+1
2 ]+1δ5(g),

where δ5(g) =
∑∞

j=0(−1)j+[ g+1
2 ]Eu0uj+g+1. This last term is

∞∑
g=−∞

(−1)[
g+1
2 ]+1

 ∞∑
j=0

(−1)j+[ g+1
2 ]Eu0uj+g+1

 dg =
∞∑

j=0

(−1)j+1Eu0

∞∑
g=−∞

uj+g+1dg

=
∞∑

j=0

(−1)j+1Eu0vj = 0

as before, since the factor (−1)2[
g+1
2 ] = 1 for all g in the second expression in the first line.

Hence h4 = (1/2)
∫ 1
0 (W4dW3 −W3dW4) as required. Similar arguments yield the expression

for h3 given in the Theorem. 2

Proof of Theorem 2. It is convenient to begin by deriving the limiting distribution
of T (β̂ − β). Note that

T (β̂ − β) =

 1
2M

M∑
j=−M+1

f̂xx(ωj)f̂ûû(ωj)−1

−1  1
2M

M∑
j=−M+1

f̂xû(ωj)f̂ûû(ωj)−1

 .
Since β̂OLS is a consistent estimator of β it can be shown that under Assumptions 1 and 2

max
λ
|f̂ûû(λ)− fuu(λ)| p→ 0

as T →∞, and so to examine the asymptotics it is sufficient to focus on

T (β̂ − β) = [T−1HM ]−1hM ,

where HM and hM are defined in the proof of Theorem 1. The diagonality of the limit
of T−1HM and the fact that β = 0 under the null yields immediately that T β̂j ⇒ hj/Hjj

(j = 1, . . . , 4), giving the expressions in the Theorem.

Turning to the t-ratios, the limiting distributions are obtained by multiplying the limit-
ing distributions of the T β̂j by the square roots of the appropriate diagonal elements of the
limit of T−1HM (since T 2VT = TH−1

M can be regarded as the variance matrix of T β̂). The
diagonal elements of interest follow from Theorem 1 and the above proof.

The limiting distributions of the Wald statistics follow in a similar way. Since it is
possible to write

Ji = T β̂′iR
′
i

[
Ri

(
T−1HM

)−1
R′i

]−1

RiT β̂,
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and the limiting distributions of T β̂ and T−1HM have already been established, it is straight-
forward to show that Ji converges to the limits stated in the Lemma. 2

Proof of Corollary to Theorem 2. Consider the case where β1 = 0 but βj 6= 0
(j = 2, 3, 4). From (2) and (3) it follows that (1− L4)wt =

∑4
j=2 βjαj(L)wt−1 + ut or

wt =
4∑

j=2

βj
αj(L)
1− L4

wt−1 +
ut

1− L4
.

From the definitions of the polynomials αj(z) following (3),

α2(z)
1− z4

=
−1

1 + z
;

α3(z)
1− z4

=
−z

1 + z2
;

α4(z)
1− z4

=
−1

1 + z2
.

Since y1t = α1(L)wt the above decompositions yield

y1t = α1(L)
[
− β2

1 + L
− β3L

1 + L2
− β4

1 + L2

]
wt−1 +

α1(L)
1− L4

ut.

But α1(z) = (1 + z)(1 + z2) and (1− z4) = (1− z)α1(z), so that

y1t = −β2(1 + L2)wt−1 − β3(1 + L)wt−2 − β4(1 + L)wt−1 + Pt,

where Pt = (1− L)−1ut = Op(t
1
2 ). Hence y1t = Pt +Op(1) and

1
T 2

T∑
t=1

y2
1t =

1
T 2

T∑
t=1

P 2
t + op(1) ⇒ σ2

ε c(1)2
∫ 1

0
W 2

1

as before. By similar arguments, y2t = −(−1)tMt + Op(1) when βj 6= 0 (j 6= 2) and
y4t = −[Ct sin(t+ 1)π/2− St cos(t+ 1)π/2] +Op(1) when βj 6= 0 (j 6= 4), so that the limits
in Lemma 2, for example, apply. The analysis also extends to Lemmas 3 and 4. 2
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Table 1. Size of Frequency Domain Test Statistics Based on Tukey Kernel

