

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Evolving the User Interface

Mark Withall

Dept. of Computer Science
Loughborough University

Loughborough
Leics. LE11 3TU

m.s.withall@lboro.ac.uk

Chris Hinde

Dept. of Computer Science
Loughborough University

Loughborough
Leics. LE11 3TU

c.j.hinde@lboro.ac.uk

Roger Stone

Dept. of Computer Science
Loughborough University

Loughborough
Leics. LE11 3TU

r.g.stone@lboro.ac.uk

Abstract

A method is presented for evolving
Graphical User Interfaces using Genetic
Algorithms. The fitness evaluation is
based on a series of constraints, which
must be met by the user interface. Ex-
amples are used to demonstrate the use
of positional, style and functionality con-
straints and the final example shows the
evolution of a complete (although simple)
software application.

1 Introduction

In this paper a method for evolving Graphical
User Interfaces (gui) is presented. The method
is loosely based on that used for evolving func-
tions given in [13]. The method is applied to
both desktop and web-based user interfaces.

Why evolve guis? Any interactive program
requires some form of user interface. For a small
program a simple text-based interface may be
sufficient, but for larger systems (such as a word
processor) a more complex user interface may be
required. The evolution process allows some el-
ement of variety in the design of the interface as
it is not a deterministic process. Furthermore,
it is claimed that 50% of a project’s implemen-
tation time is spent on the user interface[7]. In
addition, if Genetic Programming is to be used
for the creation of software, the user interface
needs to be part of that evolution.

A number of systems have demonstrated the
automatic generation of user interfaces from
high-level specifications[3, 5, 9, 12]. Most of
these systems are based on a data model spec-
ification. Lauridsen extends the approach to
work with more abstract specification[6]. Other
approaches include using declarative models[10]
and conceptual graphs[4]. No work appears to
have been done on using Genetic Algorithms
(ga) or Genetic Programming (gp) to generate
user interfaces.

The structure of this paper is as follows. Sec-
tion 2 covers the required predefined aspects of
the problem. Sections 3 and 4 describe how
these are used to construct the representation
for the user interface and the fitness function,
used by the ga. Section 5 presents some exam-
ple problems to show how the approach works
in practice. Finally, a discussion on possible ex-
tensions to the method is given along with con-
clusions drawn from the work.

2 Requirements

What information is needed to be able to evolve
a graphical user interface?

Firstly, some content to be manipulated is re-
quired. There are two types of content required:
that associated directly with the interface, such
as input widgets (buttons, text boxes, etc) and
text, and that which provides the underlying
functionality.

Secondly, some constraints on the use and
implementation of this content are required.
There are three main areas that can be con-
strained: the layout (the position of the wid-
gets in relation to each other), the style (the
fonts, colours, etc), and the functionality (what
does each button do when pressed, where do the
underlying functions get their input from and
where do they put their output).

This information is needed to construct the
representation and fitness function of the ga.
The content is used to create the structure of
the genome and the constraints are used as the
basis of the fitness function.

3 Representation

The representation is based on the method for
representing programs described in [13]. Each
widget is represented by a fixed-length block of
genes in the genome. Each of the genes repre-
sents one parameter of the widget (eg the font

| g1 | g2 | g3 | g4 |

^ ^ ^ ^

| | | |

position font size colour

e.g. 35,times,12pt,black

Figure 1: Example gene block

size). The whole genome is made up from all of
the blocks of the genes, one for each of the wid-
gets. Each widget always appears in the same
place in the genome for each individual in the
population.

For example, Figure 1 shows an example gene
block, which gives the position, font, size, and
colour of a widget. In a user interface language
where there is a one-dimensional ordering of the
widgets (eg html), a single position gene can
be used. All the widgets are then sorted on this
value to give their position within the interface.
In the case where two widgets have the same
positional value, the ordering is indeterminate.

Finally, a mapping from the genome to the
actual program code is required. The genome
can map to any language (or even multiple lan-
guages), such as html or Perl/Tk. From Fig-
ure 1, the gene block might map to (where its
position in the program is decided as defined
above):

.

.

<font face="times" size="12pt"

color="black">Hello World

.

.

In addition, there may be some functionality
associated with the widget. Additional genes
can be added to the gene blocks to represent
the choice of function, where to get the input
and where to put the output (see the example
in Section 5.3).

4 Fitness Testing

It would be quite difficult to evaluate the entire
user interface by executing the program and see-
ing how it looks and what it does. One possible
solution to this problem is to evaluate all of the
constraints individually by comparing the rele-
vant parameters in the genome. The constraint
scores are then combined to form the overall fit-
ness of the individual. The combination opera-

tor in the examples shown in this paper is sum-
mation. Each constraint can be weighted to give
greater importance to certain constraints if nec-
essary, and other combination functions used.

