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Abstract - The design of web-based user interfaces is of 
primary importance for achieving successful operation of 
Internet-based monitoring and control systems. 
Operators need to be able IO act promptly on changing 
situations requiring remote actions to process plants. A 
formal development process is proposed to determine the 
minimum amount of information that needs to be 
presented at interfaces. The first stage of the process is a 
specifcation of states of components that require 
operator actions. The main stage of the process uses 
model checking to generate interfaces with a minimal 
amount of information sufticient for the operator to 
perform all required actions. As well as improving the 
efficiency of operators, simpler interfaces allow for 
greater concurrency in the implementation of the remote 
operation of the process plant. 

Keywords: Remote interfaces, control systems, model 
checking, concurrency. 

1 Introduction 
The Intemet offers a great platform for establishing 

tmly distributed large-scale systems, such as Intemet- 
based monitoring and control systems for process plants. 
One of the challenges in the design of Intemet-based 
monitoring and control systems is to produce suitable 
web-based user interfaces enabling operators to appreciate 
quickly what is happening in the process plants located at 
a remote site [7]. It should be bome in mind that requests 
for large amounts of information in the interface increase 
the transmission load over the Intemet and also limit 
scope for concurrency between interfaces requiring a 
consistent view of common data. As a result, the speed of 
communication is slowed down. Furthermore, 
overloading information in the interface may obscure bow 
the operator should act on the information presented and 
thus slow down the response of the operator. The 
objective of this paper is to give a formal development 
process for producing remote interfaces which provide the 
optimal amount of information. The general process is 
given in Section 2 and a case study, where remote 

interfaces for a real-life process plant are developed, is 
described in Section 3. The conclusions are in Section 4. 

2 General development process 
A three-stage development process is proposed for each 

interface: 
Give an initial formal specification of the interface 
comprising information on a set of components 
required by the remote operator in order to operate the 
particular part of the plant, the states that have to be 
attained by these components before the operator 
performs each action, and the changes each action 
makes to the state of components. At this stage it 
may not be clear where specified required information 
has actually been overloaded and can be reduced by 
taking into account relationships between different 
components in the plant. 
Generate by formal verification, alternative candidate 
sets of components, 60m which information on the 
enabling states of the components in stage 1 can be 
inferred which are optimal with respect to the least 
amount of information being presented at the 
interface. 
The final interface results from choosing a candidate 
set of components from stage 2, based on any criteria, 
additional to minimizing the amount of information 
presented, that are not within the scope of this paper. 

2.1 Initial interface specification 
In Internet-based monitoring and control systems a 

large-scale processing plant might be controlled remotely 
by a number of the operators located in different parts of 
the world. Each of them would be given responsibilities 
for the operation of different parts of the plant. The basic 
problem when designing the interface for the remote user 
is to decide what information to present to the operator. 
The initial specification addresses three aspects: 

(i) Components of the plant that an operator is empowered 
to control, i.e. change their state; 
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(ii) Components of the plant whose state influences the 
actions of the operator on the components in (i). 
(iii) The states of the components in (ii) that may cause the 
operator to act on components in (i). 
To specify these, notation fiom the theory of database 
transactions is adopted. The set of all the components in 
the plant will be denoted hy X. If the operator i has the 
power to change the state of components Zl, ..., Zq based 
on knowledge of the state of components Yl, ..., Yp, 
where Y1, ___, Yp, ZI ,___, Zq belong to X,  then the interface 
for the operator i, which corresponds to (i) and (ii) above, 
is specified as: 

Riml ,  ..., Yp], Wi[Zl, ..., Zq] 

This is analogous to two-step database transactions [ 5 ]  in 
that operator i updates or ‘writes’ to variables Zl, ..., Zq 
(denoted Wi[ZI, ..., Zgl) based on the values ohserved or 
’read’ for Y1, ___, Yp (denoted as Rip1 ,... Yp]). It is 
assumed that {ZI ,._., Zq) is a subset of {YI ,___, Up), i.e. 
an operator needs to know the state of components prior to 
any change. The set of subsets of {Yl, ..., Yp) containing 
{Zl, ... Zq) is denoted by Y. The states of the components 
Y 1 ,. . .,Yp that cause the operator to act, corresponding to 
stage (iii) above, are presented as a finite set of sets of 
propositions: 

U = ({Yl =U], ..., Yp=Up) : YI in state Ul,  ..., Yp in state 
Up causes the operator to act} 

There is an assumption here that there are finitely many 
distinct situations that cause the operator to act on Zl , . , . ,  
Zq. This may require negations of propositions such as 
!Yl=UI, in the sets in U, which we have not mentioned at 
this stage for simplicity of exposition. 