T ψ T β̂1 T β̂2 T β̂3 T β̂4 tβ1 tβ2 tβ3 tβ4 J1234 J34

δ = 1/5
48 0.5 0.177 0.005 0.113 0.005 0.140 0.003 0.082 0.004 0.139 0.088

0.2 0.091 0.028 0.065 0.026 0.068 0.020 0.046 0.020 0.043 0.042
0.0 0.052 0.052 0.052 0.058 0.040 0.040 0.038 0.043 0.035 0.036

−0.2 0.028 0.095 0.065 0.108 0.022 0.071 0.047 0.069 0.046 0.042
−0.5 0.004 0.179 0.112 0.230 0.003 0.140 0.078 0.124 0.137 0.085

100 0.5 0.149 0.004 0.108 0.006 0.128 0.003 0.088 0.007 0.130 0.090
0.2 0.086 0.025 0.058 0.025 0.071 0.022 0.046 0.026 0.050 0.049
0.0 0.051 0.050 0.048 0.052 0.044 0.043 0.040 0.046 0.040 0.043

−0.2 0.024 0.087 0.062 0.091 0.021 0.077 0.051 0.068 0.052 0.050
−0.5 0.004 0.153 0.106 0.202 0.003 0.134 0.085 0.127 0.132 0.086

200 0.5 0.128 0.004 0.104 0.009 0.116 0.003 0.091 0.088 0.114 0.083
0.2 0.078 0.026 0.063 0.030 0.072 0.025 0.057 0.028 0.053 0.054
0.0 0.047 0.052 0.050 0.052 0.044 0.050 0.047 0.048 0.043 0.043

−0.2 0.026 0.081 0.061 0.090 0.025 0.074 0.057 0.069 0.052 0.050
−0.5 0.004 0.127 0.101 0.180 0.004 0.115 0.089 0.114 0.109 0.081

δ = 1/3
48 0.5 0.172 0.005 0.109 0.007 0.137 0.004 0.078 0.007 0.120 0.075

0.2 0.090 0.030 0.066 0.030 0.068 0.021 0.048 0.023 0.040 0.041
0.0 0.054 0.052 0.053 0.055 0.042 0.040 0.040 0.044 0.034 0.037

−0.2 0.031 0.089 0.066 0.096 0.023 0.068 0.046 0.066 0.044 0.041
−0.5 0.006 0.170 0.107 0.190 0.003 0.135 0.077 0.105 0.119 0.073

100 0.5 0.140 0.009 0.095 0.015 0.120 0.007 0.075 0.015 0.104 0.067
0.2 0.080 0.032 0.058 0.034 0.069 0.027 0.047 0.034 0.048 0.050
0.0 0.055 0.053 0.053 0.052 0.047 0.045 0.044 0.049 0.043 0.046

−0.2 0.032 0.083 0.065 0.077 0.027 0.073 0.052 0.060 0.052 0.050
−0.5 0.008 0.144 0.093 0.142 0.006 0.123 0.073 0.094 0.104 0.065

200 0.5 0.108 0.012 0.078 0.025 0.096 0.010 0.068 0.024 0.076 0.059
0.2 0.066 0.036 0.060 0.041 0.062 0.033 0.054 0.037 0.051 0.051
0.0 0.045 0.053 0.047 0.052 0.041 0.051 0.045 0.050 0.045 0.045

−0.2 0.035 0.070 0.058 0.067 0.032 0.065 0.053 0.054 0.048 0.047
−0.5 0.014 0.111 0.076 0.104 0.011 0.099 0.067 0.070 0.074 0.055
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Table 2. Size of Frequency Domain Test Statistics Based on Parzen Kernel

T ψ T β̂1 T β̂2 T β̂3 T β̂4 tβ1 tβ2 tβ3 tβ4 J1234 J34

δ = 1/5
48 0.5 0.216 0.003 0.121 0.002 0.173 0.003 0.087 0.002 0.178 0.111

0.2 0.104 0.025 0.064 0.021 0.077 0.018 0.046 0.018 0.047 0.043
0.0 0.054 0.053 0.051 0.055 0.042 0.041 0.037 0.044 0.033 0.036

−0.2 0.026 0.107 0.064 0.118 0.020 0.079 0.047 0.081 0.049 0.046
−0.5 0.003 0.215 0.121 0.282 0.002 0.171 0.086 0.168 0.181 0.109

