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Determination of the bending stiffness for a spiral
strand

M Raoof* and T J Davies

Department of Civil and Building Engineering, Loughborough University, Loughborough, Leicestershire, UK

Abstract: Owing to their peculiar construction, axially preloaded spiral strands undergo plane-section
bending only for sufficiently small maximum lateral deflection/span ratios. Beyond a certain limit of
this ratio, plane sections do not remain plane and, depending on the level of axial tension and
imposed radius of curvature, interlayer slippage takes place, starting from the outer layer and
spreading towards the centre of the strand. On the theoretical side, apart from one publication in
the mid-1980s and some fairly recent publications by the first author and his associates, all other
theoreticians have previously assumed either plane-section bending or, in many cases, have totally
ignored the ever-present interwire friction, assuming that the individual helical wires act as simple
helical springs. Previously reported experimental techniques, aimed at measuring the effective
bending stiffness of helically wound cables, also largely suffer from major shortcomings. In the
present paper, a novel experimental method is reported for obtaining reliable measurements of the
effective bending stiffness of axially loaded spiral strands. It is very simple and relatively inexpensive
to use in practice, for even very large (greater than, say, 100mm outside diameter) spiral strands.
Effective bending stiffness measurements, based on this approach, are reported here for a 164mm
outside diameter spiral strand (with axial loads of up to 3MN), with these supported by a detailed
theoretical analysis, which reinforces the generally sound nature of the proposed method.
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NOTATION

Ai gross area of layer i in a spiral
strand

Anet total net steel area of a spiral
strand

d outer diameter of a spiral strand
D bobbin diameter
Di wire diameter in layer i of a spiral

strand
Efull-slip full-slip axial stiffness of a spiral

strand
Esteel Young’s modulus for steel
Ei
full-slip, E

i
no-slip full-slip and no-slip axial

stiffnesses in layer i of wires in a
spiral strand

ðEIÞcable effective bending stiffness of a
strand

ðEIÞeff plane-section bending stiffness of
a strand

ðEIÞfull-slip, ðEIÞno-slip plane-section full-slip and no-
slip effective bending stiffnesses
of a strand

F axial force on a spiral strand
G,G0 components of internal moment

resultants in a helical rod
ðGJÞfull-slip, ðGJÞno-slip full-slip and no-slip torsional

stiffnesses of a strand
H ripple wavelength, internal

torque in a helical rod
Hi Hruska’s parameter for layer i
I second moment of area of a

spiral strand
Ini second moment of area for each

layer i in a spiral strand
L length of a spiral strand
m total bending moment on a spiral

strand
M total torque in a spiral strand
Mi total torque in layer i of a spiral

strand
n number of iterations
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ni number of wires in layer i of a spiral strand
N total number of layers in a spiral strand
N,N 0,T components of internal force resultants in a

helical rod
r ripple amplitude (¼ half the ripple range)
ri helix radius in layer i of a spiral strand
R radius of curvature of a strand
s distance along the centre-line of a helical rod
S0
1 mean axial strain of a spiral strand

T axial tension in a helical rod

� lay angle of a spiral strand (or helical rod) in
its deformed (corkscrew) state, lay angle of
the helical wires in a spiral strand

� change in the ripple wavelength resulting
from an applied axial force

"h1 axial strain in a helical cable
�0,�

0
0 initial curvatures of the centre-line of a helical

rod
�1,�

0
1 final curvatures of the centre-line of a helical

rod
ti shear stress in layer i of a spiral strand
t0, t1 initial and final twists of the centre-line of a

helical rod

1 INTRODUCTION

The strength of a spiral strand is derived principally from
wires laid in a simple helical path around an underlying
core. A large-diameter, multilayered spiral strand can
have as many as 552 wires laid in, for example, eleven
layers, giving an overall outside diameter of, say,
184mm with an ultimate tensile strength of 27.65MN.
The fundamental purpose for the helical geometry is to
provide bending flexibility and bundle coherence at the
expense of some reductions in axial stiffness and tensile
strength.