2.2 Generation of candidate interfaces 
As it is the ‘read set’ Yl, ..., Yp that gives the 

information presented at the interface, it is this set that is 
to be minimized. The general algorithm, below, for 
obtaining the list of minimal read sets rsets, loops 
through all possible subsets {XI ,..., Xs) of (Yl, ..., Yp) 
starting with s=l (first and second for loops) to see if 
every enabling condition {Yl=Ul, ..., Yp=Up) for an 
action can be inferred fiom its subset {Xl=Vl, ..., 
Xs=Vs) (third for loop). This involves executing the 
model checker NuSMV [l] to determine if the 
conjunction YI=Ul &...&Yp=Up is always (AG) 
equivalent to XI=VI &...&Xs=Vs in the operation of the 
plant. In the code NuSW-call is therefore defined to he: 

NuSMV (system, AG ( Y l = U l  &... &Yp=Up <-; 
Xl=Vl &...&Xs=Vs) ) 

Where system is the logical behaviour of the plant. At 
the end, r se t s  will contain subsets {Xl,..,, Xs) of 
candidate read sets for a particular minimum cardinality s. 

The full algorithm is as follows: 

procedure generate-read-sets 
rsets := 0; 
min intrfce-achieved := false; 
for-s=l to p do 
if min-intrfce-achieved=false then 
for { X l ,  ..., X s )  in Y do 

matched:=true; 
for { Y l = I J l ,  ..., Yp=IJp] in U do 

matched = NuSW-call 
if matched then 

end if 
end for; 
if matched then 
rsets=append({Xl, ..., Xs1,rsets) ; 
min-intrfce-achieved = true 
end if 

end for 
end if 

end procedure 
end for 

Although, the algorithm above does not introduce any 
new state explosion problem with the model checker 
NuSMV, optimiitions to the algorithm are suggested in 
the case study in the next section to prevent excessively 
many calls to NuSMV. 

3 Case study 
The case study is a scaled-up version of the transferring 

system for a penicillin process given in [6]. The system is 
made up of two dimethyl acetamide @MA) tanks, two 
reactors, two external pumps (mA, mB) for each tank, two 
Ellis locks (VA, VB) for each tank, and two control valves 
(vA, vB) for each reactor, as shown in Figure 1. 

Figure 1. A penicillin process 
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The DMA tank holds the DMA solvent until is ready to be 
transferred to the reactors at the start of a new batch 
process. For each DMA tank, we assume that if both the 
inlet flow F1 and outlet flow F2 are open the inlet flow 
rate is greater than the outlet flow rate. Discrete integer 
values (0 to 6) have been chosen for the liquid level Lev. 

3.1 Remote operator interface specification 
Operator a is responsible for the transfer lines 60m 

tankl to reactorl, and tank2 to reactor2, and operator b is 
responsible for the transfer lines from tankl to reactor2 
and tank2 to reactorl. Operator a can open tankl.VA, 
t ank1 .d  and tankl.vA if they are closed and tankl,VB, 
t a n k 1 . d  and tankl.vB are closed. Operator a can also 
open tank2.VA, t a n k 2 . d  and tank2.vA if they are closed 
and tank2.VJ3, tank2.d and tank2.vB are closed. 
Operator b is defined to control VB, d, and vB in a 
similar fashion. The initial specifications for operator a, 
for the aspects (i), (ii) and (iii) of 2.1, are: 

Ra[tankl.VA,tankl.mA,tankl.vA, 
tankl.VB,tankl.mB,tankl.vB, 
tankZ.VA,tankZ.mA,tankZ.vA, 
tankZ.VB,tankZ.mB,tankZ.vB] 

