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Universal upper critical field of unconventional superconductors
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The resistive upper critical field, Hc2(T ) of cuprates, superconducting spin-ladders, and organic
(TMTSF)2X systems is shown to follow a universal nonlinear dependence Hc2 ∝ (Tc − T )3/2 in
a wide range near Tc, while its low-temperature behaviour depends on the chemical formula and
sample quality. Hc2(T ) is ascribed to the Bose-Einstein condensation field of preformed pairs.
The universality originates from the scaling arguments. Exceeding the Pauli paramagnetic limit
is explained. Controversy in the determination of Hc2(T ) from the kinetic and thermodynamic
measurements is resolved in the framework of the charged Bose-gas model with impurity scattering.

74.20.-z,74.72.-h , 74.70.Kn

The upper critical field is one of the fundamental char-
acteristics of type II superconductors. For sufficiently
high field, superconductivity is destroyed and the field is
uniform in a bulk sample. Continuously decreasing the
field superconducting regions begin to nucleate sponta-
neously at a certain filed B = Hc2(T ). In the regions
where the nucleation occurs, superconductivity is just
beginning to appear, so that the density of supercarri-
ers, ns = |ψ(r)|2 is small. Hence, the phenomenologi-
cal Landau-Ginsburg (LG) (or the microscopic Gor’kov)
equation for the order parameter ψ(r) can be linearized
to give

1

2m
(∇− 2ieA(r))2ψ(r) = αψ(r), (1)

where h̄ = c = kB = 1. Hc2(T ) allows for a direct
measurement of the most fundamental parameter, the
superconducting coherence length, ξ(T ), because Hc2 =
φ0/2πξ(T )2 (φ0 is the flux quantum) [1]. Solving Eq.(1),
one obtains the linear Hc2(T ) = −mα/e near Tc [2] with
α ∝ T − Tc in the Landau theory of the second-order
phase transitions. At zero temperature Hc2(0) is nor-
mally below the Clogston-Chandrasekhar [3] or the Pauli
pair-breaking limit given by Hp ≃ 1.84Tc (in Tesla) for
the singlet pairing. The limit can be exceeded due to
the spin-orbit coupling [4], or triplet pairing, but in any
case Hc2(0) remains finite in the framework of the BCS
theory. The mean-field BCS approach, Eq.(1), is ap-
plied if ξ(0) >> (6/nπ)1/3, where n is the carrier den-
sity. Hence, irrespective to the Pauli pair-breaking limit,
the zero temperature value of the (BCS) upper critical
field should be much less than φ0(πn/6)2/3/(2π), which
is about 200 Tesla for a typical carrier density in novel
superconductors (n ≃ 1021cm−3).

In cuprates [5–16], spin-ladders [17] and organic su-
perconductors [18] high magnetic field studies revealed a
non-BCS upward curvature of resistive Hc2(T ). When
measurements were performed on low-Tc unconventional

superconductors [6,7,11,17,18], the Pauli limit was ex-
ceeded by several times. A non-linear temperature de-
pendence in the vicinity of Tc was unambiguously ob-
served in a few samples [8,11,14–16]. This strong depar-
ture from the canonical BCS behaviour led some authors
[10,19–21] to conclude, that the abrupt resistive tran-
sition in applied fields is not a normal-superconductor
transition at Hc2. Indeed, the thermodynamic determi-
nation of Hc2 [10,21–23], and anomalous diamagnetism
above the resistive transition [24,19] seem to justify such
a conclusion. Thermodynamically determined Hc2 ap-
pears to be linear in the vicinity of Tc, and much higher
than the resistive Hc2, in some cases [19,21] exceeding
well not only the Pauli limit, but even the ultimate ’BCS’
limit mentioned above.

The apparent controversy in different determinations
of Hc2 needs to be addressed beyond the mean-field ap-
proach, Eq.(1). Unconventional superconductors could
be in the ’bosonic’ limit of preformed real-space pairs,
so their resistive Hc2 is actually a critical field of the
Bose-Einstein condensation of charged bosons, as pro-
posed by one of us [25]. The calculations [26] carried out
for the heat capacity of an ideal charged Bose-gas in a
magnetic field revealed a remarkable difference between
the resistive Hc2 and the thermodynamically determined
one. While any magnetic field destroys the condensate of
ideal bosons, it hardly shifts the specific heat anomaly.