Spiral strands have played an indispensable role in
various fields, including stays for guyed masts and
bridging applications such as hangers for suspension
bridges and the main cables of cable-stayed designs.
The safety of many deep-water platform concepts,
including tethered buoyant structures is, among other
considerations, strongly dependent on the reliability of
the mooring systems.

Until fairly recently, despite the efforts of research
workers which date back to the early years of the last
century, little light had been cast on the free-bending
behaviour of helically wound cables taking interwire/
interlayer friction into account, where, in the present
terminology, the term free bending refers to cases
where the cable undergoes bending in the absence of
sheaves, fairleads or other formers, so that the radius
of curvature is not predetermined. There is little point
in reporting a detailed review of previous literature
here, as this has already been done in considerable

detail elsewhere [1–4]. For the present purposes, it may,
perhaps, suffice merely to mention a number of key
issues of direct relevance to the question of determining
the effective bending stiffness of a spiral strand under
free-bending conditions—the subject of the present
paper.

On the theoretical side, apart from one publication in
the mid-1980s [5] and some fairly recent publications by
the first author and his associates (e.g. references [1] to
[3]), all other theoreticians have previously either
assumed plane-section bending or, in many cases, have
even completely ignored the ever-present interwire
friction, assuming that the individual helical wires act
as simple helical springs (e.g. reference [6]).

There are various experimental techniques, as dis-
cussed by Malinovsky [7], available for the deter-
mination of the effective bending stiffness of a helically
wound steel cable. As mentioned by Malinovsky, in the
course of numerous experiments with tensioned cables,
the bending stiffness has been found to be heavily
dependent upon the applied tension, and can vary
between two limiting conditions, corresponding to
either full or zero interlayer shear interaction of the
wire elements in a helically wound cable. In the former
case, the cable acts somewhat as a ‘solid bar’, with
allowance made for the presence of helical voids; in the
latter, the individual helical wires act independently
and merely bend about their own neutral axes. For
large-diameter multilayered spiral strands, the difference
between the two limits is unacceptably large, being given
approximately by the square of the strand/wire diameter
ratio [8].

The problem with the experimental determination of
the effective bending stiffness is the discrepancy between
the values of this parameter as determined by the
different methods, which is mainly due to the experimen-
tal conditions and the level of imposed curvature. As
reported in reference [7], for example, using a 34mm
outside diameter fibre-core wire rope, the bending stiff-
ness was determined using two different methods, the
frequency method and the method of static bending,
and was found to be 3000 and 534Nm2 respectively.
In other words, the difference between the experimental
results was rather significant, with the value of the bend-
ing stiffness determined by the method of static bending
being 0.18 times that determined using the frequency
method.

For the bending of helically wound steel cables (spiral
strands and wire ropes) under an approximately steady
mean axial load, it is common to introduce a mathema-
tically convenient constant effective bending stiffness for
the cable, using which the radii of curvature at the points
of restraint are then calculated. Owing to their peculiar
construction, axially preloaded spiral strands undergo
plane-section bending only for sufficiently small levels
of strand maximum lateral deflection/span ratios.
Beyond a certain limit of this ratio, plane sections do
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not remain plane and, depending on the level of axial
tension and the imposed radius of curvature, interlayer
slippage takes place, starting from the outer layer and
spreading towards the centre of the strand [3, 5, 9–11].

Large-scale free-bending experimental observations on
axially preloaded 39mm outside diameter spiral strands
have been reported by Raoof [10, 11], who showed that,
in the case of strands subjected to practical working
ranges of axial load and laterally bent with large enough
radii of curvature, it may be assumed that the strand
cross-section remains plane during the bending cycle.

Raoof and Hobbs [8] have argued that, even with
infinite shear stiffness between the layers of an axially
preloaded multilayered spiral strand (i.e. assuming that
plane sections remain plane during bending), line-
contact interwire slippage within the wires in the
individual layers, and hence some (although not very
significant) reductions in the effective bending stiffness,
ðEIÞcable, of the strand, may still take place.