5 Example Problems

To show how guis can be evolved, three simple
examples are presented.

1. The evolution of a simple text editor in-
terface. This demonstrates the layout con-
straints.

2. The evolution of a simple personal details
web form. This adds style constraints.

3. A complete (but simple) application, which
is an interface to the set of list evalua-
tion and manipulation functions evolved in
[13]. This demonstrates the functionality
constraints in addition to layout and style.

5.1 A Text Editor

The first problem is a simple interface for a text
editor. This demonstrates the use of positional
constraints in the fitness function. The text ed-
itor interface is simply a text input area and a
menu to select options (such as load and save).
The constraints for this interface are mainly the
relative positions of the items in the menu.

The list of widgets needed for the interface
are (specified with a label, a type and an op-
tional value):

• Title: title “TextEdit”

• Menu: menubar

• MenuFile: menulevel1 “File”

• MenuEdit: menulevel1 “Edit”

• MenuHelp: menulevel1 “Help”

• MenuFileNew: menulevel2 “New”

• MenuFileOpen: menulevel2 “Open”

• MenuFileSave: menulevel2 “Save”

• MenuFileExit: menulevel2 “Exit”

• MenuEditCopy: menulevel2 “Copy”

• MenuEditCut: menulevel2 “Cut”

• MenuEditPaste: menulevel2 “Paste”

• MenuHelpAbout: menulevel2 “About”

• Textarea: textarea

This list of items is used to construct the genome
for the ga and is also used for the conversion
between the genotype (in this case a list of inte-
gers) and the phenotype (which is a program in
the Perl/Tk programming language).

Each gene-block in the genome, for this prob-
lem, is made up from only one gene. That gene
specifies the position of the widget in the inter-
face.

The constraints used by the fitness function
are as follows:

• ‘Title’ must be first

• ‘MenuFile’ must be before ‘MenuFileNew’

• ‘MenuFileNew’ must be before ‘Menu-
FileOpen’

• ‘MenuFileOpen’ must be before ‘MenuFile-
Save’

• ‘MenuFileSave’ must be before ‘MenuFile-
Exit’

• ‘MenuEdit’ must be before ‘MenuEditCut’

• ‘MenuEditCut’ must be before ‘MenuEdit-
Copy’

• ‘MenuEditCopy’ must be before ‘MenuEd-
itPaste’

• ‘MenuHelp’ must be before ‘MenuHelpA-
bout’

• ‘Textarea’ must be last

To achieve a maximum fitness value all of these
constraints must be met. Although this specifi-
cation of constraints is fairly loose, it would be
possible to specify them in a more formal man-
ner. For example, i must be before j might
look something like (only the post-condition is
given):

MustBeBefore(i : W, j : W) , posi < posj

where W is the set of all widgets and posi is the
position attribute of the widget i. A conjunction
of constraints forms the specification, which in
turn can be used to create the fitness function.

In the case of this example, all fully fit in-
dividuals evolved by the ga will look identical.
This is not, however, the case with all interfaces
that can be evolved and, therefore, the uncon-
strained parts will allow for novel designs to be
evolved.

Table 1: Results for the text editor example

Seed Generation Time

2 481 3s
3 60 1s
5 77 1s
7 118 1s
11 387 3s
13 227 2s
17 329 2s
19 189 1s
23 199 2s
29 87 1s

Figure 2: Text Editor GUI - Seed 2

Figure 3: Text Editor GUI (The Menus) - Seed 2

Table 1 show the results of ten example runs
and, as the problem is relatively simple, all runs
produce a solution that completely satisfies the
constraints within a very short time. The ‘seed’
column shows the seed used for the random num-
ber generator, to allow the experiments to be
repeated. Figure 2 shows a user interface gen-
erated, but all fully fit user interfaces are con-
strained to be identical for this problem. The
menus for the user interface are shown in Fig-
ure 3.

5.2 A Personal Details Web Form

The second problem is a “Personal Details” web
form. This introduces style constraints into the
fitness evaluation. The form contains a title and
instructions, and a series of input boxes of dif-
ferent types with labels. Again, there is a set
of positional constraints (such as labels must
be immediately before the corresponding input).
There are also style constraints that deal with
fonts, colours, etc. For example, the title must
be the largest font size and the labels must all
be the same style.

