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Abstract
A nonerasing morphism σ is said to be weakly unambiguous with respect to a word w if σ is
the only nonerasing morphism that can map w to σ(w), i. e., there does not exist any other
nonerasing morphism τ satisfying τ(w) = σ(w). In the present paper, we wish to characterise
those words with respect to which there exists such a morphism. This question is nontrivial if
we consider so-called length-increasing morphisms, which map a word to an image that is strictly
longer than the word. Our main result is a compact characterisation that holds for all morphisms
with ternary or larger target alphabets. We also comprehensively describe those words that have
a weakly unambiguous length-increasing morphism with a unary target alphabet, but we have to
leave the problem open for binary alphabets, where we can merely give some non-characteristic
conditions.
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1 Introduction

For any alphabets A and B, a morphism σ : A∗ → B∗ is said to be ambiguous with respect
to a word s if there exists a second morphism τ : A∗ → B∗ mapping s to the same image
as σ; if such a morphism τ does not exist, then σ is called unambiguous (with respect to
s). For example, if we consider A := {A,B,C}, B := {a, b} and s := ABBC AC, then
the morphism σ, defined by σ(A) := abb, σ(B) := abbb, σ(C) := abbbb, is ambiguous with
respect to s, since there exists a different morphism τ , given by τ(A) := abbab, τ(B) := bbab,
τ(C) := bbb, satisfying τ(s) = σ(s):

σ(A)︷ ︸︸ ︷
a b b

σ(B)︷ ︸︸ ︷
a b b b

σ(B)︷ ︸︸ ︷
a b b b

σ(C)︷ ︸︸ ︷
a b b b b

σ(A)︷ ︸︸ ︷
a b b

σ(C)︷ ︸︸ ︷
a b b b b .︸ ︷︷ ︸

τ(A)
︸ ︷︷ ︸
τ(B)

︸ ︷︷ ︸
τ(B)

︸ ︷︷ ︸
τ(C)

︸ ︷︷ ︸
τ(A)

︸ ︷︷ ︸
τ(C)

In contrast to this, as can be verified with little effort, the morphism σ′ : A∗ → B∗, defined
by σ′(A) := σ′(C) := a and σ′(B) := b, is unambiguous with respect to s.
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214 Weakly Unambiguous Morphisms

The potential ambiguity of morphisms is not only a fundamental phenomenon in combina-
torics on words, but it also shows connections to various concepts in computer science. This
particularly holds for equality sets (and, hence, the Post Correspondence Problem, see Harju
and Karhumäki [5]) and pattern languages (see Mateescu and Salomaa [7]). Regarding the
latter topic, insights into the ambiguity of morphisms have been used to solve a number of
prominent problems (see, e. g., Reidenbach [8, 9, 10]), revealing that unambiguous morphisms,
in a setting where various morphisms are applied to the same word, have the ability to
optimally encode information about the structure of the word. This shows an interesting
contrast to the foundations of coding theory (see Berstel and Perrin [1]), which is based on
injective morphisms.

Since unambiguity can, thus, be seen as a desirable property of morphisms, the initial work
on this topic by Freydenberger, Reidenbach and Schneider [3] and most of the subsequent
papers have focused on the following question:

I Problem 1. Let s be a word over an arbitrary alphabet. Does there exist a morphism
(preferably with a finite target alphabet comprising at least two letters) that is unambiguous
with respect to s?

In order to further qualify this problem, [3] introduces two types of unambiguity: The first
type follows our intuitive definition given above; more precisely, a morphism σ is called
strongly unambiguous with respect to a word s if it there exists no morphism τ satisfying
τ(s) = σ(s) and, for a symbol x occurring in s, τ(x) 6= σ(x). The second type slightly relaxes
this requirement by calling σ weakly unambiguous with respect to s if there is no nonerasing
morphism τ (which means that τ must not map any symbol to the empty word) showing the
above properties. Thus, e. g., our initial example morphism σ is weakly unambiguous with
respect to s′ := AAB, but it is not strongly unambiguous, since the morphism τ , given by
τ(A) := ε and τ(B) := σ(s′) (where ε stands for the empty word), satisfies τ(s′) = σ(s′). By
definition, every strongly unambiguous nonerasing morphism is also weakly unambiguous,
but – as shown by this example – the converse does not necessarily hold.

