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Abstract

This paper analyses additive outlier and innovational outlier tests for seasonal unit roots when

seasonal mean shifts occur under the null hypothesis. When the magnitude of the breaks is

large, simulation evidence reveals that, for three of the four testing procedures considered, the

endogenously determined break point can be incorrectly estimated, resulting in spurious

rejections of the null. A simple modification to one of the testing approaches is proposed

which achieves a substantial improvement in test size.
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1. Introduction

Modelling seasonal time series, and in particular determining whether the underlying

seasonality is best described by a deterministic process or one with stochastic trends at

seasonal frequencies, has received much attention in the recent literature. Hylleberg et al.

(1990), henceforth HEGY, first proposed tests for seasonal unit roots against a simple

alternative hypothesis of stationarity around deterministic seasonality. A number of authors –

Ghysels (1994), Paap et al. (1997), Smith and Otero (1997), Lopes and Montañés (2000), and

Lopes (2001) – have subsequently considered the possibility of models involving structural

breaks in deterministic seasonality, and the influence of such seasonal mean shifts on testing

for seasonal unit roots using HEGY-type procedures. Further to this end, Franses and

Vogelsang (1998) and Balcombe (1999) have proposed seasonal unit root testing procedures

which explicitly account for potential seasonal mean shifts, the tests comprising seasonal

counterparts to the additive outlier and innovational outlier tests developed by, inter alia,

Perron (1989, 1993) and Perron and Vogelsang (1992) in a non-seasonal setting.1

The aforementioned non-seasonal unit root tests allow the timing of a potential

structural break to be determined endogenously using one of two methodologies, both of

which involve fitting Dickey-Fuller-type regressions for all possible break dates. The first

approach follows Zivot and Andrews (1992) and selects the break date for which the unit root

test statistic is a minimum (i.e. least favourable to the null hypothesis); the second chooses

the date for which the coefficient on the appropriate dummy variable is most significant (i.e.

the most likely position of the break). In this non-seasonal context, Harvey et al. (2001)

showed that the innovational outlier test using both break date selection methods and the

additive outlier test using Zivot-Andrews break date estimation are severely over-sized when

a large break occurs under the null hypothesis, the problem arising from an incorrect choice

of break date in the limit when the magnitude of the break is asymptotically non-negligible.

Since the seasonal unit root tests of Franses and Vogelsang (1998) and Balcombe

(1999) parallel the non-seasonal procedures discussed above, it is interesting to explore

whether the tests are similarly over-sized when large seasonal mean shifts occur under the

null hypothesis. This paper investigates such a proposition using Monte Carlo simulation and

is structured as follows: Section 2 outlines the extant seasonal unit root tests which allow for

seasonal mean shifts, Section 3 considers the tests’ behaviour in the presence of large breaks

                                               
1 Franses et al. (1997) also consider analysis of series for seasonal unit roots in the presence of seasonal mean
shifts, and propose procedures using Bayesian techniques.
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under the null and presents a simple modification for one test which yields an improvement

in empirical size, and Section 4 concludes.

2. Seasonal unit root tests with seasonal mean shifts

For the quarterly time series ty , observed for Tt ...,,1= , the Franses-Vogelsang seasonal unit

root tests assume the following model under the null hypothesis:
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indicator function and stD  being seasonal dummies )4,3,2,1( =s . The model therefore

involves one non-seasonal and three seasonal unit roots, whilst also admitting the possibility

of a structural break in each season at time BT ′ . Although not considered in this paper for

purposes of tractability, a more general autocorrelation structure can also be assumed (see

Franses and Vogelsang, 1998).
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The second step involves estimating a HEGY-type auxiliary regression based on the residuals

from (2):
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On the other hand, the innovational outlier test is based on the single regression

t
s s

stBssts

s
ststtttt

TDDU

Dyyyyy

εκδ

µππππ

+′++

++++=∆

∑ ∑

∑

= =

=
−−−−

4

1

4

1

4

1
1,342,331,221,114

)(
(4)

where

tttttt yLyyLLLyyLLLy )1(,)1(,)1( 2
3

32
2

32
1 −−=−+−−=+++=

The regressions (3) and (4) derive from the decomposition of 4∆  as ×+− )1)(1( LL

)1)(1( iLiL +−  where L is the lag operator. When 01 =π  the )1( L−  filter is needed,
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corresponding to a non-seasonal unit root; when 02 =π  the )1( L+  filter is necessary,

corresponding to a seasonal unit root at the biannual frequency; and when 043 == ππ  the

)1( 2L+  filter is required, corresponding to seasonal unit roots i±  at the annual frequency.