The list of widgets used is as follows (‘p’ rep-
resents a paragraph of text):

• Title: title “Personal Details”

• Instructions: p “Enter your personal details
in the form provided”

• NameLabel: p “Name”

• NameInput: text

• AddressLabel: p “Address”

• AddressInput: text

• TownLabel: p “Town”

• TownInput: text

• GenderLabel: p “Gender”

• GenderInput: select (“Male”/“Female”)

• SubmitInput: submit

• ResetInput: reset

The positional constraints are:

• ‘Title’ must be first

• ‘Title’ must be immediately before ‘Instruc-
tions’

• ‘NameLabel’ must be immediately before
‘NameInput’

• ‘AddressLabel’ must be immediately before
‘AddressInput’

• ‘TownLabel’ must be immediately before
‘TownInput’

• ‘GenderLabel’ must be immediately before
‘GenderInput’

• ‘SubmitInput’ must be immediately before
‘ResetInput’

• ‘NameInput’ must be immediately before
‘AddressLabel’

• ‘AddressInput’ must be immediately before
‘TownLabel’

• ‘TownInput’ must be immediately before
‘GenderLabel’

• ‘ResetInput’ must be last

Finally, the style constraints are:

• ‘Title’ must have the largest font size

• all labels must have the same style

• font colours must be much darker than the
background colour

The gene-blocks for each widget consisted
of five genes. The first gene represents the
position of the widget (with the widgets
being sorted on the gene value), and the
remaining four genes represent the style at-
tributes: size, colour, font, and alignment
respectively. The size is chosen from the
list (12pt, 14pt, 16pt, 18pt, 24pt, 32pt),
the colour is chosen from the list
(white, lightgray, gray, darkgray, black),
the font is chosen from the list
(serif, sans-serif, monospace) and
the alignment is chosen from the list
(left, right, center). To convert the gene
value into the attribute, the modulo of the
gene value and the number of elements in
the attribute list is taken. The position and
attributes are then mapped to an html script.

Table 2 shows the results of ten example
runs. It can be seen from the times that the
problem is much harder than the previous exam-
ple. The run that reached 50000 generations did
not achieve a maximum fitness value within the
allowed number of generations. However, the
other nine runs did achieve a maximum fitness
score. Figure 4 and Figure 5 show two user in-
terfaces generated from different runs. The text
boxes have a random alignment due to having

Table 2: Results for the personal details example

Seed Generations Time

2 45165 10m04s
3 7521 1m40s
5 8441 1m51s
7 50000 10m45s
11 12277 2m39s
13 5930 1m16s
17 2842 37s
19 2517 33s
23 6964 1m31s
29 7294 1m35s

Figure 4: Personal Details GUI - Seed 5

Figure 5: Personal Details GUI - Seed 29

no constraints. Additional constraints could be
added to solve any problems with the interfaces
evolved.

5.3 A Front-end for a set of List

Functions

Finally, the third problem is a complete (al-
though simple) application, which is an inter-
face to a series of list evaluation and manipula-
tion functions evolved in [13]. This introduces
functionality to the interface. In addition, this
example also demonstrates a possible approach
to the problem of scalability by evolving compo-
nent functions and then evolving an interface to
connect them. The interface contains an input
box, an output box, a list of functions, and a
button. The positional and style constraints are
similar to the previous problem, but now there
are constraints on the functionality, which deter-
mine where the function gets its input and puts
its output.

There are two choices when dealing with the
functionality, either it can be hard-coded into
the program or it can be evolved by the ga. The
example shows the use of both options:

• Hard-coded functionality is demonstrated
with the choice of function being chosen
from the listbox (which returns the function
name).

• Evolved functionality is demonstrated with
the choice of widget that the input list for
the function is taken from, and the choice of
widget that the output list for the function
is given to. Two extra genes are added to
the gene-block from the previous example
to allow this functionality to be evolved.

The list of widgets used is as follows:

• Title: title “sort”

• Instructions: p “Type in a list of integers,
separated by spaces, into the Input box, se-
lect a function from the listbox and press
the Run button.”

• List: listbox (“evolistmax”/ “evolistmin”/
“evosumlist”/ “evoavelist”/ “evoreverse”/
“evosort”)

• SourceLabel: p “Input”

• SourceInput: text

• TargetLabel: p “Output”

• TargetInput: text

Table 3: Results from the list front-end example

Seed Generations Time

2 1060 12s
3 310 4s
5 226 2s
7 337 4s
11 1419 16s
13 347 4s
17 1686 18s
19 2627 30s
23 424 5s
29 569 6s

• RunButton: button “Run!”

The positional constraints are:

• ‘Title’ must be first

• ‘Title’ must be immediately before ‘Instruc-
tions’

• ‘SourceLabel’ must be immediately before
‘SourceInput’

• ‘TargetLabel’ must be immediately before
‘TargetInput’

• ‘SourceLabel’ must be before ‘TargetLabel’

• ‘RunButton’ must be last

The style constraints are:

• ‘Title’ must have the largest font size

• all labels must have the same style

• font colours must be much darker than the
background colour

And finally, the functionality constraints:

• ‘SourceInput’ must be the input for ‘Run-
Button’

• ‘TargetInput’ must be the output for ‘Run-
Button’

Table 3 shows the results of the ten runs. The
results show that the problem was quite simple,
with all runs producing a result with maximum
fitness in a short time. This is due to the rel-
atively small number of constraints. Figures 6
and 7 show examples of the user interfaces gen-
erated.