100 0.5 0.201 0.002 0.134 0.002 0.175 0.001 0.111 0.003 0.196 0.134
0.2 0.101 0.021 0.062 0.021 0.087 0.017 0.053 0.021 0.058 0.054
0.0 0.052 0.049 0.052 0.055 0.044 0.042 0.044 0.049 0.039 0.043

−0.2 0.021 0.102 0.068 0.121 0.018 0.086 0.058 0.086 0.060 0.055
−0.5 0.002 0.203 0.130 0.294 0.002 0.177 0.109 0.197 0.198 0.127

200 0.5 0.194 0.002 0.120 0.002 0.179 0.002 0.108 0.003 0.195 0.131
0.2 0.096 0.022 0.062 0.019 0.091 0.021 0.057 0.021 0.065 0.060
0.0 0.048 0.054 0.048 0.049 0.045 0.052 0.045 0.047 0.044 0.044

−0.2 0.022 0.101 0.061 0.107 0.020 0.093 0.056 0.085 0.064 0.056
−0.5 0.002 0.185 0.119 0.273 0.003 0.171 0.108 0.189 0.196 0.130

δ = 1/3
48 0.5 0.185 0.004 0.115 0.004 0.147 0.003 0.082 0.004 0.146 0.094

0.2 0.093 0.027 0.065 0.023 0.069 0.019 0.045 0.019 0.043 0.042
0.0 0.053 0.050 0.052 0.053 0.040 0.039 0.037 0.043 0.035 0.036

−0.2 0.028 0.094 0.065 0.102 0.021 0.071 0.046 0.071 0.046 0.043
−0.5 0.003 0.183 0.114 0.232 0.002 0.145 0.079 0.129 0.144 0.089

100 0.5 0.143 0.005 0.107 0.010 0.124 0.004 0.086 0.009 0.121 0.082
0.2 0.082 0.027 0.059 0.029 0.069 0.023 0.048 0.028 0.050 0.049
0.0 0.052 0.050 0.050 0.055 0.044 0.043 0.042 0.049 0.042 0.045

−0.2 0.026 0.084 0.064 0.090 0.022 0.074 0.053 0.067 0.052 0.050
−0.5 0.005 0.148 0.104 0.187 0.004 0.128 0.084 0.118 0.121 0.078

200 0.5 0.113 0.007 0.088 0.015 0.102 0.006 0.076 0.015 0.087 0.061
0.2 0.072 0.032 0.060 0.033 0.066 0.029 0.054 0.032 0.050 0.050
0.0 0.046 0.053 0.048 0.048 0.044 0.050 0.045 0.048 0.044 0.041

−0.2 0.032 0.073 0.058 0.072 0.030 0.068 0.053 0.060 0.048 0.045
−0.5 0.008 0.115 0.085 0.127 0.007 0.101 0.073 0.083 0.083 0.060
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Table 3. Size of Time Domain (HEGY) Test Statistics

T ψ tβ1 tβ2 tβ3 tβ4 F1234 F34

48 0.5 0.037 0.040 0.043 0.026 0.046 0.039
0.2 0.040 0.042 0.043 0.029 0.042 0.037
0.0 0.040 0.040 0.040 0.038 0.047 0.042

−0.2 0.044 0.039 0.043 0.040 0.047 0.040
−0.5 0.042 0.039 0.042 0.047 0.047 0.039

100 0.5 0.044 0.054 0.050 0.037 0.055 0.049
0.2 0.043 0.046 0.049 0.041 0.046 0.049
0.0 0.044 0.045 0.046 0.045 0.048 0.047

−0.2 0.043 0.051 0.053 0.046 0.050 0.046
−0.5 0.046 0.048 0.047 0.061 0.048 0.047

200 0.5 0.046 0.047 0.047 0.037 0.047 0.049
0.2 0.047 0.046 0.051 0.041 0.048 0.049
0.0 0.043 0.048 0.047 0.049 0.046 0.044

−0.2 0.046 0.049 0.049 0.052 0.045 0.045
−0.5 0.054 0.045 0.045 0.064 0.046 0.043
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Table 4. Power of Frequency Domain Test Statistics Based on Tukey Kernel