In this Letter, we present a comprehensive scaling of
resistive Hc2 measurements in a great variety of uncon-
ventional superconductors. A universal non-BCS tem-
perature dependence is found in the vicinity of Tc while
deviations from the universality are observed at low tem-
peratures. We describe these results in the framework of
a microscopic model of charged bosons scattered off im-
purities. Different from the ideal Bose-gas this model
predicts two anomalies in the specific heat. The lower
temperature anomaly traces the resistive transition in a
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magnetic filed, but the higher one is hardly shifted even
by a high magnetic field, as observed [22,23]. Based on
the microscopic model we argue that the state above the
resistiveHc2(T ) of unconventional superconductors is the
normal state of preformed pairs.

In the bosonic superconductor the mean-field LG equa-
tion, Eq.(1) is replaced by the microscopic Schrödinger
equation for the condensate wave function [25],

[Ûsc − (∇− 2ieA(r))2/(2m)]ψ(r) = µψ(r), (2)

where Ûsc is the scattering potential due to impurities
and phonons, or the self-energy operator due to inter-
particle hard-core and long-range correlations [28], and
µ is the chemical potential. Different from the mean-field
Eq.(1), it takes fully into account both thermal and quan-
tum fluctuations, but does not allow for a direct deter-
mination of Hc2. When Hc2 is defined as the field where
the first non-zero extended solution of Eq.(2) appears,
the equation yields a position of the chemical potential
at the mobility edge µ = Ec, rather than Hc2 itself. Then
the upper critical field is found using the total number of
extended bosons nb above the mobility edge,

∫

∞

Ec

f(ε)N(ε,Hc2)dε = nb(T ), (3)

where N(ε,B) is the density of states (DOS) of the
Hamiltonian, Eq.(2), and f(ε) = 1/[exp((ε−µ)/T −1] is
the Bose-Eistein distribution. In the general case nb(T )
depends on temperature due to a partial localization of
bosons in the random potential.

Applying simple scaling arguments [25] the positive
curvature of Hc2(T ) near Tc and its divergent behaviour
at low temperatures follow from Eq.(3). The number
of bosons at the lowest Landau level (n = 0) is pro-
portional to the temperature and DOS near the mobil-
ity edge, N0 ∝ B/

√

Γ0(B). The collision broadening of
the Landau level is also proportional to the same DOS
Γ0(B) ∝ B/

√

Γ0(B). Hence, Γ0(B) ∼ B2/3 and there-
fore the number of bosons at the lowest level is propor-
tional to TB2/3. The singularity of all upper levels’ DOS
is integrated out in Eq.(3) so that one can neglect their
quantization using the zero field density of states for the
levels with n ≥ 1. Equating the number of bosons with
n = 0 and nb(T )−nb(Tc)(T/Tc)

3/2 (the total number mi-
nus the number of thermally excited bosons with n ≥ 1)
yields

Hc2(T ) = H0[nb(T )/(tnb(Tc)) − t1/2]3/2, (4)

where t = T/Tc. The scaling constant H0 depends on
the scattering mechanism, H0 = φ0/2πξ

2

0 , with the char-
acteristic (coherence) length ξ0 ≃ (l/nb(Tc))

1/4. Here l
is the zero-field mean-free path of the low energy bosons.
One obtains the parameter-free Hc2(T ) ∝ (1 − t)3/2 us-
ing Eq.(4) in the vicinity of Tc, but the low-temperature

behaviour depends on the particular scattering mecha-
nism, and the detailed structure of the density of local-
ized states. As suggested by the normal state Hall mea-
surements in cuprates [27] nb(T ) can be parameterized as
nb(T ) = nb(0)+constant×T , so that Hc2(T ) is described
by a single-parameter expression as

Hc2(T ) = H0[b(1 − t)/t+ 1 − t1/2]3/2. (5)

Parameter b is proportional to the number of delocalised
bosons at zero temperature. We expect that this ex-
pression applies to the whole temperature range except
ultra-low temperatures, where the Fermi Golden-rule in
the scaling fails [28]. Exceeding the Pauli pair-breaking
limit readily follows from the fact, that the singlet-pair
binding energy is related to the normal-state pseudogap
temperature T ∗, rather than to Tc [29]. T ∗ is higher than
Tc in bosonic superconductors, and cuprates.

