

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288385708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Evolving Perl

Mark S. Withall
Department of Computer Science

Loughborough University
Leics. LE11 3TU, UK

m.s.withall2@lboro.ac.uk

Chris J. Hinde
Department of Computer Science

Loughborough University
Leics. LE11 3TU, UK
c.j.hinde@lboro.ac.uk

Roger G. Stone
Department of Computer Science

Loughborough University
Leics. LE11 3TU, UK
r.g.stone@lboro.ac.uk

Abstract

A list of requirements for a genetic program-
ming representation is put forward and a rep-
resentation separating the genotype and phe-
notype with a linear genome is presented.
The target language for the genetic program
is Perl. The mapping process, between the
genotype and phenotype, converts blocks of
four genes into program statements. This
process is context-free and therefore provides
inheritable characteristics. The representa-
tion is tested by evolving a selection of list
evaluation and manipulation functions which
are all evolved from the same language sub-
set, with good results.

1 INTRODUCTION

Based on Holland’s Genetic Algorithms[3][4] (GA), the
idea of evolving programs was first put forward by
Cramer in 1985[2]. However, Genetic programming
(GP) didn’t really become widespread until the work
by Koza on the subject[5][6][7].

Most genetic programming representations can be
classified into one of three categories; tree, linear and
graph[1]. The representations can also be split into
those that separate the genotype and phenotype and
those that work directly with the actual program.

This paper presents a linear representation for genetic
programming, which separates the genotype and phe-
notype. This allows a simple string (or list) of inte-
gers to be used for the genetic manipulation needed
to create new generations of solutions. This string is
then mapped onto the programming language used (in
this case a subset of the Perl[8] language), for the pur-
pose of evaluating the fitness of the solution to the
given problem. The mapping process takes blocks of 4

genes from the genotype and converts them to program
statements in a context-free manner and, therefore,
these individual blocks are inheritable from parent to
child. The separation of the genotype and phenotype
leaves the system looking more like a traditional ge-
netic algorithm, with the interpretation of the solution
string contained within the fitness function.

The first section of this paper sets out a list of re-
quirements for a genetic programming representation.
This list of requirements is then used as the basis of
a representation which is presented with an example
in the following section. Finally, a set of list evalua-
tion and manipulation functions are evolved to test the
performance of the representation as part of a genetic
programming system.

2 REQUIREMENTS

The following is a list of requirements for a genetic
programming representation. It starts with some gen-
eral requirements for GA representations in general
and then moves on to some more specific GP require-
ments, including requirements of the mapping between
the genotype and phenotype in the case where they are
separate.

Quick Translation - For every newly created indi-
vidual in a population, that individual needs to
be translated into an executable form for fitness
evaluation, in the case where the genotype and
phenotype are separate. Therefore the mapping
of the genotype to the phenotype needs to be ef-
ficient. For example, if there were 500 individuals
in a generation and the genetic program was run
for 50 generations, the translation of genotype to
phenotype would occur 25,000 times. This is a
significant proportion of the running time of the
genetic program.

Simple Genetic Manipulation - To create a new
individual from one or more individuals from the
previous generation, it is necessary to use some
form of genetic manipulation. This usually takes
the form of crossing over the genes of two or more
parent individuals and/or performing some kind
of random mutation of the new individual. As
this process occurs for all or most newly created
individuals the representation needs to allow it to
be simple and efficient.

Inheritable Characteristics - The major reason
why genetic algorithms work is the principle of in-
heritance. This allows successful characteristics in
solutions to be propagated though multiple gen-
erations. Therefore it is important that the in-
dividuals being evolved are represented in such a
way that when a set of genes is passed on to the
offspring of the individual, characteristics of the
parents are preserved.

Minimal Solution Space - In general, the smaller
the solution space, the faster the genetic program
will be able to find a solution to the given problem.
Alternatively, the larger the percentage of all pos-
sible genomes that is made up by good solutions
the faster the genetic program will find one. How-
ever, the solution space should not preclude possi-
ble good solutions to the problem. The size of the
solution space, in genetic programming, may be
controlled by restricting the syntax and the ter-
minal set available to the genetic program, i.e. the
variables, operators and programming constructs
to be used.

