

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

2004 IEEE International Conference on Systems, Man and Cybernetics

Formal Development of Remote Interfaces for Large-
Scale Real-Time Systems*

Walter Hussak, Shuang H. Yaug
Department of Computer Science

Loughborough University
Loughborough, United Kingdom

{W.Hussak, S.H.Yang}@lboro.ac.uk

Abstract - The design of web-based user interfaces is of
primary importance for achieving successful operation of
Internet-based monitoring and control systems.
Operators need to be able IO act promptly on changing
situations requiring remote actions to process plants. A
formal development process is proposed to determine the
minimum amount of information that needs to be
presented at interfaces. The first stage of the process is a
specifcation of states of components that require
operator actions. The main stage of the process uses
model checking to generate interfaces with a minimal
amount of information sufticient for the operator to
perform all required actions. As well as improving the
efficiency of operators, simpler interfaces allow for
greater concurrency in the implementation of the remote
operation of the process plant.

Keywords: Remote interfaces, control systems, model
checking, concurrency.

1 Introduction
The Intemet offers a great platform for establishing

tmly distributed large-scale systems, such as Intemet-
based monitoring and control systems for process plants.
One of the challenges in the design of Intemet-based
monitoring and control systems is to produce suitable
web-based user interfaces enabling operators to appreciate
quickly what is happening in the process plants located at
a remote site [7]. It should be bome in mind that requests
for large amounts of information in the interface increase
the transmission load over the Intemet and also limit
scope for concurrency between interfaces requiring a
consistent view of common data. As a result, the speed of
communication is slowed down. Furthermore,
overloading information in the interface may obscure bow
the operator should act on the information presented and
thus slow down the response of the operator. The
objective of this paper is to give a formal development
process for producing remote interfaces which provide the
optimal amount of information. The general process is
given in Section 2 and a case study, where remote

interfaces for a real-life process plant are developed, is
described in Section 3. The conclusions are in Section 4.

2 General development process
A three-stage development process is proposed for each

interface:
Give an initial formal specification of the interface
comprising information on a set of components
required by the remote operator in order to operate the
particular part of the plant, the states that have to be
attained by these components before the operator
performs each action, and the changes each action
makes to the state of components. At this stage it
may not be clear where specified required information
has actually been overloaded and can be reduced by
taking into account relationships between different
components in the plant.
Generate by formal verification, alternative candidate
sets of components, 60m which information on the
enabling states of the components in stage 1 can be
inferred which are optimal with respect to the least
amount of information being presented at the
interface.
The final interface results from choosing a candidate
set of components from stage 2, based on any criteria,
additional to minimizing the amount of information
presented, that are not within the scope of this paper.

2.1 Initial interface specification
In Internet-based monitoring and control systems a

large-scale processing plant might be controlled remotely
by a number of the operators located in different parts of
the world. Each of them would be given responsibilities
for the operation of different parts of the plant. The basic
problem when designing the interface for the remote user
is to decide what information to present to the operator.
The initial specification addresses three aspects:

(i) Components of the plant that an operator is empowered
to control, i.e. change their state;

* 0-7803-8566-7/04/%20.00 0 2004 IEEE.

124

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 23, 2009 at 10:09 from IEEE Xplore. Restrictions apply.

mailto:S.H.Yang}@lboro.ac.uk

(ii) Components of the plant whose state influences the
actions of the operator on the components in (i).
(iii) The states of the components in (ii) that may cause the
operator to act on components in (i).
To specify these, notation fiom the theory of database
transactions is adopted. The set of all the components in
the plant will be denoted hy X. If the operator i has the
power to change the state of components Zl, ..., Zq based
on knowledge of the state of components Yl, ..., Yp,
where Y1, ___, Yp, ZI ,___, Zq belong to X, then the interface
for the operator i, which corresponds to (i) and (ii) above,
is specified as:

Riml , ..., Yp], Wi[Zl, ..., Zq]

This is analogous to two-step database transactions [5] in
that operator i updates or ‘writes’ to variables Zl, ..., Zq
(denoted Wi[ZI, ..., Zgl) based on the values ohserved or
’read’ for Y1, ___, Yp (denoted as Rip1 ,... Yp]). It is
assumed that {ZI ,._., Zq) is a subset of {YI ,___, Up), i.e.
an operator needs to know the state of components prior to
any change. The set of subsets of {Yl, ..., Yp) containing
{Zl, ... Zq) is denoted by Y. The states of the components
Y 1 ,. . .,Yp that cause the operator to act, corresponding to
stage (iii) above, are presented as a finite set of sets of
propositions:

U = ({Yl =U], ..., Yp=Up) : YI in state Ul, ..., Yp in state
Up causes the operator to act}

There is an assumption here that there are finitely many
distinct situations that cause the operator to act on Zl , . , . ,
Zq. This may require negations of propositions such as
!Yl=UI, in the sets in U, which we have not mentioned at
this stage for simplicity of exposition.