The relevant test statistics in each case are thus the t-ratios on 1π  and 2π  (denoted 1t  and 2t

respectively), and the F-statistic for the joint significance of 3π  and 4π  (denoted 34F ).

Note however that the true break date BT ′  appearing in (2), (3) and (4) is unknown and

must therefore be replaced with an estimate BT̂  which can be determined endogenously.

Franses and Vogelsang (1998) consider two methods of break date estimation, both of which

involve conducting the tests for all possible assumed break dates BT . The first uses a Zivot-

Andrews approach, selecting the break date where the test statistic of interest is least

favourable to the null, i.e.,

3434 for test )(argmaxˆ
2,1,for test )(argminˆ

FTFT
itTtT

BB
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The second chooses the break date which maximises the significance of the seasonal mean

shift dummy variable coefficients in (2) or (4), i.e.,

)(argmaxˆ
BB TFT δ= (6)

Balcombe (1999) proposes similar tests to those outlined above, although the

important one-time dummy variables in (3) and (4) above are omitted, and only break date

estimation using (5) is considered.

3. Test behaviour in the presence of large breaks under the null

In order to analyse the behaviour of the Franses-Vogelsang seasonal unit root tests when

there are large seasonal mean shifts under the null, we conducted a series of Monte Carlo

simulation experiments with the generating process given by (1). A practically interesting

sample size of 100=T  was used with a true break date 48=′BT . Using a single break

parameter κ, we evaluated the empirical sizes of the tests, considering a variety of possible

combinations of seasonal mean shifts with relatively large break sizes of 5=κ  and 10=κ :

(1) Change in overall mean only: κκκκκ ==== 4321

(2) Change in overall mean and seasonal pattern:

(i) Break in one season: e.g. 0, 4321 ==== κκκκκ

(ii) Breaks in two seasons: e.g. 0, 4321 ==== κκκκκ

(iii) Breaks in three seasons: e.g. 0, 4321 ==== κκκκκ
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(3) Change in seasonal pattern only:

(i) Breaks in two seasons: e.g. 0,, 4321 ==−== κκκκκκ

(ii) Breaks in all seasons: e.g. κκκκκκκκ −==−== 4321 ,,,

For each of the cases listed above, we report examples of all combinations of breaks which

give distinct results; other possible combinations in each category that are not reported in the

tables yielded the same results apart from sampling variability. Here and throughout the

paper, the permitted range of possible break dates was 8020 ≤≤ BT ; all the experiments used

10,000 replications and the calculations were programmed in GAUSS.

Table 1 reports the results of these empirical size simulations. When the break date is

estimated using the Zivot-Andrews method (5), the additive and innovational outlier tests are

severely over-sized in all cases, the problem worsening with the magnitude of the break. The

innovational outlier test exhibits similar behaviour when the break point is chosen using (6),

although the additive outlier test does not suffer such problems, and is in fact a little under-

sized in these cases.

Harvey et al. (2001) examined the innovational outlier test in the non-seasonal case,

and showed that the t-ratio associated with the shift dummy variable used to select the break

date (non-seasonal counterpart to (6)) has an asymptotic distribution whose absolute mean is

maximised at 1−′BT  when large breaks occur under the null. It is this feature of incorrect

break date estimation in the limit that drives the size distortions reported in that paper. An

equivalent simulation analysis here displays an interesting parallel. Table 2 provides results

for the percentage of times particular break dates are selected in the same simulation

experiments described above, when the innovational outlier test with (6) is employed. It can

be seen that when large seasonal mean shifts occur, the estimation rule (6) almost invariably

places the break date incorrectly at 4−′BT . (Note that in a number of cases, for example

when 0, 4321 ==== κκκκκ , break dates of 7−′BT , 6−′BT  and 5−′BT  are equivalent to

a break date of 4−′BT . This follows since 48=′BT , thus if a break occurs at, say 7−′BT , the

dummy variable tD1  is not operative until 4−′BT .) This parallel result to the non-seasonal

unit root test is the reason for the pattern of over-size observed in Table 1.