Apart from some very basic considerations, previous research has focussed on strongly
unambiguous morphisms, partly giving comprehensive results on their existence; positive
results along this line then automatically also hold for weak unambiguity. Freydenberger
et al. [3] characterise those words with respect to which there exist strongly unambiguous
nonerasing morphisms, and their characteristic criterion reveals that the existence of such
morphisms is equivalent to a number of other vital properties of words, such as being a
fixed point of a nontrivial morphism (see, e. g., Hamm and Shallit [4]) or being a shortest
generator of a terminal-free E-pattern language. Freydenberger and Reidenbach [2], among
other results, improve and deepen the techniques used in [3]. Schneider [12] studies the more
general problem of the existence of arbitrary (i. e., possibly erasing) strongly unambiguous
morphisms. While [12] provides a characterisation of those words that have a strongly
unambiguous erasing morphism with an infinite target alphabet, a comprehensive result
on finite target alphabets is still open. It is known, however, that a distinct characteristic
criterion is required for every alphabet size (unlike the restricted problem for strongly
unambiguous nonerasing morphisms, the existence of which can be characterised for all
non-unary alphabets identically), and that each of these criteria is NP-hard. Reidenbach and
Schneider [11] continue this strand of research, demonstrating that the existence of strongly
unambiguous erasing morphisms is closely related to decision problems for multi-pattern
languages, and they show that the same criterion that characterises the existence of such
morphisms for infinite target alphabets also, for all binary or larger alphabets, characterises
the existence of erasing morphisms with a strongly restricted ambiguity.
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In the present paper, we wish to investigate the existence of weakly unambiguous noneras-
ing morphisms; in other words, we initiate the research on the ambiguity of morphisms in free
semigroups without empty word. When considering this problem as indicated above, we can
already refer to a strong yet trivial insight mentioned by Freydenberger et al. [3], stating that
there indeed is a weakly unambiguous morphism with respect to every word. More precisely,
it directly follows from the definitions that every 1-uniform morphism (i. e., a morphism that
maps each variable in the pattern to a word of length 1) is weakly unambiguous with respect
to every word. Despite this immediate and unexciting observation, weak unambiguity deserves
further research, since there are major fields of study that are exclusively based on nonerasing
morphisms; this particularly holds for pattern languages, where so-called nonerasing (or
NE for short) pattern languages have been intensively investigated. We therefore exclude
the 1-uniform morphisms from our considerations and study length-increasing nonerasing
morphisms instead, i. e., we deal with morphisms σ that, for the word s they are applied to,
satisfy |σ(s)| > |s|. Hence, we wish to examine the following problem:

I Problem 2. Let s be a word over an arbitrary alphabet. Does there exist a length-increasing
nonerasing morphism that is weakly unambiguous with respect to s?

Our results in the present paper shall provide a nearly comprehensive answer to this
question, demonstrating that a combinatorially rich theory results from it. In particular, we
show that the existence of weakly unambiguous length-increasing morphisms depends on
the size of the target alphabet considered. However, unlike the above-mentioned result by
Schneider [12] on the existence of strongly unambiguous erasing morphisms, we can give a
compact and efficiently decidable characteristic condition on Problem 2, which holds for all
target alphabets that consist of at least three letters and which describes a type of words we
believe has not been discussed in the literature so far. Interestingly, this characterisation
does not hold for binary target alphabets. In this case, we can give a number of strong
conditions, but still do not even know whether Problem 2 is decidable. In contrast to this
phenomenon, it is of course not surprising that for unary target alphabets again a different
approach is required. Regarding this specification of Problem 2, we shall give a characteristic
condition.

Note that, due to space constraints, almost all proofs and some related definitions and
lemmas are omitted from this paper.

2 Definitions

Let N := {1, 2, 3, ...} and Σ be alphabets. We call any symbol in N a variable and any symbol
in Σ a letter. For the concatenation of two words w1, w2, we write w1 · w2 or simply w1w2.
The word that results from n−fold concatenation of a word w is denoted by wn. The notion
|x| stands for the size of a set x or the length of a word x. We denote the empty word by ε,
i. e., |ε| = 0. The symbol [...] is used to omit some canonically defined parts of a given word,
e. g., α = 1 · 2 · [...] · 5 stands for α = 1 · 2 · 3 · 4 · 5. In order to distinguish between a word
over N and a word over Σ, we call the former a pattern. We name patterns with lower case
letters from the beginning of the Greek alphabet such as α, β, γ. For every alphabet A, A∗
is the set of all (empty and non-empty) words over A, and A+ := A∗ \ {ε}. We call a word
v ∈ A∗ a factor of a word w ∈ A∗ if, for some u1, u2 ∈ A∗, w = u1vu2; moreover, if v is a
factor of w then we say that w contains v and denote this by v v w. If v 6= w, then we say
that v is a proper factor of w and denote this by v < w. If u1 = ε, then v is a prefix of w,
and if u2 = ε, then v is a suffix of w.