T ψ T β̂1 T β̂2 T β̂3 T β̂4 tβ1 tβ2 tβ3 tβ4 J1234 J34

δ = 1/5
48 0.5 0.351 0.007 0.378 0.008 0.299 0.009 0.307 0.002 0.340 0.276

0.2 0.185 0.054 0.241 0.042 0.157 0.049 0.193 0.013 0.136 0.116
0.0 0.103 0.105 0.223 0.107 0.094 0.095 0.190 0.044 0.107 0.095

−0.2 0.050 0.192 0.249 0.231 0.044 0.162 0.202 0.090 0.137 0.121
−0.5 0.007 0.355 0.379 0.501 0.009 0.300 0.304 0.234 0.338 0.281

100 0.5 0.550 0.013 0.755 0.006 0.515 0.020 0.712 0.001 0.713 0.616
0.2 0.339 0.111 0.566 0.054 0.324 0.120 0.538 0.012 0.478 0.339
0.0 0.218 0.221 0.538 0.157 0.221 0.229 0.522 0.046 0.449 0.297

−0.2 0.110 0.347 0.568 0.340 0.114 0.334 0.546 0.124 0.488 0.353
−0.5 0.013 0.562 0.749 0.682 0.018 0.531 0.704 0.367 0.707 0.608

200 0.5 0.881 0.052 0.996 0.004 0.874 0.076 0.994 0.001 0.993 0.965
0.2 0.715 0.335 0.975 0.068 0.724 0.374 0.969 0.007 0.973 0.845
0.0 0.552 0.542 0.969 0.220 0.585 0.569 0.962 0.048 0.969 0.806

−0.2 0.337 0.700 0.976 0.491 0.376 0.709 0.969 0.163 0.973 0.843
−0.5 0.054 0.885 0.995 0.875 0.078 0.875 0.993 0.551 0.994 0.966

δ = 1/3
48 0.5 0.343 0.008 0.360 0.011 0.290 0.010 0.295 0.003 0.298 0.242

0.2 0.183 0.054 0.243 0.045 0.156 0.050 0.198 0.014 0.123 0.110
0.0 0.107 0.103 0.228 0.104 0.097 0.094 0.194 0.043 0.101 0.095

−0.2 0.055 0.186 0.252 0.211 0.047 0.155 0.208 0.085 0.127 0.116
−0.5 0.009 0.335 0.364 0.443 0.011 0.286 0.294 0.200 0.294 0.243

100 0.5 0.503 0.023 0.691 0.016 0.467 0.029 0.645 0.002 0.612 0.492
0.2 0.320 0.133 0.569 0.072 0.310 0.138 0.540 0.018 0.455 0.315
0.0 0.222 0.227 0.555 0.160 0.228 0.233 0.534 0.049 0.445 0.295

−0.2 0.129 0.328 0.578 0.299 0.132 0.314 0.548 0.107 0.462 0.330
−0.5 0.022 0.512 0.689 0.561 0.027 0.477 0.641 0.269 0.610 0.492

200 0.5 0.803 0.111 0.985 0.019 0.789 0.135 0.976 0.002 0.978 0.889
0.2 0.653 0.403 0.966 0.109 0.661 0.439 0.962 0.016 0.967 0.809
0.0 0.539 0.542 0.963 0.227 0.569 0.571 0.958 0.052 0.967 0.794

−0.2 0.389 0.643 0.965 0.401 0.426 0.657 0.960 0.122 0.966 0.806
−0.5 0.106 0.811 0.981 0.710 0.129 0.800 0.977 0.345 0.978 0.887

32



Table 5. Power of Frequency Domain Test Statistics Based on Parzen Kernel

T ψ T β̂1 T β̂2 T β̂3 T β̂4 tβ1 tβ2 tβ3 tβ4 J1234 J34

δ = 1/5
48 0.5 0.408 0.006 0.391 0.005 0.348 0.008 0.319 0.001 0.411 0.323

0.2 0.209 0.051 0.240 0.034 0.174 0.048 0.192 0.011 0.147 0.124
0.0 0.107 0.110 0.218 0.102 0.097 0.097 0.187 0.043 0.107 0.096