The universal scaling of Hc2 near Tc is confirmed by
the resistive measurements of the upper critical field of
many cuprates, spin-ladders, and organic superconduc-
tors, as shown in Fig.1A. All data reveal the universal
(1− t)3/2 behaviour in a wide temperature region as can
be seen in the inset to Fig.1A. Deviations from this law,
observed in a few cuprates in a close vicinity of Tc were
explained in Ref. [8]. The low-temperature behaviour of
Hc2(T )/H0 is not universal, but well described using Eq.
(5) with a single fitting parameter, b. This is close to
1 in high quality cuprates with a very narrow resistive
transition [8,14,16]. It naturally becomes rather small
in overdoped cuprates where the randomness is more es-
sential, so almost all bosons are localized (at least in one
dimension) at zero temperature. It becomes even smaller
in organic superconductors, which might be related to the
magnetic field induced dimensional crossover [30] at low
temperatures. The scaling parameter H0 increases with
increasing Tc, Fig.1B. This is because mean-free path l
decreases with doping, while the density of carriers in-
creases, so that the coherence length ξ0 becomes smaller
in the cuprates with a higher Tc.

Calculations of the specific heat require the analytical
DOS, N(ε,B) of a particle in the random potential and
in the magnetic field. The above scaling suggests that
Hc2(T ) is not sensitive to a particular choice of the scat-
tering mechanism and approximation, at least in a wide
vicinity of Tc. Hence, one can use the canonical non-
crossing approximation for the single-particle self-energy,

Σν(ε) =
∑

ν′

Γν,ν′

ε− εν′ − Σν′(ε)
(6)

with a particular scattering matrix element squared
Γν,ν′ = Γδn,n′ , ν ≡ (n, px, pz) are the quantum num-
bers of the Landau problem. This allows us to obtain an
analytical result for the DOS, N(ε,B) = Γ−1

∑

n ℑΣn(ε)
as

2



N(ε,B) =
eB

4π2

√

6m

Γ0

∑

n

[(

ε̃n
3 +

1

2
+

√

ε̃n
3 +

1

4

)1/3

−
(

ε̃n
3 +

1

2
−
√

ε̃n
3 +

1

4

)1/3 ]

, (7)

with the mobility edge at Ec = eB/m− 3Γ0/2
2/3. Here

Γ0 = 0.5(2ΓeB
√
m/π)2/3 is the collision broadening of

the lowest Landau level, ε̃n = [ε−2eB(n+1/2)/m]/3Γ0.
Hc2(T ) calculated with the analytical DOS, Eq.(7) is

almost the same as Hc2 in Eq.(5). The specific heat
coefficient C(T,B)/T = d[

∫

dεN(ε,B)εf(ε)]/TdT calcu-
lated with the same DOS and with µ determined from
nb =

∫

dεN(ε,B)f(ε) is shown in Fig.2a. The broad
maximum at T ≃ Tc is practically the same as in the
ideal Bose gas without scattering [28]. It barely shifts in
the magnetic field. However, there is the other anomaly
at lower temperatures, which is absent in the ideal gas. It
shifts with the magnetic field, tracing the resistive tran-
sition, as clearly seen from the difference between the
specific heat in a field and the zero-field curve, Fig. 2b.
The specific heat, Fig. 2, is in striking resemblance to
the Geneva group’s experiments on DyBa2Cu3O7 (Fig.
4 and 6 in Ref. [23]) and on YBa2Cu3O7 (Fig. 1 and 2
in Ref. [22]), where both anomalies were observed.

Within our model, when the magnetic field is applied,
it hardly changes the temperature dependence of the
chemical potential near Tc since the energy spectrum of
thermally excited bosons remains practically unchanged.
That is because their characteristic energy (of the order
of Tc) remains enormous compared with the magnetic
energy of the order of 2eB/m. In contrast, the energy
spectrum of the low energy bosons is strongly perturbed
even by a weak magnetic field. As a result the chemical
potential ’touches’ the band edge at lower temperatures,
while having almost the same ’kink’-like temperature de-
pendence around Tc as in zero field. While the lower
anomaly corresponds to the true long-range order, the
higher one is just a trace-’memory’ of the zero-field tran-
sition. Hence, our microscopic consideration shows that
the genuine phase transition into the superconducting
state is related to the resistive transition and to the lower
specific heat anomaly. The broad higher anomaly is the
normal state feature of the bosonic system in the external
magnetic field. Different from the BCS superconductor
these two anomalies are well separated in the bosonic su-
perconductor at any field except zero one. Hence, the
resistive Hc2 is the genuine upper critical field, while the
field H∗ determined thermodynamically from the higher
anomaly of the specific heat, Fig. 2b, is a pseudo-critical
field, unrelated directly to the long-range off-diagonal su-
perconducting order. The absence of significant super-
conducting fluctuations in the resistivity of the highest
quality samples [14,6,7,11,13] in a wide field interval be-
tween the resistive Hc2(T ) and H∗ further justifies the
conclusion. A weak diamagnetism observed in a few