The obvious modification to correct for this problem is simply to adjust the estimation

rule to choose the break date four observations later than (6) would suggest, i.e.

)(argmax4ˆ
BB TFT δ+= (7)
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Although the limiting distribution of the seasonal unit root test statistics using this criterion

will be the same as that associated with use of (6), the critical values will be different in finite

samples. Table 3 provides critical values for the three tests ( 3421 ,, Ftt ) when the break date

is estimated using (7), for a number of practically relevant sample sizes. These critical values

were derived by simulation using driftless random walks without breaks as the generating

process.

To evaluate the performance of the above modification, the simulation experiments

associated with Table 1 were repeated, but using tests involving the new break date selection

rule (7) and the critical values reported in Table 2. The results are given in Table 4. The size

of the modified test can be seen to be much more reliable than the standard approach, with

the pattern of serious over-size removed. The estimated break dates are shifted four periods

forward of those given by the original procedure, thereby correcting the problem observed in

Table 2 and the associated spurious rejection phenomenon. The disadvantage of the modified

approach is its tendency to be somewhat under-sized, more so for larger break sizes.

4. Conclusion

It is useful to have available techniques for testing for seasonal unit roots when seasonal

mean shifts occur under the null hypothesis. We have analysed the behaviour of such tests

(for quarterly data) when the magnitude of the breaks is large. Simulation evidence shows

that when the innovational outlier test is used with the preferred method of choosing the

break date on the basis of the significance of shift dummy variables, the break point is

incorrectly placed too soon, causing spurious rejection of the null hypothesis. A modification

involving a simple correction to the break date estimation criterion achieves a substantial

improvement in test size.

It is also noteworthy that the equivalent additive outlier test (where the break date is

also chosen according to the significance of dummy variables) does not suffer from problems

of test over-size. This parallels the results of Harvey et al. (2001) in the non-seasonal context,

and suggests that this procedure has some inherent advantages over the innovational outlier

approach.
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Table 1. Empirical sizes of nominal 5%-level seasonal unit root tests, allowing for seasonal mean shifts: T = 100.

Additive outlier tests Innovational outlier tests

BT̂ = argmin ti / argmax F34 BT̂ = argmax Fδ BT̂ = argmin ti / argmax F34 BT̂ = argmax Fδ

κ1 κ2 κ3 κ4 t1 t2 F34 t1 t2 F34 t1 t2 F34 t1 t2 F34

5 5 5 5 78.70 30.14 54.76 4.25 4.49 4.86 87.27 21.85 43.13 86.46 6.32 15.49
5 0 0 0 9.34 9.72 12.39 5.18 5.24 5.26 10.84 11.74 15.18 10.96 12.27 14.41
5 5 0 0 29.15 18.25 30.68 4.49 5.38 4.95 38.79 13.73 35.69 38.55 5.75 30.38
5 0 5 0 27.00 28.00 21.28 4.73 4.43 5.72 37.67 38.62 16.73 37.37 38.50 7.56
5 0 0 5 21.08 18.46 25.56 4.44 5.50 5.42 32.40 14.42 30.74 35.24 6.84 28.79
5 5 5 0 56.65 18.56 42.96 4.45 4.73 5.26 69.15 18.42 39.65 68.03 10.49 23.54
5 5 0 5 53.99 32.40 28.11 4.31 4.74 4.85 68.11 30.54 27.08 67.52 20.12 13.22
5 0 5 5 55.13 28.97 33.02 4.35 4.69 4.97 68.30 26.79 31.46 69.90 10.39 24.46
5 -5 0 0 18.54 30.32 30.46 5.67 4.45 5.17 14.40 40.15 35.49 6.34 39.76 30.79
5 0 -5 0 19.00 19.05 43.25 5.89 5.34 4.29 14.20 14.40 54.11 6.47 6.23 55.71
5 0 0 -5 17.96 22.17 25.38 5.63 4.32 5.27 13.86 34.26 30.54 6.98 36.74 29.09
5 5 -5 -5 41.61 34.88 79.39 4.48 4.58 4.38 33.09 25.70 86.34 9.42 7.69 85.70
5 -5 5 -5 30.16 78.85 54.50 4.60 4.17 4.82 22.01 87.08 42.60 6.41 86.47 15.68
5 -5 -5 5 34.96 43.21 79.70 4.67 4.45 4.26 25.79 35.05 86.42 7.67 9.81 85.74