The purpose of the present paper is to report a simple
but still more reliable method, compared with those
described by, for example, Malinovsky [7], for
experimentally obtaining the effective bending stiffness
of axially loaded spiral strands. The experimentally
determined bending stiffness for a 164mm outside
diameter spiral strand will, then, be backed by a detailed
theoretical analysis, which reinforces the generally sound
nature of the proposed method.

2 EXPERIMENTAL MEASUREMENTS

It was discovered, accidentally, that, by wrapping a
164mm outside diameter spiral strand (with construc-
tion details given in Table 1) around a 5m diameter
bobbin (6m combined cable and bobbin diameter) for
transportation purposes, when the strand was
unwrapped the shape of the strand was distorted because
of the bobbin–strand diameter ratio, D=d, being too
small, i.e. the strand was no longer straight (Fig. 1) but
formed a helical ‘corkscrew’ shape. This happened with
a bobbin–strand diameter ratio, D=d, approximately
equal to 30 (¼ 5000/164).

In situmeasurements related variations in the axial load
on the spiral strand, F , to changes in the helical ripple
range, 2r (Fig. 1). The loadon the strandwas then removed
and reapplied a number of times, following which the

relationship between the axial load on the strand and the
ripple range corresponding to a final loading run was
again obtained. Figure 2 presents the obtained plots of
axial load versus ripple range, for both the first and final
loading runs, with the individual test data points exhibiting
(over the experimental range) practically reasonable
scatter about the fitted straight lines.

3 THEORY

3.1 Distorted shape of the strand—simplified method

The simplified theory is, as the name suggests, a simple
method for determining the effective bending stiffness
of a spiral strand, ðEIÞcable, based on the relationship
between the axial force, F , and the ripple range, 2r
(Fig. 2). As will be explained later, this approach also
makes it possible reasonably to extrapolate the results,
such as those presented in Fig. 2, to regions where no
test data are available.

Figure 3 shows the planar geometry of the spiral
strand used in the simplified analysis, where a helix
may always be unwrapped to form a right-angled
triangle. The helix lay angle, �, in Fig. 3 is

� ¼ tan�1

�
2pr
H

�
ð1Þ

Table 1 Construction details for the 164mm outer diameter
spiral strand

Layer,
i

Number
of wires,
ni

Lay
direction*

Wire
diameter, Di

(mm)
Lay angle, �i

(deg)

1 72 RH 6.5 18.01
2 66 LH 6.5 18.01
3 60 RH 6.5 18.01
4 54 LH 6.5 18.01
5 48 RH 6.5 18.01
6 42 LH 6.5 18.01
7 36 RH 6.6 18.01
8 30 LH 6.6 18.01
9 24 RH 6.6 18.01

10 18 LH 6.6 18.01

Core 14 N/A 6.0 17.99
7þ 7 N/A 3.70 and 4.85 12.98 and 12.15
7 N/A 4.95 7.53
1 N/A 6.70 —

*RH, right-hand lay; LH, left-hand lay.

Fig. 1 Observed distorted (corkscrew) shape of the 164mm outside diameter spiral strand subjected to an

axial force, F
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where H is the measured ripple wavelength and r is the
corresponding amplitude of the ripple in the test speci-
men. Once � has been calculated, the value of the
radius of curvature, R, for the helix can be determined
from

R ¼ r

sin2 �
ð2Þ

as can the bending moment, m, using

m ¼ F � r ð3Þ

The effective bending stiffness of the axially loaded spiral
strand, ðEIÞcable, is, then, quite simply, the slope of the
bending moment, m, against curvature, 1=R, plots.
This simple approach, however, assumes that the contri-
butions from other internal moments and forces, in the
so-called helical rod (cable), are sufficiently small to be
neglected, and that H ¼ H0 over the full range of axial
force, F , where H0 is the initial value of the wavelength.