Maintain Syntactic Correctness - The solution
space is restricted also by only allowing syntac-
tically correct programs (phenotypes) to be gen-
erated. This rules out a large number of programs
which are badly formed.

Limit Execution Errors - As well as errors in the
syntax of the programs, other errors such as type
mismatches and illegal array indexing can cause
problems during the fitness evaluation. These
problems need to be avoided where possible. In
addition, problems such as infinite loops can dis-
rupt the fitness evaluation process and is espe-
cially problematic when the programs are being
tested in their natural environment rather than
with limited runtime or through emulation.

Allow Scalability - A representation for genetic pro-
gramming should allow arbitrary length programs
to be represented.

Consistent Genotype to Phenotype Mapping
- In cases where the genotype and phenotype are
separate, it is essential that a given genotype
always maps to the same phenotype, in order
to result in a deterministic and robust fitness
evaluation.

3 REPRESENTATION

This section is divided into four subsections. The
first describes the representation for the genotype, the
second the corresponding phenotype. The third and
fourth subsections describe the mapping between the
genotype and phenotype using an example.

3.1 GENOTYPE

The genotype for the genetic program is stored as a
simple string (list or array) of integers. The integers
are 8 bits (ranging between 0 and 255). Representing
the individuals as a string of integers simplifies the pro-
cess of genetic manipulation, crossover and mutation.
The representation is easily scalable allowing arbitrary
length individuals.

The following is an example of the representation in
its genotype form.

132 24 97 2 . . . 214

3.2 PHENOTYPE

The phenotype, to which the genotype maps, is a pro-
gram written in a subset of the Perl programming lan-
guage. There are various reasons for using the Perl
language. Perl is an interpreted language, meaning
that it is not necessary to compile the programs that
are evolved, for testing purposes. Perl is also self-
evaluating, meaning it can create and execute code at
runtime. In addition, Perl is untyped (a scalar variable
in Perl can hold any scalar data type; string, integer,
float, etc.) and declaration of variables is optional.
One final feature of Perl which is an advantage in GP
is that it has very good error handling and can recover
from many error states without crashing.

The phenotype enforces syntactic correctness on the
programs. This means that any genotype corre-
sponds to a syntactically correct program. In addi-
tion, to minimise execution errors, certain semantic
constraints are imposed. For example, to prevent infi-
nite looping, a variable that is the target value of a for
loop can not have another value assigned to it within
the loop. Type mismatches are dealt with automati-
cally by the Perl interpreter.

Figure 1 shows the Backus Naur Form (BNF) represen-
tation of the language subset being used. The subset
of the language used is fairly small so as to reduce the
solution space. Reductions of solution space can also
be accomplished by limiting the size of the genome.
This BNF representation is easily changeable to sup-
port a different target language or to extend the use
of the language.

(0) <s_list> ::= /* empty */
| <s> <s_list>

(1) <s> ::= <v> = <v> ;
| <v> = <v> + <v> ;
| <v> = <v> - <v> ;
| <v> = <v> * <v> ;
| <v> = <v> / <v> if (<v> != 0) ;
| if (<v> <cmp> <v>) { <s_list> }
| if (<v> <cmp> <v>) { <s_list> }
else { <s_list> }

| for <c> (0 .. <val>) { <s_list> }
| for <c> (0 .. <v>) { <s_list> }

(2) <cmp> ::= ==
| !=
| <
| >
| <=
| >=

(3) <v> ::= /* variable */

(4) <val> ::= /* value */

(5) <c> ::= /* counter variable */

Figure 1: Subset of Perl language being used

3.3 MAPPING THE GENOTYPE TO THE
PHENOTYPE

The method of converting the genotype into the phe-
notype is fairly simple, allowing for quick translation.