2.2 Generation of candidate interfaces
As it is the ‘read set’ Yl, ..., Yp that gives the

information presented at the interface, it is this set that is
to be minimized. The general algorithm, below, for
obtaining the list of minimal read sets rsets, loops
through all possible subsets {XI ,..., Xs) of (Yl, ..., Yp)
starting with s=l (first and second for loops) to see if
every enabling condition {Yl=Ul, ..., Yp=Up) for an
action can be inferred fiom its subset {Xl=Vl, ...,
Xs=Vs) (third for loop). This involves executing the
model checker NuSMV [l] to determine if the
conjunction YI=Ul &...&Yp=Up is always (AG)
equivalent to XI=VI &...&Xs=Vs in the operation of the
plant. In the code NuSW-call is therefore defined to he:

NuSMV (system, AG (Y l = U l &... &Yp=Up <-;
Xl=Vl &...&Xs=Vs))

Where system is the logical behaviour of the plant. At
the end, r se t s will contain subsets {Xl,..,, Xs) of
candidate read sets for a particular minimum cardinality s.

The full algorithm is as follows:

procedure generate-read-sets
rsets := 0;
min intrfce-achieved := false;
for-s=l to p do
if min-intrfce-achieved=false then
for { X l , ..., X s) in Y do

matched:=true;
for { Y l = I J l , ..., Yp=IJp] in U do

matched = NuSW-call
if matched then

end if
end for;
if matched then
rsets=append({Xl, ..., Xs1,rsets) ;
min-intrfce-achieved = true
end if

end for
end if

end procedure
end for

Although, the algorithm above does not introduce any
new state explosion problem with the model checker
NuSMV, optimiitions to the algorithm are suggested in
the case study in the next section to prevent excessively
many calls to NuSMV.

3 Case study
The case study is a scaled-up version of the transferring

system for a penicillin process given in [6]. The system is
made up of two dimethyl acetamide @MA) tanks, two
reactors, two external pumps (mA, mB) for each tank, two
Ellis locks (VA, VB) for each tank, and two control valves
(vA, vB) for each reactor, as shown in Figure 1.

Figure 1. A penicillin process

125

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 23, 2009 at 10:09 from IEEE Xplore. Restrictions apply.

The DMA tank holds the DMA solvent until is ready to be
transferred to the reactors at the start of a new batch
process. For each DMA tank, we assume that if both the
inlet flow F1 and outlet flow F2 are open the inlet flow
rate is greater than the outlet flow rate. Discrete integer
values (0 to 6) have been chosen for the liquid level Lev.

3.1 Remote operator interface specification
Operator a is responsible for the transfer lines 60m

tankl to reactorl, and tank2 to reactor2, and operator b is
responsible for the transfer lines from tankl to reactor2
and tank2 to reactorl. Operator a can open tankl.VA,
t ank1 .d and tankl.vA if they are closed and tankl,VB,
t a n k 1 . d and tankl.vB are closed. Operator a can also
open tank2.VA, t a n k 2 . d and tank2.vA if they are closed
and tank2.VJ3, tank2.d and tank2.vB are closed.
Operator b is defined to control VB, d, and vB in a
similar fashion. The initial specifications for operator a,
for the aspects (i), (ii) and (iii) of 2.1, are:

Ra[tankl.VA,tankl.mA,tankl.vA,
tankl.VB,tankl.mB,tankl.vB,
tankZ.VA,tankZ.mA,tankZ.vA,
tankZ.VB,tankZ.mB,tankZ.vB]

Wa[tankl.VA,tankl.mA,tankl.vA,
tankZ.VA,tankZ.mA,tankZ.vAl

Ua={{tankl.VA=Ul,tankl.mA=U2,
tankl.vA=U3,tankl.VB=U4,
tankl.mB=US,tankl.vB=U6,
tankZ.VA=U7,tankZ.mA=UE,
tankZ.vA=U9,tankZ.VB=UlO,
tank2.mB=Ull,tankZ.vB=UlZ) :
U1=off&UZ=off&U3=0ff&
U4=off&US=off&U6=off I
U7=off&U8=off&U9=off&
U10=0ff&U11=0ff&U12=0ff)

Here, Ua bas been defined by set comprehension, where
‘:’ is read as ’such that’ and ‘I’ is read as ‘or’.