Fig. 2 Variations in the ripple range, 2r, with changes in the externally applied axial force, F , for both the first
and final loading runs

Fig. 3 Planar representation of the helical cable used in the
simplified analysis
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A justification for these assumptions forms the main
purpose of the next section, where a more rigorous
approach is presented, which takes all of the possible
internal force and moment actions into account, while
the wavelength, H, is allowed to vary as a function of
changes in F , in arriving at a more exact relationship
between the axial force, F , and the ripple range, 2r.
Comparisons between the F versus 2r plots based on
the simple and the more rigorous approaches, will,
then, clarify the practical implications of ignoring the
possible influence of a number of internal forces and
couples as well as variations in the wavelength, H, in
the simplified approach.

3.2 Distorted shape of the strand—rigorous method

Love [12] has presented equilibrium equations for the solu-
tion to the problem of a helical spring subjected to an axial
force and a twisting moment. In Love’s approach, the
spring is treated as a thin curved rod that satisfies the six
non-linear equations of equilibrium. As an axial force is
applied to the spring, the lay angle changes, as does the
helix radius of the spring. Blanco and Costello [13] used
Love’s equations to determine the changes in various
structural characteristics of the spring as controlled by
an internal cylindrical constraint, neglecting friction
between the spring and the internal cylinder. The formula-
tions of Love and of Blanco and Costello are used as the
basis for the following developments.

Initially, when there is zero axial load, F , on the cable,
the relationship between the initial ripple range, 2r0, and
the initial ripple wavelength, H0, can be described,
schematically, by Fig. 4a, where, for the first loading
run, r0 ¼ 15mm (Fig. 2). Using simple trigonometry,
the following relationships are established:

sin�0 ¼
2pr0
L0

ð4Þ

L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pr0Þ2 þ ðH0Þ2

q
ð5Þ

When an axial force, F , is applied to the cable, as in
Fig. 1, it deforms in such a way that the relationship
between the ripple range and the ripple wavelength, for
the helical rod, is defined as in Fig. 4b.

Once again, using simple trigonometry, the relation-
ships between the geometrical parameters in Fig. 4b are
established as

sin�1 ¼
2pr1

L0ð1þ "h1Þ
ð6Þ

L0ð1þ "h1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pr1Þ2 þ ðH0 þ�Þ2

q
ð7Þ

and, denoting the axial tension in the cable as T ,

T ¼ Efull-slip � Anet � "h1 ð8Þ

where "h1 is the axial strain in the cable resulting from
the applied axial force F , � is the change in the ripple
wavelength resulting from the applied axial force, r1 is
the new ripple amplitude and Anet is the net steel area
of the helical cable [14]. The full-slip Young’s modulus
of the cable, Efull-slip, is given by either the simple
formulations previously reported by Raoof [15] or,
more accurately, by the fairly complex orthotropic
sheet theoretical model of Hobbs and Raoof [14].

The equations of equilibrium for a thin rod are given
by Love [12] as

dN

ds
�N 0t1 þ T�0

1 þ X ¼ 0 ð9Þ

dN 0

ds
� T�1 þNt1 þ Y ¼ 0 ð10Þ

dT

ds
�N�0

1 þN 0�1 þ Z ¼ 0 ð11Þ

Fig. 4 (a) Schematic representation of the helical cable
under zero axial load, based on the first loading run;
(b) schematic representation of the helical cable

under an externally applied axial load
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dG

ds
� G0t1 þH�0

1 �N 0 þ K ¼ 0 ð12Þ

dG0

ds
�H�1 þ Gt1 þN þ K 0 ¼ 0 ð13Þ

dH

ds
� G�0

1 þ G0�1 þ � ¼ 0 ð14Þ

where s is the distance along the centre-line of the rod, �1

and �0
1 are the components of the final curvatures, t1 is

the final twist and X , Y , Z, K , K 0 and � are the com-
ponents of the external forces and couple-resultants per
unit length along the rod, with N, N 0, T , G, G0 and H
being the components of the internal forces and
couple-resultants of the helical rod in the normal, bi-
normal and tangential directions (Fig. 5). For the helical
rod, the bending and twisting couples, G, G0 and H, are
related to the initial curvatures, �0 and �0