10 10 10 10 99.75 73.74 98.86 4.07 4.01 3.86 99.89 61.18 96.01 99.46 22.77 68.95
10 0 0 0 40.17 41.29 59.89 4.44 4.34 4.32 47.11 48.54 67.81 39.98 41.24 53.83
10 10 0 0 88.57 60.77 91.88 4.39 4.33 4.15 93.03 48.61 94.78 78.98 14.74 70.70
10 0 10 0 86.03 86.13 73.73 4.36 4.18 3.98 91.99 92.00 61.76 80.82 80.94 28.47
10 0 0 10 76.33 59.19 88.78 4.08 4.01 3.88 87.58 50.35 93.12 86.73 20.91 89.29
10 10 10 0 97.61 55.90 96.59 4.35 4.17 3.97 98.99 61.21 96.77 94.60 30.37 70.80
10 10 0 10 97.48 84.65 84.05 4.07 4.02 3.86 98.97 80.63 86.13 95.55 77.77 47.69
10 0 10 10 97.91 82.28 91.33 4.08 4.01 3.86 98.92 78.59 90.50 96.46 22.48 87.68
10 -10 0 0 59.93 89.23 91.90 4.40 4.34 4.14 47.65 93.45 94.60 14.43 78.79 70.97
10 0 -10 0 62.77 63.45 96.86 4.36 4.17 3.98 48.55 50.09 98.35 16.94 18.07 98.04
10 0 0 -10 57.71 76.98 88.46 4.10 4.01 3.87 47.91 87.72 93.18 19.45 86.66 89.64
10 10 -10 -10 91.42 88.47 99.98 4.07 4.01 3.86 81.82 80.10 100.00 54.99 21.42 99.61
10 -10 10 -10 72.28 99.69 98.63 4.07 4.01 3.86 59.58 99.88 95.88 21.82 99.45 69.38
10 -10 -10 10 87.63 91.82 99.93 4.07 4.01 3.86 79.35 82.72 99.97 20.18 57.25 99.67
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Table 2. Percentage of times particular break dates are selected using the innovational outlier test with BT̂ = argmax Fδ,
when seasonal mean shifts occur under the null: T = 100.

κ1 κ2 κ3 κ4 < TB' − 7 TB' − 7 TB' − 6 TB' − 5 TB' − 4 TB' − 3 TB' − 2 TB' − 1 TB' > TB'

5 5 5 5 1.73 0.34 1.21 3.70 85.36 1.72 1.12 0.25 0.00 4.57
5 0 0 0 15.49 15.29 10.85 14.45 24.97 0.18 0.28 0.30 0.68 17.51
5 5 0 0 5.66 4.02 23.21 18.35 39.70 2.80 0.11 0.12 0.10 5.93
5 0 5 0 5.38 3.21 2.16 31.15 47.73 1.64 2.42 0.02 0.08 6.21
5 0 0 5 5.63 6.55 3.71 4.09 65.58 1.39 2.31 4.17 0.18 6.39
5 5 5 0 2.49 1.51 5.61 28.55 54.56 3.10 0.67 0.01 0.05 3.45
5 5 0 5 1.91 0.98 5.13 3.64 75.62 8.55 0.54 0.86 0.04 2.73
5 0 5 5 1.78 1.15 0.72 8.31 75.99 2.40 6.15 0.52 0.01 2.97
5 -5 0 0 5.75 4.39 22.83 18.61 38.92 2.77 0.04 0.07 0.15 6.47
5 0 -5 0 6.93 5.02 2.32 40.45 31.74 1.70 3.40 0.17 0.35 7.92
5 0 0 -5 6.26 6.50 3.95 4.09 65.45 1.09 2.15 3.82 0.10 6.59
5 5 -5 -5 1.24 0.74 1.50 11.80 78.73 1.36 2.67 0.25 0.05 1.66
5 -5 5 -5 1.95 0.43 1.08 3.95 84.87 1.89 0.88 0.31 0.00 4.64
5 -5 -5 5 1.36 0.93 1.50 11.44 78.68 1.53 2.32 0.30 0.09 1.85