3.2 System behavior specification
The behavior of the overall plant is specified as a

finite state machine in the input language of NuSMV
shown as follows, in which the following keywords
appear:

next: define a relationship between values of variables
in a particular state and its successor state.

1 MODULE main
2
3 VAR
4 oa: boolean: ob: boolean:
5 tankl: tank-subsystem(oa,ob);
6 tank2: tank-subsystem(oa,ob);
7
8 ASSIGN
9 init loa) : = O ; init (ob) : = O ;
10
11 SPEC
1 2 AG(!tankl.VA & !tankl.mA & !tankl.vA
13 & !tankl.VB & !tankl.mB & !tankl.vB
14 <-> !tankl.VA &!tankl.mA &!tankl.vA
15 & !tankl.VB & !tankl.vB)
16
17 MODULE tank-subsystem(oA,oB)
1 8
1 9 VAR
20 Lev: {0,1,2,3,4,5,6);
21 F1: boolean; F2: boolean;
22 VA: boolean; VB: boolean;
23 mA: boolean; mB: boolean;
24 vA: boolean; vB: boolean;
25
26 DEFINE
27 higher:=case Lev<G:Levtl;
2 8 Lev=6:6 esac;
29 lower:=case Lev>O:Lev-1;O:O;esac;
30 LL:= Lev<3;
31 LH:= Lev>4;
32
33 ASSIGN
34
35
36
37
38
39
40
41
42
43
44
45
4 6
41
4 8

init (Lev) :=3;
next(Lev):=case Fl&!FZ:higher;
!Fl&F2:lower;Fl&F2:higher;
Fl&FZ:higher;l:Lev; esac;

init (F1) : = O ;
next(Fl):=case LH:O;l:{O,l);esac;
init(F2) : = O ;
next(FZ):=case LL:O;l:{O,l);esac;
init (VA) :=O;
next(VA):=case LL:O;oa&!ob&!VA

init (VB) : = O ;
next(VB):=case LL:O;ob&!oa&!VB

init ivA) : = O :

&!mA&!vA&!VB&!mB&!vB:l;l:VA;esac;

&!mB&!vB&!VA&!mA&!vA:l;l:VB;esac;
~ ~~, ~. ~~

49 next(vA):=case vA&!mA:O;oa&!ob&!VA
50 &!mA&!vA&!VB&!mB&!vB:l;l:vA;esac; MODULE: indicates the file as main or subroutine.

VAR: define types of variables as boolean or sets of 51 init (vB) :=o;
symbols. 52 next(vB):=case vB&!mB:O;ob&!oa&!VB
DEFINE: inorderto make descriptions more concise, 53 &!mB&!vB&!VA&!mA&!vA:l;l:vB;esac;
a symbol can be associated with a commonly used
expression. 5 5 next(mA):=case mA&!VA:O;oa&!ob&!VA
SPEC: write soecifications in CTL (comoutation tree 56 &!mA&!vA&!VB&!mB&!vB:l;l: i m A , O) ;

54 init (a) : = O ;

J Y nexr \ma) init: defme initial conditions of the variables.

126

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 23, 2009 at 10:09 from IEEE Xplore. Restrictions apply.

60 &!mB&!vB&!VA&!mA&!vA:l;l:{mB,O];
61 esac:

In the k i t e state machine for the penicilli process given
above Symbols ! , &, I and <-> represent logical not, and,
or and equivalence respectively. The symbol AG,
meaning ‘in all execution paths always’, belongs to CTL
[2] which is the logic used to specify properties in the
SPEC section of the ffi te state machine. The SPEC
section (lines 11-15) describes that the situation, in which
all the valves and the pumps for tankl are off, is
equivalent to the situation, in wbicb the valves VA, vA,
VB, VB and the pump mA are off. That implies that the
state of the pump mB can be eliminated in the operating
interface if all the valves and the pumps for tank1 are off.
In a state of the finite state machine, every boolean
expression has a value. Examples of boolean expressions
in the state of the f inite state machine are:

!VA - ‘VA is false’ or ’Ellis lock VA is turned off

Lev>O - ‘the liquid level of the tank is greater than 0’

ob - ‘operator b is performing a remote action’

The transition relation of the f d t e state machine is
defined by a relationship between the values of boolean
expressions in a state and their values in the next state.
The lines 34 to 37 describes the behaviour of the liquid
level of the tanks. The lines 38 and 39 describe the
behaviour of the inlet flow F1 of the two tanks. The lines
40 and 41 describe the behaviour of the outlet flow F2 of
the two tanks. Consider the lines 43 and 44:

43 next(VA):=case LL:O;oa&!ob&!VA&
44 !mA&!vA&!VB&!mB&!vB:l;l:VA;esac;

This states that, if the level of the liquid is low in a state
(LL=true), VA is tumed off, i.e. next(VA)=O. This is an

The original description of the system refers to 2 tanks
and components relating to a particular tank, e.g.
tankl.VA or tank2.d. In fact, the system subdivides
naturally into two subsystems of components, those
associated with tankl and the others associated with
tank2. This is specified in a modular fasbion by defining a
general tank-subsystem (h e s 17-61) and then
creating two instances tankl and tank2 (l ies 5 and 6) as
the system. The corresponding pair of fdte state
machines executes syncbronously, but the subdivision
gives a more structured specification and, more
importantly, is used to optimize the algorithm for
generating candidate interfaces. This is discussed in 3.3
below.

3.3 Interface generation
To calculate the minimal interfaces for operator a,

a brute force application of the algorithm in section 2.2
could require a call of NuSMV for every subset of every
set of states of components in Ua which contain the
components in Wa. This amounts to about 350 calls of
NuSMV, with up to 12 components appearing in formulae
to be verified or refuted by each call. However, this
problem of size, occurring with large-scale systems, can
be mitigated as they usually admit a natural
decomposition into subsystems. Modular decomposition
of systems has been used to avoid the state explosion
problem associated with model checking [3]. There are
m e r benefits when model checking is used for
exhaustive generation of interfaces as proposed here, in
that it reduces considerably the number of calls that are
required of the model checker in the fust place. Consider
the set Ra. Modular specification of the system behaviour
partitions components into 2 sets:

Ral = {tankl.VA,tankl.mA,tankl.vA,
tankl.VB,tankl.mB,tankl.vB,

Ra2 = {tank2.VA,tank2.mA,tankZ.vA,
tankZ.VB,tankZ.mB,tankZ.vB)

automatic safety interlock mechanism as in [6]). If
operator a is performing a remote action (0a-e) whilst

b is not (ob=false), and VA, d, v~ VB, m~
and v~ are turned off, then VA be turned on in the
next state (next(VA)=l). This is described in the code by

It is Only the operator actions oa and ob that affect
components in both sets, but their actions on each do not
influence their actions on the other. Thus, the components
in Ral and Ra2 are independent. Therefore, the minimal

(o~!ob&!vAsr!mA&ivAVB&!mB&!vB:l). othenuisd,
the value of VA does not change (1:VA). Similarly, the
lines 45 to 61 describe the behaviour of the valves m,
vA, vB, and the pumps mA and mB. The specification
assumes that when an operator performs an action, as
many components as possible are affected (e.g. if the
conditions are right to open VA, mA and VA
corresponding to both tank1 and tank2, then operator a
will open all components). Other operator behavior could
be specified as well.

interfaces for ~a are precisely unions of minimal
interfaces for Ral and BY s m e w , we need only
consider Ral. Now, minimal interfaces for Ral need to
include the components to be changed, i.e.

tankl*mAftankl.vA1

and minimal sets Out

i t a n k l . V B) , { t a n k l . m B) , l t a n k l . v B) ,
{tankl.VB,tankl.mB),
{tankl.VB,tankl.vBl,

127

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 23, 2009 at 10:09 from IEEE Xplore. Restrictions apply.