As can be seen from the BNF (Figure 1) description
of the language, each statement can be defined by at
most four genes (the sublists of statements are coded
as separate blocks), one to define the statement type
and at most three for variables and operators. The
genome is therefore split into groups (or blocks) of four
genes where each group of four represents a statement.
This method allows some redundancy in the represen-
tation and also means that mutations will only affect
the statement that the mutated gene is in. Most im-

portantly, this means that each block of four genes
is context-free and will always evaluate to the same
statement, so if it is inherited by an individual from
a parent, the same statement will appear in both the
parent and child.

The first gene in the block determines the type of state-
ment, ten in this case. The subsequent three genes de-
fine the variables, values or comparison operators that
make up the statement. Table 1 shows the available
statements and their corresponding gene value. The
last statement is really just a marker for the end of
a statement list. If it appears at the top-level of the
program it is ignored, however, within an if or a for
statement, it defines the end of the sublist of state-
ments. As the gene values can range from 0 to 255,
it is necessary to take modulo 10 of the gene value to
determine the corresponding statement.

Table 1: List of available statements

VALUE STATEMENT

0 Assign
1 Add
2 Sub
3 Mul
4 Div
5 If
6 IfElse
7 ForVal
8 ForVar
9 End

Most of the statements require one or more variables.
The variables are usually predefined in the wrapper
code (see the example individual, section 3.4) and
added to a list of variables. This means that the num-
ber of variables is variable. When a gene represents
a variable, the modulo number of variables is used on
the gene value to determine the corresponding vari-
able. Table 2 shows an example list of variables which
may be in use for an individual, this basic list is prob-
lem specific and is defined in the wrapper for the prob-
lem (see 3.4). Additional variables can also be added
during the mapping, for objects such as loop counters.

In the if statement a comparison operator is required.
There are six different comparison operators used,
which are shown in Table 3. The gene representing
the comparison operator is converted using the same
modulo method as above.

In the for statement an integer value or variable is re-
quired as the upper bound for the loop. This value is

Table 2: Example list of variables

VALUE VARIABLE

0 $n
1 $zero
2 $res
3 $c0

Table 3: List of comparisons

VALUE COMPARISON

0 ==
1 !=
2 <
3 >
4 <=
5 >=

arbitrarily constrained to be an integer between 0 and
19 in the later example (3.4) and therefore the modulo
20 of the gene value is written into the for statement
(see Table 5), this is just to stop programs with ex-
cessive run-times being generated. In practice, this
modulo value can be based on the input data for the
fitness testing. In addition, the loop counter variable is
added to the list of variables available and an indexed
list element (such as $list[$c]) if appropriate.

This process of conversion means that a genotype will
always be mapped to the same phenotype and the gen-
erated program will always be syntactically correct.

3.4 EXAMPLE INDIVIDUAL

As an example of the conversion from the genotype
to the phenotype using the above representation, a
possible solution to the problem of factorial is given.

Table 4 shows the genome as a list of integers. The
values that are not used for the conversion have been
replaced with an X.

Table 4: Example genome

38 21 X X 25 55 25 73
13 38 66 87 49 X X X

Each program statement is generated from four genes.
Table 5 show the four groups of four genes that make
up the program. The first gene from each group repre-
sents the statement type. The modulo 10 of this value

gives a number between 0 and 9 and this corresponds
to a statement type from table 1.

In the case of the first group, the first gene value is 38,
38 modulo 10 gives the value 8 which corresponds to a
ForVar statement. The second value, 21, corresponds
to the target variable in the for loop. The last two
genes are redundant for this statement, therefore the
statement looks like for $c0 (0..($n%20)){. The
variable $c0 is then added to the list of variables, that
is an arbitrary choice and subsequent loop variables
will be named with increasing numerical suffixes. The
remaining three groups of genes are handled in the
same way as above. Table 5 shows all of the statement
conversions for the genome.

Finally the wrapper code, shown in Figure 2, is added
to provide the variables for the problem and the out-
put of the solution. Constant values are handled as
variables so that it is not necessary to choose either
a variable or a value. The final program, after the
completed conversion, is shown in Figure 3. Note, the
program will only work correctly for input values up
to 19.