0, and the initial
twist, t0, by

G ¼ ðEIÞfull-slipð�1 � �0Þ ð15Þ

G0 ¼ ðEIÞfull-slipð�0
1 � �0

0Þ ð16Þ

H ¼ ðGJÞfull-slipðt1 � t0Þ ð17Þ

where ðEIÞfull-slip is the full-slip plane-section bending
stiffness of the cable, obtained for a specific spiral
strand, with a reasonably high degree of accuracy, by
the method described by Raoof and Hobbs [8], or less
accurately, but good enough for most practical purposes,
by the method proposed by Raoof [15]; ðGJÞfull-slip is the

full-slip torsional stiffness of the strand, and can be
calculated using the method described by Raoof and
Hobbs [16].

For the helical rod, the initial curvatures, �0 and �0
0,

and twist, t0, are given by

�0 ¼ 0 ð18Þ

�0
0 ¼

sin2 �0

r0
ð19Þ

t0 ¼
sin�0 cos�0

r0
ð20Þ

where �0 and r0 are the initial lay angle and helix radius
of the rod respectively, corresponding to an axial force
F ¼ 0. When an axial force, F , is applied to the rod
(Fig. 1), the final (deformed) curvatures and twist are
given by

�1 ¼ 0 ð21Þ

�0
1 ¼

sin2 �1

r1
ð22Þ

t1 ¼
sin�1 cos�1

r1
ð23Þ

where �1 and r1 are the lay angle and helix radius of the
deformed rod respectively under an applied axial force,
F . It is assumed that there is zero friction along the sur-
face of the helical rod, and that the external bending
moments K and K 0 are both equal to zero, with X ¼ 0.

Fig. 5 External and internal forces and moments acting on the helical rod. (After reference [13])
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As such, for a constant tension T along the length of the
rod, equations (9) to (14) become [13]

�N 0t1 þ T�0
1 ¼ 0 ð24Þ

Y ¼ 0 ð25Þ

Z ¼ 0 ð26Þ

�G0t1 þH�0
1 �N 0 ¼ 0 ð27Þ

N ¼ 0 ð28Þ

� ¼ 0 ð29Þ

As explained next, equations (4) to (29) provide a simple
means of predicting the variations in the ripple ampli-
tude, r1, as a function of changes in the externally applied
force, F .

Using equations (22) to (24),

�N 0 sin�1 cos�1

r1
þ T

sin2 �1

r1
¼ 0 ð30Þ

Similarly, using equations (22), (23) and (27),

N 0 ¼ �G0 sin�1 cos�1

r1
þH

sin2 �1

r1
ð31Þ

where

G0 ¼ ðEIÞfull-slip
�
sin2 �1

r1
� sin2 �0

r0

�
ð32Þ

and

H ¼ ðGJÞfull-slip
�
sin�1 cos�1

r1
� sin�0 cos�0

r0

�
ð33Þ

Using equations (31) to (33) yields

N 0 ¼ � ðEIÞfull-slip
�
sin2 �1

r1
� sin2 �0

r0

�
sin�1 cos�1

r1

þ ðGJÞfull-slip
�
sin�1 cos�1

r1
� sin�0 cos�0

r0

�

� sin2 �1

r1
ð34Þ

From equation (30), N 0 is given as

N 0 ¼ T tan�1 ð35Þ

while, from the force equilibrium [13],

F ¼ T cos�1 þN 0 sin�1 ð36Þ

From equations (35) and (36),

cos�1 ¼
T

F
ð37Þ

and

N 0 ¼ F sin�1 ð38Þ

Equations (34) and (38) give the magnitude of the
applied axial force, F , as

F ¼ � ðEIÞfull-slip
�
sin2 �1

r1
� sin2 �0

r0

�
cos�1

r1

þ ðGJÞfull-slip
�
sin�1 cos�1

r1
� sin�0 cos�0

r0

�

� sin�1

r1
ð39Þ

By combining equations (6), (8) and (37), r1 is given by

r1 ¼
sin�1fL0½1þ ðF cos�1Þ=ðEfull-slip � AnetÞ�g

2p
ð40Þ

Finally, the next two subsections discuss means of
providing the essential full-slip EI and GJ values as
input into the ‘more exact’ calculations.