cuprates above the resistive Hc2(T ) curve [24,19], was
explained as the normal state Landau diamagnetism of
preformed pairs in the framework of the same microscopic
model of charged bosons [31].

Our conclusions are at variance with some others [20],
which claim that strongly anisotropic Bi-cuprates remain
in the superconducting state well above the resistive
Hc2(T ). However, thorough analysis [33] of the data used
by [20] to support that claim reveals significant contri-
bution from extrinsic effects. These are responsible for
the apparent contradiction between the results of [20]
and those of the predecessors [8,13,16]. In particular, as
shown in [33], the unusual shape of ρab(H) [20] could
result from the current redistribution in a defective crys-
tal while the Joule heating is likely to be responsible for
the non-Ohmic resistance observed in [20]. Moreover, as
shown in Fig. 3, when the routine procedure for the resis-
tive Hc2 evaluation [8] is applied to reliable in-plane and
out-of-plane data obtained on the same samples [9,32],
very similar values of Hc2(T ) are obtained from ρc and
ρab [33]. This puts into question the last argument of
the authors of Ref. [20] who claim that while ρc is a
measure of the interplane tunneling, only the in-plane
resistivity represents a true normal state and should be
used in the determination of Hc2. It is appropriate to
mention here that according to the analysis in Fig.1, sig-
nificant features of the resistive Hc2 appear to be robust
with respect to the particular component of the resistiv-
ity used for its evaluation. Finally, the observation [13]
of the negative c-axis magnetoresistance above Tc invali-
dates the main claim of Ref. [20] that it is a signature of
the superconducting state.

In conclusion, we have scaled the magnetotransport
measurements in many novel superconductors. The un-
usual upper critical field Hc2(T ) has been ascribed to the
Bose-Einstein condensation field of preformed pairs. We
have introduced a charge Bose-gas model with a partic-
ular choice of the scattering potential allowing for the
analytical DOS in the magnetic field. In contrast to an
ideal Bose-gas model and the BCS theory, this model
describes well resistive Hc2(T ) and predicts two anoma-
lies in the specific heat. We have shown that the genuine
phase transition into the superconducting state is related
to the resistive transition and to the lower specific heat
anomaly, while the higher one is the normal state fea-
ture of the bosonic system in the external magnetic field.
Our approach is compatible with a wealth of various ex-
perimental observations, the normal pseudogap and the
absence of the Hebel-Slichter peak being only a few of
them [29].
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Figure Captures

Fig. 1. A: Resistive upper critical field (evaluated at
50% of the transition) of electron/hole doped cuprates,
spin-ladders and organic superconductors scaled accord-

ing to Eq.(5). Parameter b is 1 (solid line), 0.02 (dashed-
dotted line), 0.0012 (dotted line), and 0 (dashed line). In-
set shows the universal scaling of the same data near Tc.
B: H0 versus Tc/T

opt
c , where T opt

c is the critical tempera-
ture of the optimally doped material (shown in brackets).
Lines are the guide for eyes. The right-hand part of B

shows H0 for the compounds where T opt
c is unknown.

Fig.2. Temperature dependence of the specific heat
C(H,T )/T (in units of 2nkB/[π

1/2ζ(3/2)Tc]) of charged
Bose-gas scattered off impurities for several fields indi-
cated in the figure (ωH = 2eB/m). Fig. 2b: Likewise
[22–24] shows C(H,T )−C(0, T ) and reveals two anoma-
lies: the lowest traces the resistive transition while the
highest, H∗, is the normal state feature.

Fig.3. Hc2(T ) obtained from ρab (solid lines) and ρc

(dashed lines) of the same sample [9,32].
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