Header
$n = ARGV[0];
$zero = 0;
$res = 1;

Main Code

Footer
print "$res";

Figure 2: Wrapper for example

Header
$n = ARGV[0];
$zero = 0;
$res = 1;

Main Code
for $c0 (0..($n%20)) {
if($c0 != $zero) {
$res = $res * $c0;

}
}

Footer
print "$res";

Figure 3: Example program to perform 5 factorial

Table 5: Conversion of genotype to phenotype

GENES MOD STMT CODE

38,21,X,X 8,0,X,X For for $c0 (0..($n%20)){
25,55,25,73 5,3,1,1 If if($c0 != $zero){
13,38,66,87 3,2,2,3 Mul $res = $res * $c0;
49,X,X,X 9,X,X,X End } }

4 EXPERIMENT

The following experiment tests the above representa-
tion with the target of evolving a selection of list eval-
uation and manipulation functions. This section first
describes the functions being evolved, the fitness func-
tions used to test individuals during evolution and the
experimental procedure used for testing. Finally the
results of the experiment are given and a selection of
evolved programs are shown.

4.1 FUNCTIONS BEING EVOLVED

The following list evaluation functions are evolved:

Max List - Find the largest element from a given list
of integers.

Min List - Find the smallest element from a given
list of integers.

Sum List - Find the sum of all elements from a given
list of integers.

Average List - Find the average value of all elements
from a given list of integers.

In addition, the following list manipulation functions
are evolved:

Reverse List - Reverse the order of the elements
from a given list of integers.

Sort List - Sort a given list of integers into numerical
order from smallest to largest.

4.2 FITNESS FUNCTIONS

The following sections describe the fitness functions
used to evolve the above set of functions. Arbitrarily,
seven arbitrary lists of varying sizes were used as test
inputs, except for the sort function where sixteen were
used.

4.2.1 Max List

Each individual is given each of the test lists as an in-
put and the output value returned by the individual
is compared to the expected output. If the output is
correct the individual receives 10 points of fitness, oth-
erwise no points are given. An individual can therefore
have a maximum fitness of 70. The actual maximum
fitness for an individual is 71 as a starting fitness of
1 is given to each individual so that even the worst
individuals have a possibility of reproducing.

4.2.2 Min List

As with max list, for each correctly evaluated list the
individual receives 10 fitness points. Again, each indi-
vidual can have a maximum fitness of 71.

4.2.3 Sum List

For sum list, the absolute difference between the ex-
pected result and the result returned by the individual
was taken as the fitness value. The sum of these dif-
ferences, for all seven tests, was taken as the overall
fitness. This value was then normalised by subtract-
ing it from 5000 (this value is based on the values in
the test lists), making higher fitness better (and 5000
optimal). Any value greater than 5000 was normalised
to 1.

4.2.4 Average List

The fitness test for average list was carried out in the
same way as that of sum list, with the normalised fit-
ness value being between 1 and 5000.

4.2.5 Reverse List

For reverse list, each of the individuals was given 100
fitness points for each of the returned lists which were
of the correct length and a further 10 points for each
of the list elements which were in the correct position.
For the chosen lists a total fitness of 961 points were
available, with a minimum score of 1.

4.2.6 Sort List

As with the reverse list fitness, 100 points were given
for each returned list of the correct length and a further
10 points for each element which was in the correct
position. In addition, 10 points were given for each
pair of elements in the list which were in the correct
order. This gave a maximum possible fitness of 1691
and, again, a minimum fitness of 1.

4.3 EXPERIMENTAL PROCEDURE

The following sections describe the hardware and soft-
ware used for the experiments, the parameters used
for the genetic programs and the wrapper code used
for the individuals being evolved.

4.3.1 Hardware And Software

The genetic program was written using Perl v5.6.1 and
run on a PIII 866 PC with 128MB of memory, running
Windows 2000.

4.3.2 GP Parameters

All of the above functions were evolved with popula-
tion sizes of 7 and mutation rates of 1 gene in 20. All of
the functions were evolved with a fixed-length genome
size of 40 genes apart from the sort function which had
a genome size of 60 genes as preliminary tests sug-
gested 40 was too restrictive. The genetic operators
used for the experiments were a uniform (every-point)
crossover and single-gene random mutation and all ex-
periments were initialised with a seeded randomly gen-
erated population.