3.2.1 Calculation of the plane-section bending stiffness,
(EI)eff

The theoretical full-slip and no-slip plane-section
bending stiffnesses, ðEIÞfull-slip and ðEIÞno-slip, for a
spiral strand may be calculated using the procedure
developed by Raoof [15]. For each individual layer
i, Hruska’s parameter, Hi, is calculated from the
equation

Hi ¼ cos4 �i ð41Þ

The full-slip orthotropic E values for the individual
layers i, Efull-slip

i , are given by

Efull-slip
i

Esteel

¼� 0:26442� 2:004046Hi þ 6:5735H2
i

� 3:3068H3
i , 0:704Hi 4 1:0 ð42Þ

where the Young’s modulus for steel Esteel ¼ 200 kN/
mm2.

The corresponding no-slip E values for the individual
layers i may be obtained from

Eno-slip
i

Efull-slip
i

¼ 3:998� 7:916K1 þ 7:238K2
1 � 2:321K3

1,

0:354K1 4 1:0 ð43Þ

where

K1 ¼
Efull-slip

i

Esteel

ð44Þ

DETERMINATION OF THE BENDING STIFFNESS FOR A SPIRAL STRAND 7
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The next stage is to calculate the second moment of area
for each layer, Ini, where

Ini ¼
�
p
4

�
�
�
p
64

�
� ½ð2ri þDiÞ4 � ð2ri �DiÞ4� ð45Þ

In the above, ri and Di are respectively the theoretical
helix radius and the wire diameter in layer i. For each
layer i,

�i ¼
Ini
I0

ð46Þ

where

I0 ¼
XN
i¼1

Ini ð47Þ

with a total number of N layers of helical wires in the
strand.

The effective plane-section bending stiffness, ðEIÞeff,
for either the full-slip or no-slip limiting conditions is,
finally, given by

ðEIÞeff ¼ I
XN
i¼1

�iEi ð48Þ

where, denoting the strand outside diameter by d,

I ¼ p
4

�
pd4

64

�
ð49Þ

3.2.2 Calculation of the torsional stiffness, (GJ)

Very briefly, for any twist per unit length, the layer con-
tributes a torque,Mi, to the total torque,M, on the spiral

strand, where, following Raoof and Hobbs [16],

Mi ¼ tiAiri ð50Þ

and

M ¼
XN
i¼1

Mi þMcore ð51Þ

In the above, ti is the layer shear stress, ri is the helix
radius of the wires and Ai is the gross area of a layer of
wires, with the subscripts i referring to layer i in the
spiral strand with a total number of N layers of helical
wires; Mcore is the torque in the straight central wire—
the king wire.

At large torques, the behaviour of the spiral strand is
dominated by large slipping movements along the line
contacts (full slip), while at small torques (in the region
close to the origin) the behaviour of the strand is domi-
nated by the no-slip limiting condition (Fig. 6). By
taking a tangent to the torque against twist per unit
length plot in Fig. 6 at large torque values, the value of
ðGJÞfull-slip is obtained. Alternatively, by taking a tangent
to the torque–twist curve at small torques (in the vicinity
of the origin), the value of ðGJÞno-slip may be determined.
As discussed elsewhere [16], the torque–twist per unit
length plot is a function of the mean axial strain of the
strand, although, unlike ðGJÞno-slip, ðGJÞfull-slip is, for all
practical purposes, independent of the level of axial
preload on the strand.