Wa[tankl.VA,tankl.mA,tankl.vA, 
tankZ.VA,tankZ.mA,tankZ.vAl 

Ua={{tankl.VA=Ul,tankl.mA=U2, 
tankl.vA=U3,tankl.VB=U4, 
tankl.mB=US,tankl.vB=U6, 
tankZ.VA=U7,tankZ.mA=UE, 
tankZ.vA=U9,tankZ.VB=UlO, 
tank2.mB=Ull,tankZ.vB=UlZ) : 
U1=off&UZ=off&U3=0ff& 
U4=off&US=off&U6=off I 
U7=off&U8=off&U9=off& 
U10=0ff&U11=0ff&U12=0ff) 

Here, Ua bas been defined by set comprehension, where 
‘:’ is read as ’such that’ and ‘I’ is read as ‘or’. 

3.2 System behavior specification 
The behavior of the overall plant is specified as a 

finite state machine in the input language of NuSMV 
shown as follows, in which the following keywords 
appear: 

next: define a relationship between values of variables 
in a particular state and its successor state. 

1 MODULE main 
2 
3 VAR 
4 oa: boolean: ob: boolean: 
5 tankl: tank-subsystem(oa,ob); 
6 tank2: tank-subsystem(oa,ob); 
7 
8 ASSIGN 
9 init loa) : = O ;  init (ob) : = O ;  
10 
11 SPEC 
1 2  AG(!tankl.VA & !tankl.mA & !tankl.vA 
13 & !tankl.VB & !tankl.mB & !tankl.vB 
14 <-> !tankl.VA &!tankl.mA &!tankl.vA 
15 & !tankl.VB & !tankl.vB) 
16 
17 MODULE tank-subsystem(oA,oB) 
1 8  
1 9  VAR 
20 Lev: {0,1,2,3,4,5,6); 
21 F1: boolean; F2: boolean; 
22 VA: boolean; VB: boolean; 
23 mA: boolean; mB: boolean; 
24 vA: boolean; vB: boolean; 
25 
26  DEFINE 
27 higher:=case Lev<G:Levtl; 
2 8  Lev=6:6 esac; 
29 lower:=case Lev>O:Lev-1;O:O;esac; 
30 LL:= Lev<3; 
31 LH:= Lev>4; 
32 
33 ASSIGN 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
4 6  
41 
4 8  

init (Lev) :=3; 
next(Lev):=case Fl&!FZ:higher; 
!Fl&F2:lower;Fl&F2:higher; 
Fl&FZ:higher;l:Lev; esac; 

init (F1) : = O ;  
next(Fl):=case LH:O;l:{O,l);esac; 
init(F2) : = O ;  
next(FZ):=case LL:O;l:{O,l);esac; 
init (VA) :=O; 
next(VA):=case LL:O;oa&!ob&!VA 

init (VB) : = O ;  
next(VB):=case LL:O;ob&!oa&!VB 

init ivA) : = O :  

&!mA&!vA&!VB&!mB&!vB:l;l:VA;esac; 

&!mB&!vB&!VA&!mA&!vA:l;l:VB;esac; 
~ ~~, ~. ~~ 

49 next(vA):=case vA&!mA:O;oa&!ob&!VA 
50 &!mA&!vA&!VB&!mB&!vB:l;l:vA;esac; MODULE: indicates the file as main or subroutine. 

VAR: define types of variables as boolean or sets of 51 init (vB) :=o; 
symbols. 52 next(vB):=case vB&!mB:O;ob&!oa&!VB 
DEFINE: inorderto make descriptions more concise, 53 &!mB&!vB&!VA&!mA&!vA:l;l:vB;esac; 
a symbol can be associated with a commonly used 
expression. 5 5  next(mA):=case mA&!VA:O;oa&!ob&!VA 
SPEC: write soecifications in CTL (comoutation tree 56 &!mA&!vA&!VB&!mB&!vB:l;l: i m A , O ) ;  

54 init (a) : = O ;  

J Y  nexr \ma) init: defme initial conditions of the variables. 
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60 &!mB&!vB&!VA&!mA&!vA:l;l:{mB,O]; 
61 esac: 