All of the tests were run ten times with a fixed set of
random number generator seeds (1, 2, 3, 5, 7, 11, 13,
17, 19, 23), this was so the experiments were repeat-
able. As the language subset was the same for all of
the functions, the only variable in the experiment was
the fitness test.

4.3.3 Wrapper Code

Figure 4 shows the general structure for the wrappers
for the list evaluation functions. The additional ‘temp’
variable is only used for the average list function. The
+1 to get the size of the list is beacuse $#list returns
the index of the last element in the array and not the
array size. In addition to the variables in the wrapper,
the indexed variable $list[0] is also added to the list
of variables.

Figure 5 shows the general structure for the wrappers
for the list manipulation functions. Both reverse list

and sort list have been given three ‘temp’ variables to
work with. All the list manipulation has to be done in-
place as there is only one list variable available during
the evolution.

Header
my @list = @_;
my $size = $#list+1;
my $res = 0;
my $tmp = 0; #optional

Evolved Code

Footer
return $res;

Figure 4: General structure of the wrapper for list
evaluation

Header
my @list = @_;
my $size = $#list;
my $tmp1 = 0;
my $tmp2 = 0;
my $tmp3 = 0;

Evolved Code

Footer
return @list;

Figure 5: General structure of the wrapper for list
manipulation

4.4 RESULTS

Table 6 gives the complete set of test results. The
time and generation given are to reach the optimal so-
lution. In all cases the optimal solution was reached
as defined by the fitness function. Figures 6 to 8 show
example solutions to some of the function evolutions.
Redundant code has been removed from the solution
programs, for added clarity, in cases where it was ob-
vious that the code had no effect, e.g. statements such
as $x = $x; or if($x != $x){...}. No code was
removed that couldn’t be removed easily in an auto-
mated way. The exception is Figure 7, the sum list
solution, which has been left in its original state as an
example.

5 SUMMARY AND CONCLUSIONS

The following list describes how the representation
presented fits in with the requirements set out.

Table 6: Results for list function evolution, S=seed, T=time and G=generations

MAX MIN SUM AVERAGE REVERSE SORT
S T G T G T G T G T G T G

1 1m48s 3427 33s 1090 10s 275 38s 408 1h17m41s 128090 8h09m11s 30779
2 2m12s 2777 2m24s 2368 14s 239 4s 68 35m36s 36054 56m43s 5467
3 6m41s 15454 24s 497 7s 202 4m20s 2500 1h12m27s 72721 44m04s 5760
5 25s 756 5m18s 7987 3s 68 2m13s 2972 3h00m06s 260092 27m19s 6036
7 42s 917 1m08s 1431 5s 146 31s 604 19m15s 27845 58m19s 10997

11 18s 593 17s 480 3s 93 3m32s 4832 53m18s 92143 11m10s 5278
13 1m48s 3322 2m53s 5666 3s 143 45s 1057 2h56m34s 205277 1h47m47s 25860
17 14s 462 7s 202 10s 143 1m58s 1156 1h08m52s 88653 2h53m55s 12486
19 2m05s 4467 1m09s 1381 1s 28 16m46s 5205 2h46m31s 200843 5h13m09s 17320
23 40s 1292 2m43s 4657 3s 87 12s 196 2m03s 3776 2h07m14s 42804

Header
my @list = @_;
my $size = $#list+1;
my $max = 0;

Evolved Code
$max = $list[0];
for my $c0 (0..($size-1)%10) {
if($list[$c0%10] > $max) {
$list[0] = $list[$c0%10];
$max = $list[0];

}
}

Footer
return $max;

Figure 6: Max List, Seed 2

Quick Translation - The representation implements
a fairly direct mapping between the genotype and
phenotype, therefore the translation process can
be performed in linear time.

Simple Genetic Manipulation - As the genome is
linear and there are no special requirements for
crossover or mutation, the genetic manipulation
operations are simple.

Inheritable Characteristics - The representation
implements statements as blocks of 4 genes with
each block being context-free. Therefore, in the
mapping between the genotype and phenotype, a
block of 4 genes always maps to the same state-
ment in both parent and child.