{tankl.mB,tankl.vB),
(tankl.VB,tankl.mB,tankl.vB)

Hence, at most 7 calls of NuSMV are required. I(fact,
after executing NuSMV 6 times it is found that:

{tankl.VB,tankl.vB)

is, in this case, the unique minimal set of information in
addition to (tankl.VA,tankl.mA,tankl.vA) required by
operator a for the tank1 subsystem. It is illustrated in the
SPEC section (l ies 11 to 15). It is slightly surprising that
information about the pump mB, which may suddenly
stop irrespective of other components, is not required and
can be inferred 60m the current state of other
components. If a more straightforward safety interlock
system as in [6] was adopted, we would find that any of
the sets:

{tankl.VB), {tankl.mB), {tankl.vB)

would be minimal amounts of additional information. In
this case, the list of minimal interfaces for operator a
would be the list of sets which are the union of the set:

{tankl.VA,tankl.mA,tankl.vA,
tankl.VA,tankZ.mA,tankZ.vA)

1
and each of the sets.

tankl.VB,tank2.VB)
tankl.VB.tank2.mB)
tankl.VB,tankZ.vB)
tankl.mB, tank2.VB)
tankl.mB,tankZ.mB}
tankl.mB,tank2.vB}
tankl.vB, tank2.VB)
tankl.vB, tank2.mB)
tankl.vB,tankZ.vB)

reads and writes corresponding to the operator reading the
state of components at the chosen minimal interface and
changing the state of components respectively. The
relevant consistency condition is that of serializability of
uninterpreted transactions. The case of finitely many reads
and writes is analyzed in [SI. A condition on an infmite
continuous stream of reads and Writes to be serializable is
given in a temporal context in [4].

4 Conclusions
Formal methods have been used in several areas of

human-computer interaction, including cognitive
modelling and task analysis. The main goal of this work is
to show that, for developing concurrent interfaces to large-
scale systems, the problem of merely the amount of
information to be presented at the interfaces is a major
concern whose analysis presents a suitable role for formal
methods. In this paper, it has been shown that the benefits
of using a formal approach include clarification of the use
of the interface, and analyses which suggest novel choices
for interfaces that might not have been evident in an
informal approach. The formal techniques for process
plant control are based on the emerging use of temporal
logic model checkers in such plants. The analogy with
databases means that recent developments in database
concurrency and model checking raise the possibility of an
integrated formal development process, spanning the
development of process plant control logic, concurrent
operator interface design and scheduling. In general,
remote operation over the Internet will be important in the
future not only for process plant control, and the amount
of information to be presented at interfaces will be a
significant part of overall interface design.

Acknowledgement
This work was financially supported by the Royal Society
in the UK through the Research Grants Scheme 2004R1.

It is clear that decomposing the specification of the system
has yielded a collection of candidate miniial interface
options as essentially a Cartesian product of sets of
choices of components to be added at the interface.

3.4 Concurrency
If the pump mB breaks down, the initially specified
interface requires operator a to be informed of this change
in state of the offending pump. However, with the reduced
interface, operator a does not need to be informed of the
state of mB immediately, as information about VB and
vB, arriving later, will suffice. This allows more scope for
concurrency in the implementation of schedulers. A
formal specification of such a scheduler can be produced
by specifying a consistency condition on the c o n c F n t

References
[l] A. Cimatti, E. Clarke, F. Giunchiglia, and M.
Roveri, “NuSMV: a new symbolic model verifier”,
Proceedings of the Intemational Conference on
Computer-Aided Verification, Lecture Notes in Computer
Science, No. 1633, Trento, Italy, pp. 495-499, Jul. 1999.

[2] E. M. Clarke, E. A. Emerson, and A. P. Sistla,
“Automatic verification of finite-state concurrent systems
using temporal logic specifications”, ACM Transactions
on Programming Languages and Systems, Vol. 8, No. 2,
pp. 244-263, 1986.

[3] 0. Grumbler, and D. E. Long, “Model checking and
modular verification”, ACM Transactions on

128

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 23, 2009 at 10:09 from IEEE Xplore. Restrictions apply.

Programming Languages and Systems, Vol. 16, No. 3,
pp. 843-871, May 1994.

[4] W. Hussak, “Serialiible histones in quantified
propositional temporal logic”, International Journal of
Computer Mathematics, (to appear 2004).

[SI C. H. Papadimitriou, “The serialiibility of
concurrent database updates”, Journal of the Association
for Computing Machinery, Vol. 26, No. 4, pp. 631-653,
Oct. 1979.

[6] S . H. Yang, L. S . Tan, and C. H. He, “Automatic
verification of safety interlock systems for industrial
processes”, Journal of loss prevention in the process
industries, Vol. 14, pp. 379-386,2001,

[7] S.H. Yang, X. Zuo, and L. Yang, “Control system
design for Internet-enabled arm robots”, Lecture Notes in
AI, Vol. 3029, pp. 663-672,2004,

129

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 23, 2009 at 10:09 from IEEE Xplore. Restrictions apply.