In the k i t e  state machine for the penicilli process given 
above Symbols ! , &, I and <-> represent logical not, and, 
or and equivalence respectively. The symbol AG, 
meaning ‘in all execution paths always’, belongs to CTL 
[2] which is the logic used to specify properties in the 
SPEC section of the ffi te state machine. The SPEC 
section (lines 11-15) describes that the situation, in which 
all the valves and the pumps for tankl are off, is 
equivalent to the situation, in wbicb the valves VA, vA, 
VB, VB and the pump mA are off. That implies that the 
state of the pump mB can be eliminated in the operating 
interface if all the valves and the pumps for tank1 are off. 
In a state of the finite state machine, every boolean 
expression has a value. Examples of boolean expressions 
in the state of the f inite state machine are: 

!VA - ‘VA is false’ or ’Ellis lock VA is turned off 

Lev>O - ‘the liquid level of the tank is greater than 0’ 

ob - ‘operator b is performing a remote action’ 

The transition relation of the f d t e  state machine is 
defined by a relationship between the values of boolean 
expressions in a state and their values in the next state. 
The lines 34 to 37 describes the behaviour of the liquid 
level of the tanks. The lines 38 and 39 describe the 
behaviour of the inlet flow F1 of the two tanks. The lines 
40 and 41 describe the behaviour of the outlet flow F2 of 
the two tanks. Consider the lines 43 and 44: 

43 next(VA):=case LL:O;oa&!ob&!VA& 
44 !mA&!vA&!VB&!mB&!vB:l;l:VA;esac; 

This states that, if the level of the liquid is low in a state 
(LL=true), VA is tumed off, i.e. next(VA)=O. This is an 

The original description of the system refers to 2 tanks 
and components relating to a particular tank, e.g. 
tankl.VA or tank2.d. In fact, the system subdivides 
naturally into two subsystems of components, those 
associated with tankl and the others associated with 
tank2. This is specified in a modular fasbion by defining a 
general tank-subsystem ( h e s  17-61) and then 
creating two instances tankl and tank2 ( l ies  5 and 6) as 
the system. The corresponding pair of fdte state 
machines executes syncbronously, but the subdivision 
gives a more structured specification and, more 
importantly, is used to optimize the algorithm for 
generating candidate interfaces. This is discussed in 3.3 
below. 

3.3 Interface generation 
To calculate the minimal interfaces for operator a, 

a brute force application of the algorithm in section 2.2 
could require a call of NuSMV for every subset of every 
set of states of components in Ua which contain the 
components in Wa. This amounts to about 350 calls of 
NuSMV, with up to 12 components appearing in formulae 
to be verified or refuted by each call. However, this 
problem of size, occurring with large-scale systems, can 
be mitigated as they usually admit a natural 
decomposition into subsystems. Modular decomposition 
of systems has been used to avoid the state explosion 
problem associated with model checking [3]. There are 
m e r  benefits when model checking is used for 
exhaustive generation of interfaces as proposed here, in 
that it reduces considerably the number of calls that are 
required of the model checker in the fust place. Consider 
the set Ra. Modular specification of the system behaviour 
partitions components into 2 sets: 

Ral = {tankl.VA,tankl.mA,tankl.vA, 
tankl.VB,tankl.mB,tankl.vB, 

Ra2 = {tank2.VA,tank2.mA,tankZ.vA, 
tankZ.VB,tankZ.mB,tankZ.vB) 

automatic safety interlock mechanism as in [6]). If 
operator a is performing a remote action (0a-e) whilst 

b is not (ob=false), and VA, d, v~ VB, m~ 
and v~ are turned off, then VA be turned on in the 
next state (next(VA)=l). This is described in the code by 

It is Only the operator actions oa and ob that affect 
components in both sets, but their actions on each do not 
influence their actions on the other. Thus, the components 
in Ral and Ra2 are independent. Therefore, the minimal 