Minimal Solution Space - As the BNF represents

Header
my @list = @_;
my $size = $#list+1;
my $sum = 0;

Evolved Code
for my $c0 (0..($size-1)%10) {

$sum = $list[$c0%10] + $sum;
if($list[$c0%10] != $sum) {
$c0 = $list[$c0%10] + $c0;
for my $c1 (0..5) {
if($list[$c0%10] >= $c1) {
for my $c2 (0..5) {
}

}
}

}
}

Footer
return $sum

Figure 7: Sum List, Seed 5

only a small subset of the Perl language and only a
small number of variables are used for each prob-
lem, the solution space is kept fairly small.

Maintain Syntactic Correctness - The mapping
from the genotype to the phenotype ensures that
all lists of integers map successfully to a Perl pro-
gram and all programs generated are syntactically
correct.

Limit Execution Errors - As Perl is fairly robust in
its error handling and all programs generated are
syntactically correct, there should be no execution

Header
my @list = @_;
my $size = $#list;
my $tmp1 = 0;
my $tmp2 = 0;
my $tmp3 = 0;

for my $c0 (0..$size%20) {
for my $c1 (0..$size%20) {

$tmp3 = $list[$c0%20];
for my $c2 (0..$c1%20) {
if($list[$c2%20] <= $list[$c0%20]) {
}
else {

$list[$c0%20] = $list[$c2%20];
$list[$c2%20] = $tmp3;

}
}

}
}

Footer
return @list;

Figure 8: Sort List, Seed 11

errors.

Allow Scalability - The genotype in the represen-
tation is a list of integers which is infinitely ex-
tensible and as each block of 4 genes maps to a
statement in a context-free manner, the programs
can be of an unlimited size.

Consistent Genotype To Phenotype Mapping
- The list of integers always maps to the same
program.

In general, the results of the list function evolution ex-
periments were good. Some of the sort list functions
took a long time compared to the number of genera-
tions, this is mainly due to a large number of nested
for statements causing long run times during the fit-
ness testing. This problem can be easily overcome in
future experiments by limiting the number of nested
for loops.

An additional cause of slow run times is the genetic
programming system being implemented in Perl. If
the system were implemented in C the run times would
also decrease.

Long run times for the reverse list functions could pos-
sibly be accounted for by poor design of the fitness test
set and scoring method.

In general, the solutions generated were similar to
those which might be generated by a human program-
mer confronted with the same syntax constraints.

In summary, a list of requirements for a genetic pro-
gramming representation was put forward and then
a representation which followed the requirements was
described. This representation was then tested on a
set of list evaluation and manipulation problems and
produced good results.

Acknowledgements

Thanks to everybody and all their friends. In addition,
thanks to Nortel for their support, both financial and
intellectual, during the project.

References

[1] Banzhaf W. Nordin P. Keller R.E. & Francone
F.D. (1998). Genetic Programming - An Introduc-
tion; On the Automatic Evolution of Computer
Programs and its Applications. Morgan Kauf-
mann.

[2] Cramer N.L. (1985). A Representation for the
Adaptive Generation of Simple Sequential Pro-
grams. In Grefenstette J.J., editor, Proceedings of
the First International Conference on Genetic Al-
gorithms, pages 183–187.

[3] Holland J.H. (1973). Genetic Algorithms and the
optimal allocation of trials. In SIAM Journal on
Computing, 2(2):88–105, June.

[4] Holland J.H. (1992). Adaption in Natural and Ar-
tificial Systems. MIT Press, second edition.

[5] Koza J.R. (1992). Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press.

[6] Koza J.R. (1994). Genetic Programming II: Au-
tomatic Discovery of Reusable Programs. MIT
Press.

[7] Koza J.R. Andre D. Bennett F.H. & Keane M.
(1999). Genetic Programming 3: Darwinian In-
vention and Problem Solving. Morgan Kaufmann.

[8] Wall L. Christiansen & Schwartz R.L. (1996).
Programming Perl. O’Reilly & Associates, Inc.,
Second Edition.