STACS’11



216 Weakly Unambiguous Morphisms

With regard to an arbitrary pattern α, var(α) denotes the set of all variables occurring
in α, and |α|β , β v α, shows the number of (possibly overlapping) occurrences of β in α.

A morphism is a mapping that is compatible with concatenation, i. e., for patterns α ∈ N+

and β ∈ N+, a morphism σ : N+ → Σ∗ satisfies σ(α ·β) = σ(α) ·σ(β). A morphism σ is called
nonerasing provided that, for every i ∈ N, σ(i) 6= ε. The morphism σ is length-increasing if
|σ(α)| > |α|, and it is called 1-uniform if, for every i ∈ N, |σ(i)| = 1.

For any alphabet Σ, for any morphism σ : N+ → Σ+ and for any pattern α ∈ N+,
we call σ weakly unambiguous with respect to α if there is no morphism τ : N+ → Σ+

with τ(α) = σ(α) and, for some q ∈ var(α), τ(q) 6= σ(q). Moreover, for any morphism
σ : N∗ → Σ∗, σ is said to be strongly unambiguous with respect to α, if there is no morphism
τ : N∗ → Σ∗ with τ(α) = σ(α) and, for some q ∈ var(α), τ(q) 6= σ(q). On the other hand, σ
is ambiguous with respect to α, if there is a morphism τ : N+ → Σ+ with τ(α) = σ(α) and,
for some q ∈ var(α), τ(q) 6= σ(q).

We call any pattern α ∈ N+ prolix if and only if, there exists a decomposition
α = β0γ1β1γ2β2[...]βn−1γnβn with n ≥ 1, βk ∈ N∗ and γk ∈ N∗, k ≤ n, such that
1. for every k, 1 ≤ k ≤ n, |γk| ≥ 2,
2. for every k, 1 ≤ k ≤ n and, for every k′, 0 ≤ k′ ≤ n, var(γk) ∩ var(βk′) = ∅,
3. for every k, 1 ≤ k ≤ n, there exists an ik ∈ var(γk) such that |γk|ik = 1 and, for every k′,

1 ≤ k′ ≤ n, if ik ∈ var(γk′) then γk = γk′ .
We call α ∈ N+ succinct if and only if it is not prolix. Thus, for example, the pattern
1 · 2 · 3 · 2 · 4 · 2 · 1 · 5 · 5 · 4 · 2 · 1 · 1 · 2 · 3 · 2 is prolix (with β0 := ε, γ1 := 1 · 2 · 3 · 2,
β1 := ε, γ2 := 4 · 2 · 1, β2 := 5 · 5, γ3 := 4 · 2 · 1, β3 := ε, γ4 := 1 · 2 · 3 · 2, β4 := ε), whereas
1 · 2 · 3 · 3 · 4 · 2 · 4 · 2 · 1 is succinct.

3 Loyal neighbours

Before we begin our examination of Problem 2, we introduce some notions on structural
properties of variables in patterns that shall be used in the subsequent sections.

In our first definition, we introduce a concept that collects the neighbours of a variable in
a pattern.

I Definition 3. Let α ∈ N+. For every j ∈ var(α), we define the following sets:

Lj := {k ∈ var(α) | α = ... · k · j · ...},
Rj := {k ∈ var(α) | α = ... · j · k · ...}.

Also, if α = j... , then ε ∈ Lj , and if α = ...j , then ε ∈ Rj .

Thus, the notation Lj refers to all left neighbours of variable j and Rj to all right neighbours
of j. To illustrate these notions, we give an example.

I Example 4. We consider α := 1 · 2 · 3 · 1 · 4 · 5 · 6 · 1 · 4 · 7 · 8. For the variable 1, we have
L1 = {ε, 3, 6} and R1 = {2, 4}.

We now introduce the concept of loyalty of neighbouring variables, which is vital for the
examination of weakly unambiguous morphisms.