(o~!ob&!vAsr!mA&ivAVB&!mB&!vB:l). othenuisd, 
the value of VA does not change (1:VA). Similarly, the 
lines 45 to 61 describe the behaviour of the valves m, 
vA, vB, and the pumps mA and mB. The specification 
assumes that when an operator performs an action, as 
many components as possible are affected (e.g. if the 
conditions are right to open VA, mA and VA 
corresponding to both tank1 and tank2, then operator a 
will open all components). Other operator behavior could 
be specified as well. 

interfaces for ~a are precisely unions of minimal 
interfaces for Ral and BY s m e w ,  we need only 
consider Ral. Now, minimal interfaces for Ral need to 
include the components to be changed, i.e. 

tankl*mAftankl.vA1 

and minimal sets Out 

i t a n k l . V B ) , { t a n k l . m B ) , l t a n k l . v B ) ,  
{tankl.VB,tankl.mB), 
{tankl.VB,tankl.vBl, 
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{tankl.mB,tankl.vB), 
(tankl.VB,tankl.mB,tankl.vB) 

Hence, at most 7 calls of NuSMV are required. I( fact, 
after executing NuSMV 6 times it is found that: 

{tankl.VB,tankl.vB) 

is, in this case, the unique minimal set of information in 
addition to (tankl.VA,tankl.mA,tankl.vA) required by 
operator a for the tank1 subsystem. It is illustrated in the 
SPEC section ( l ies  11 to 15). It is slightly surprising that 
information about the pump mB, which may suddenly 
stop irrespective of other components, is not required and 
can be inferred 60m the current state of other 
components. If a more straightforward safety interlock 
system as in [6] was adopted, we would find that any of 
the sets: 

{tankl.VB), {tankl.mB), {tankl.vB) 

would be minimal amounts of additional information. In 
this case, the list of minimal interfaces for operator a 
would be the list of sets which are the union of the set: 

{tankl.VA,tankl.mA,tankl.vA, 
tankl.VA,tankZ.mA,tankZ.vA) 

1 
and each of the sets. 

tankl.VB,tank2.VB) 
tankl.VB.tank2.mB) 
tankl.VB,tankZ.vB) 
tankl.mB, tank2.VB) 
tankl.mB,tankZ.mB} 
tankl.mB,tank2.vB} 
tankl.vB, tank2.VB) 
tankl.vB, tank2.mB) 
tankl.vB,tankZ.vB) 

reads and writes corresponding to the operator reading the 
state of components at the chosen minimal interface and 
changing the state of components respectively. The 
relevant consistency condition is that of serializability of 
uninterpreted transactions. The case of finitely many reads 
and writes is analyzed in [SI. A condition on an infmite 
continuous stream of reads and Writes to be serializable is 
given in a temporal context in [4]. 

4 Conclusions 
Formal methods have been used in several areas of 

human-computer interaction, including cognitive 
modelling and task analysis. The main goal of this work is 
to show that, for developing concurrent interfaces to large- 
scale systems, the problem of merely the amount of 
information to be presented at the interfaces is a major 
concern whose analysis presents a suitable role for formal 
methods. In this paper, it has been shown that the benefits 
of using a formal approach include clarification of the use 
of the interface, and analyses which suggest novel choices 
for interfaces that might not have been evident in an 
informal approach. The formal techniques for process 
plant control are based on the emerging use of temporal 
logic model checkers in such plants. The analogy with 
databases means that recent developments in database 
concurrency and model checking raise the possibility of an 
integrated formal development process, spanning the 
development of process plant control logic, concurrent 
operator interface design and scheduling. In general, 
remote operation over the Internet will be important in the 
future not only for process plant control, and the amount 
of information to be presented at interfaces will be a 
significant part of overall interface design. 
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It is clear that decomposing the specification of the system 
has yielded a collection of candidate miniial interface 
options as essentially a Cartesian product of sets of 
choices of components to be added at the interface. 

3.4 Concurrency 
If the pump mB breaks down, the initially specified 
interface requires operator a to be informed of this change 
in state of the offending pump. However, with the reduced 
interface, operator a does not need to be informed of the 
state of mB immediately, as information about VB and 
vB, arriving later, will suffice. This allows more scope for 
concurrency in the implementation of schedulers. A 
formal specification of such a scheduler can be produced 
by specifying a consistency condition on the c o n c F n t  
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