Figure 6: Sort GUI - Seed 13

Figure 7: Sort GUI - Seed 23

6 Extensions

This method can easily be extended to cater for
different types of user interface by introducing
genes for the required attributes of the interface
using the relevant constraints.

In addition, the constraints can be layered,
so that there can be some global constraints
that all interfaces must follow (such as those
published by Apple[1] and Microsoft[8] or more
generally following Sneiderman’s ‘Eight golden
rules of dialog design’[11]). Then there can be
a layer of constraints for specific groups of peo-
ple. For example, dyslexic people prefer buttons
instead of menus, whereas non-dyslexic people
generally prefer the menu[2]. There can even be
constraints to the level of the specific user. Fi-
nally, there are the problem specific constraints.

The content can also be abstracted, so in-
stead of specifying a list box, a widget that
chooses one item from many could be specified
(which could be evolved to be a list box or a set
of radio buttons, etc). An intermediate level of
functionality can be evolved, which deals with
changes to the user interface (to produce dy-
namic interfaces). For example, certain menu
items might need to be disabled or enabled as a
function of the state of the program after a par-
ticular action by the user (eg disable some menu
items if there is no difference between saved and
current versions).

The problem of scalability can be addressed
by evolving the layout, style and functionality
separately for more complex interfaces. In ad-
dition, each screen or window can be evolved
separately when there are multiple screens in an
interface. All the above contribute to improved
performance of the evolution process on larger
problems.

7 Summary and Conclusions

To summarise, a method for evolving Graph-
ics User Interfaces has been presented. This
method is loosely based on a previous method
for evolving functions. This method can be ap-
plied to many different problems for many types
of interfaces, in any required target language. In
addition, the method can be used where there
are contradictor constraints. The front-end for
the list functions also addresses the problem of
scalability as the interface and each of the func-
tions are all evolved separately to create the
whole system. The examples presented are very
simple, and it is probably more difficult to spec-
ify the constraints for the ga fitness function

than it would be to write the user interface in
the first place. This may not be the case for
more complex user interfaces. The list function
front-end is probably the first complete software
application to be evolved by Genetic Algorithm.

References

[1] Apple Computer, Inc. Aqua User Interface

Guidelines, 2002.

[2] M. Carter. Computer based writing sup-

port for dyslexic adults using language con-

straints. PhD thesis, 2003.

[3] D. J. M. J. de Baar, J. D. Foley, and K. E.
Mullet. Coupling application design and
the user interface design. In CHI ’92 Con-

ference Proceedings, pages 259–266. ACM
Press, 1992.

[4] O. Gerbé and M. Perron. Presentation defi-
nition language using conceptual graphs. In
Proceedings of PEIRCE Workbench, pages
48–57, 1995.

[5] C. Janssen, A. Weisbecker, and J. Ziegler.
Generating user interfaces from data mod-
els and dialogue net specifications. In IN-

TERCHI ’93 Conference Proceedings, pages
418–423. ACM Press, 1993.

[6] O. Lauridsen. Abstract specification of user
interfaces. In CHI ’95 Conference Proceed-

ings. ACM Press, 1995.

[7] B. A. Meyers and M. B. Rossen. Survey
on user interface programming. In Proceed-

ings of the Conference on Human Factors

in Computing Systems, 1992.

[8] Microsoft Corporation. The Windows In-

terface Guidelines for Software Design: An

Application Design Guide. Microsoft Press,
1995.

[9] A. R. Puerta, H. Eriksson, J. H. Gennari,
and M. A. Musen. Beyond data models
for automated user interface generation. In
People and Computers IX, Proceedings of

HCI ’94, pages 352–366. Cambridge Uni-
versity Press, 1994.

[10] E. Schlungbaum and T. Elwert. Automatic
user interface generation from declarative
models. In CADUI ’96, 1996.

[11] B. Shneiderman. Designing the User In-

terface: Strategies for Effective Human-

Computer Interaction. Addison-Wesley
Publishing Company, 1987.

[12] J. Vanderdonckt and F. Bodart. Encapsu-
lating knowledge for intelligent automatic
induction object selection. In INTERCHI

’93 Conference Proceedings, pages 424–429.
ACM Press, 1993.

[13] M. S. Withall, C. J. Hinde, and R. G. Stone.
Evolving perl. In Late Breaking Papers,

GECCO 2002, 2002.