3.2.3 Solution procedure

For given values of r0 and H0 (hence, L0 and �0 as
determined by equations (5) and (4) respectively), an
initial value of �1 ¼ �0 may be assumed, and, by employ-
ing the Newton–Raphson iterative procedure, equations

Fig. 6 Torque–twist relationship for the 164mm outside diameter axially preloaded spiral strand at a mean
axial strain S0

1 ¼ 0:0025
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(6), (8), (37), (39) and (40) [with the theoretical ðEIÞfull-slip
and ðGJÞfull-slip values, discussed in the last two sub-
sections, used as inputs] provide predictions of the
amplitude of the ripple, r1, for any given externally
applied axial force, F . In the present work, the iterations
were stopped when j�nþ1 � �nj4 0:00000001 rad, where
subscript n refers to the number of iterations.

4 RESULTS

Figure 7 presents variations, based on the simplified
approach, of the bending moment, m, as a function of
changes in 1=R, where R is the radius of curvature,
over the full experimental range of axial force, F , and
its associated values of r. For a detailed set of numerical
results, corresponding to each individual calculation
step, the interested reader may refer to the tables given
in reference [4]. The effective bending stiffness, based
on the experimental data, which is the slope of the
plots in Fig. 7, may, then, be determined. Table 2 pre-
sents the values of the obtained effective cable bending
stiffnesses, ðEIÞcable, for both the first and final loading

runs, the theoretical plane-section bending stiffnesses,
ðEIÞfull-slip and ðEIÞno-slip, as calculated using equations
(41) to (49), and the torsional stiffnesses, ðGJÞfull-slip
and ðGJÞno-slip, as calculated using the method described
by Raoof and Hobbs [16], where ðGJÞno-slip corresponds
to a strand mean axial strain S0

1 ¼ 0:0025.
Using equations (1) to (3), in conjunction with the

experimentally determined values of ðEIÞcable (corre-
sponding to either the first or final loading run) as
given in Table 2, and assuming H ¼ H0 ¼ 1526mm,
predictions, based on the simplified method, of the
curvature, 1=R, and hence, axial force, F , outside the
original experimental range can be made for any given
ripple range, 2r (Fig. 8); in detail, the calculation steps
are as follows:

1. For a given r, and assumingH ¼ H0, calculate � from
equation (1).

2. For the given r and calculated �, use equation (2) to
calculate R.

3. For the given �0 and r0, use equation (2) to calculate
R0, where subscript 0 relates to the case when F ¼ 0,
with the corresponding wavelength being H0.

4. With ðEIÞcable known (see Table 2), the bending
moment, m, is given by

m ¼
�

1

R
� 1

R0

�
ðEIÞcable ð52Þ

5. The axial force, F , is then given by equation (3).

It should be noted at once that, for the plots of F versus
2r, based on the simplified method, in Fig. 8, the appro-
priate constant value of ðEIÞcable (corresponding to either

Fig. 7 Variations, based on the simplified approach, of the bending moment, m, as a function of the
parameter 1=R

Table 2 Values of the bending and torsional stiffnesses

for the 164mm outside diameter spiral strand

First loading run ðEIÞcable 3:611� 1011 Nmm2

Final loading run ðEIÞcable 9:48� 1011 Nmm2

Plane-section ðEIÞfull-slip 3:74� 1012 Nmm2

Plane-section ðEIÞno-slip 4:59� 1012 Nmm2

ðGJÞfull-slip 8:31� 1011 Nmm2

ðGJÞno-slip 1:77� 1012 Nmm2
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the first or the final loading run) has been assumed over
the full range of each plot.

Using equations (6), (8), (37), (39) and (40), with the
predicted ðEIÞfull-slip and ðGJÞfull-slip values (as given in
Table 2) used as part of the input, predictions, based

on the rigorous method, of the ripple range, 2r, can be
made for any given axial force, F . Figure 8 shows the
variations in the ripple range with changes in the applied
axial force for both the experimental data and the
theoretical predictions, based on both the simplified

Fig. 8 Experimental as well as theoretical variations of the ripple range, 2r, with changes in the externally
applied axial force, F , based on both the simplified and rigorous methods (H0 ¼ 1526mm for both

the first and final loading runs)