−0.2 0.049 0.212 0.247 0.247 0.044 0.176 0.202 0.104 0.148 0.131
−0.5 0.007 0.410 0.394 0.561 0.009 0.347 0.321 0.297 0.408 0.330

100 0.5 0.644 0.009 0.804 0.002 0.607 0.014 0.774 0.001 0.816 0.709
0.2 0.377 0.097 0.593 0.044 0.360 0.107 0.576 0.009 0.521 0.369
0.0 0.223 0.221 0.560 0.161 0.224 0.225 0.553 0.046 0.461 0.303

−0.2 0.098 0.381 0.599 0.394 0.104 0.364 0.586 0.158 0.527 0.382
−0.5 0.009 0.657 0.799 0.795 0.016 0.623 0.771 0.497 0.817 0.707

200 0.5 0.952 0.034 0.997 0.001 0.947 0.062 0.996 0.000 0.998 0.986
0.2 0.773 0.306 0.974 0.045 0.778 0.352 0.969 0.004 0.980 0.866
0.0 0.565 0.556 0.965 0.215 0.598 0.586 0.960 0.045 0.972 0.812

−0.2 0.307 0.766 0.975 0.561 0.354 0.771 0.969 0.209 0.980 0.865
−0.5 0.039 0.952 0.997 0.948 0.065 0.947 0.995 0.725 0.999 0.986

δ = 1/3
48 0.5 0.362 0.007 0.381 0.006 0.307 0.009 0.306 0.002 0.350 0.285

0.2 0.189 0.051 0.242 0.038 0.159 0.047 0.191 0.012 0.137 0.117
0.0 0.104 0.103 0.222 0.100 0.093 0.093 0.187 0.043 0.105 0.096

−0.2 0.050 0.191 0.250 0.223 0.043 0.161 0.200 0.092 0.138 0.124
−0.5 0.007 0.359 0.383 0.500 0.009 0.305 0.304 0.241 0.351 0.292

100 0.5 0.530 0.015 0.742 0.009 0.497 0.021 0.703 0.001 0.682 0.581
0.2 0.329 0.115 0.573 0.062 0.316 0.124 0.550 0.015 0.476 0.335
0.0 0.216 0.221 0.548 0.163 0.220 0.226 0.536 0.048 0.456 0.299

−0.2 0.113 0.335 0.578 0.333 0.119 0.321 0.561 0.121 0.484 0.349
−0.5 0.015 0.539 0.734 0.653 0.019 0.507 0.695 0.337 0.681 0.576

200 0.5 0.842 0.076 0.992 0.011 0.827 0.100 0.986 0.001 0.985 0.929
0.2 0.688 0.370 0.970 0.087 0.693 0.407 0.964 0.010 0.969 0.819
0.0 0.557 0.541 0.964 0.218 0.583 0.570 0.958 0.050 0.968 0.795

−0.2 0.375 0.665 0.970 0.435 0.410 0.677 0.963 0.135 0.968 0.818
−0.5 0.083 0.840 0.990 0.789 0.103 0.830 0.986 0.422 0.985 0.929

33



Table 6. Power of Time Domain (HEGY) Test Statistics

T ψ tβ1 tβ2 tβ3 tβ4 F1234 F34

48 0.5 0.095 0.092 0.166 0.006 0.411 0.323
0.2 0.094 0.089 0.182 0.017 0.139 0.094
0.0 0.095 0.092 0.196 0.035 0.144 0.102

−0.2 0.091 0.096 0.192 0.060 0.142 0.104
−0.5 0.094 0.094 0.165 0.097 0.145 0.099

100 0.5 0.213 0.220 0.443 0.004 0.500 0.318
0.2 0.208 0.223 0.522 0.016 0.483 0.301
0.0 0.213 0.225 0.557 0.043 0.501 0.317

−0.2 0.195 0.228 0.521 0.092 0.496 0.314
−0.5 0.198 0.231 0.434 0.191 0.496 0.313

200 0.5 0.567 0.520 0.830 0.001 0.971 0.803
0.2 0.571 0.551 0.936 0.010 0.972 0.800
0.0 0.565 0.557 0.960 0.047 0.974 0.807

−0.2 0.550 0.548 0.939 0.130 0.972 0.800
−0.5 0.527 0.571 0.828 0.334 0.976 0.803
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