10 10 10 10 0.00 0.01 0.04 0.17 99.17 0.30 0.13 0.02 0.00 0.16
10 0 0 0 0.40 20.59 13.19 23.75 41.62 0.01 0.02 0.00 0.03 0.39
10 10 0 0 0.06 0.32 23.36 18.29 57.65 0.25 0.00 0.00 0.01 0.06
10 0 10 0 0.08 0.08 0.09 34.51 64.74 0.26 0.13 0.00 0.00 0.11
10 0 0 10 0.01 0.65 0.28 0.37 97.63 0.11 0.21 0.67 0.00 0.07
10 10 10 0 0.00 0.03 1.16 28.20 69.97 0.60 0.03 0.00 0.00 0.01
10 10 0 10 0.00 0.00 0.17 0.23 96.11 3.38 0.05 0.04 0.00 0.02
10 0 10 10 0.00 0.00 0.00 1.86 94.09 0.50 3.53 0.00 0.00 0.02
10 -10 0 0 0.04 0.42 22.97 19.29 56.95 0.26 0.00 0.00 0.00 0.07
10 0 -10 0 0.11 0.28 0.13 56.88 41.62 0.24 0.60 0.00 0.01 0.13
10 0 0 -10 0.02 0.63 0.32 0.36 97.55 0.07 0.23 0.81 0.00 0.01
10 10 -10 -10 0.00 0.00 0.00 1.60 97.94 0.09 0.36 0.01 0.00 0.00
10 -10 10 -10 0.02 0.02 0.03 0.14 99.26 0.25 0.10 0.06 0.00 0.12
10 -10 -10 10 0.01 0.00 0.00 1.58 98.03 0.12 0.25 0.00 0.00 0.01
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Table 3. Critical values of innovational outlier seasonal unit root tests

with BT̂ = 4 + argmax Fδ.

t1 t2 F34

10% 5% 1% 10% 5% 1% 10% 5% 1%

T = 52 -3.01 -3.35 -3.94 -3.02 -3.34 -3.99 8.08 9.50 12.77
T = 100 -3.24 -3.54 -4.15 -3.21 -3.52 -4.12 8.87 10.11 12.90
T = 152 -3.30 -3.61 -4.17 -3.26 -3.55 -4.17 9.18 10.52 13.49
T = 200 -3.36 -3.66 -4.24 -3.35 -3.66 -4.19 9.44 10.84 13.48
T = 500 -3.52 -3.80 -4.35 -3.51 -3.82 -4.37 9.99 11.40 14.34

Table 4. Empirical sizes of nominal 5%-level innovational outlier seasonal unit root tests with

BT̂ = 4 + argmax Fδ, allowing for seasonal mean shifts: T = 100.

κ1 κ2 κ3 κ4 t1 t2 F34

5 5 5 5 2.68 4.43 6.16
5 0 0 0 3.73 4.22 4.39
5 5 0 0 2.84 4.43 4.17
5 0 5 0 3.05 3.01 5.27
5 0 0 5 3.35 4.87 5.17
5 5 5 0 2.80 3.68 5.57
5 5 0 5 2.83 3.52 4.55
5 0 5 5 2.83 4.51 4.11
5 -5 0 0 4.80 2.94 4.18
5 0 -5 0 5.03 4.82 3.60
5 0 0 -5 4.89 3.38 5.27
5 5 -5 -5 3.94 4.41 3.72
5 -5 5 -5 4.16 2.78 6.19
5 -5 -5 5 4.73 4.21 3.92

10 10 10 10 2.59 2.86 3.19
10 0 0 0 2.65 2.71 3.12
10 10 0 0 2.72 2.99 3.23
10 0 10 0 2.69 2.64 3.18
10 0 0 10 2.70 3.08 3.24
10 10 10 0 2.65 2.87 3.69
10 10 0 10 2.65 2.55 3.11
10 0 10 10 2.56 3.79 3.12
10 -10 0 0 2.80 2.58 3.13
10 0 -10 0 3.05 2.98 3.04
10 0 0 -10 3.00 2.74 3.29
10 10 -10 -10 2.85 3.41 3.24
10 -10 10 -10 2.82 2.67 3.17
10 -10 -10 10 3.37 3.02 3.18