Fig. 9 Theoretical variations in parameterG0 with changes in the externally applied axial force, F , for both the

first and final loading runs
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and rigorous methods. For a detailed set of numerical
results, corresponding to each individual calculation
step in the rigorous method, the interested reader may
refer to the tables given in reference [4]. The variation
in the bending moment, G0, as well as the shear force,
N 0, with changes in the applied axial force, based on
the rigorous method, are shown graphically, for the

first and final loading runs, in Figs 9 and 10 respectively.
Estimated variations in the axial strain in the spiral
strand, "h1, with changes in the applied axial force,
F , and the theoretical predictions of changes in the
ripple wavelength, �, versus F , for both the first and
final loading runs, are presented in Figs 11 and 12,
respectively.

Fig. 10 Theoretical variations in the cable shear force, N 0, with changes in the externally applied axial force,
F , for both the first and final loading runs

Fig. 11 Theoretical variations in the cable axial strain, "h1, with changes in the externally applied cable axial
force, F , for both the first and final loading runs, based on the rigorous method
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5 DISCUSSION

Figure 8 shows the theoretical predictions, based on both
the simplified and rigorous methods, along with the
experimental data for the first and final loading runs,
with the experimental data extrapolated to other regions
of axial force, F , for which no test data are available. The
correlations between the theoretical and experimental
data, where available, are very encouraging, and, at all
levels of cable axial force, the match between the results
based on both the simplified and rigorous approaches is
encouraging, reinforcing the fact that the influence of a
number of parameters ignored in the simplified
approach, regarding the exact form of the F versus 2r
plots, is sufficiently small to be ignored.

From Fig. 7 and Table 2 it is clear that there exist some
rather significant differences between the experimentally
obtained bending stiffnesses, ðEIÞcable, for the first and
final loading runs, the difference being a factor of 2.6.
This difference is believed to be due to the gradual
nature of the interwire bedding-in, owing to the pre-
stretching of the cable, and, as such, the helically
wound cables may need (depending upon their construc-
tion) a very lengthy period of working-in for their inter-
nal structure to become reasonably stabilized [17].
During this period, the bending stiffness will change in
a complex way owing to its sensitivity to the degree of
bedding-in.

Comparing the prediction of the full-slip plane-section
bending stiffness, ðEIÞfull-slip, with the experimentally
obtained one, ðEIÞcable, for the final loading run shows
a difference by a factor of 4, with the experimentally

determined value being 4 times less than the theoretically
obtained full-slip plane-section bending stiffness. As
regards the experimental results, unfortunately, the
number of loading cycles (after the strand has been
unwrapped from the drum) between the first and final
loading runs is not known. Indeed, it is also not known
as to whether the newly manufactured strand had been
subjected to any initial bedding-in loading cycles prior
to reeling it onto the drum. It is, on the other hand,
known that the experimental data have been obtained
from a new strand that has shortly after its manufacture
had its lay disturbed (cf. the case when the strand is in a
fairly straight condition) by reeling it onto rather too
small a drum, giving rise to the pigtail effect exploited
by the present authors: these may (at least partly) be
the reasons for the difference found between the
measured and predicted (plane-section) values of bend-
ing stiffness. This, however, should not distract attention
from the fact that the present work does make it possible
to obtain a much better estimate of the effective bending
stiffness than was previously available.

6 CONCLUSIONS

Presented in this paper is a promising experimental
method for obtaining the effective bending stiffness of a
spiral strand, the reliable experimental determination
of which, until now, had largely proven to be elusive.
The previously available experimental data relating to
the effective bending stiffness of a helically wound
cable had invariably been too dependent upon the

Fig. 12 Theoretical variations in � with changes in the externally applied cable axial force, F , for both the
first and final loading runs, based on the rigorous method
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specific experimental technique employed. The experi-
mental technique proposed is believed to be a significant
step forward in measuring the in situ effective bending
stiffness, for even very large diameter spiral strands, at
reasonable cost and effort, involving minimal physical
interface with the imposed strand deformations, with
this having been, at least in some cases, a major obstacle
in obtaining trustworthy test data.
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