I Definition 5. Let α ∈ N+. A variable i ∈ var(α) has loyal neighbours (in α) if and only if
at least one of the following cases is satisfied:
1. ε /∈ Li and, for every j ∈ Li, Rj = {i}, or
2. ε /∈ Ri and, for every j ∈ Ri, Lj = {i}.
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Using the above definition, we can divide the variables of any pattern into two sets.

I Definition 6. For any pattern α ∈ N+, |α| > 1, let Sα be the set of variables that have
loyal neighbours and Eα be the set of variables that do not have loyal neighbours in α.

The following example clarifies the mentioned definitions.

I Example 7. Let α := 1 · 2 · 3 · 4 · 5 · 6 · 4 · 3 · 7 · 8. Definition 3 implies that

L1 = {ε}, L2 = {1}, L3 = {2, 4}, L4 = {3, 6},
L5 = {4}, L6 = {5}, L7 = {3}, L8 = {7},
R1 = {2}, R2 = {3}, R3 = {4, 7}, R4 = {5, 3},
R5 = {6}, R6 = {7}, R7 = {8}, R8 = {ε}.

According to Definition 5, the variables 3 and 4 do not have loyal neighbours. Thus, due to
Definition 6, Sα = {1, 2, 5, 6, 7, 8} and Eα = {3, 4}.

Freydenberger et al. [3] demonstrate that the partition of the set of all patterns into
succinct and prolix ones is characteristic for the existence of strongly unambiguous nonerasing
morphisms:

I Theorem 8 (Freydenberger et al. [3]). Let α ∈ N∗, let Σ be an alphabet, |Σ| ≥ 2. There
exists a strongly unambiguous nonerasing morphism σ : N∗ → Σ∗ with respect to α if and
only if α is succinct.

Our subsequent remark shows that having a variable with loyal neighbours is a sufficient,
but not a necessary condition for a pattern being prolix.

I Proposition 9. Let α ∈ N+. If Sα 6= ∅, then α is prolix. In general, the converse of this
statement does not hold true.

4 Weakly unambiguous morphisms with |Σ| ≥ 3

We now make use of the concepts introduced in the previous section to comprehensively
solve Problem 2 for all but unary and binary target alphabets of the morphisms.

We start this section by giving some lemmas that are required when proving the main
results of this paper. The first lemma is a general combinatorial insight that can be used in
the proof of Lemma 11 – which, in turn, is a fundamental lemma in this paper.

I Lemma 10. Let v be a word and n a natural number. If, for a word w, wn is a proper
factor of vn, then w is a proper factor of v.

We continue our studies with the following lemma, which is a vital tool for the proof of many
statements of this paper. It features an important property of two different morphisms that
map a pattern to the same image.

I Lemma 11. Let α ∈ N+, |α| > 1. Assume that σ : N+ → Σ+ is a morphism such that,
for an i ∈ var(α), |σ(i)| > 1 and, for every x ∈ var(α) \ {i}, |σ(x)| = 1. Moreover, assume
that τ is a nonerasing morphism satisfying τ(α) = σ(α). If there exists a j ∈ var(α) with
τ(j) 6= σ(j), then τ(i) < σ(i).

The next lemma, which directly results from Definition 5, discusses those patterns having at
least one square; more precisely, there exists an i ∈ N with i2 < α.

STACS’11



218 Weakly Unambiguous Morphisms

I Lemma 12. Let α ∈ N+. If, for an i ∈ N, i2 v α, then i ∈ Eα.

The subsequent characterisation of those patterns that have a weakly unambiguous length-
increasing morphism with ternary or larger target alphabets is the main result of this paper.
It yields a novel partition of the set of all patterns over any sub-alphabet of N. This partition
is different from the partition into prolix and succinct patterns, which characterises the
existence of strongly unambiguous nonerasing morphisms (see Theorem 8).

I Theorem 13. Let α ∈ N+ with |α| > 1 and let |Σ| ≥ 3. There is a weakly unambiguous
length-increasing morphism σ : N+ → Σ+ with respect to α if and only if Eα is not empty.

Proof. Let {a, b, c} ⊆ Σ.
We begin with the if direction. Assume that Eα is not empty. This means that there is
at least one variable i ∈ var(α) that does not have loyal neighbours, i. e., i ∈ Eα. Due to
Definition 5 and Lemma 12, one of the following cases is satisfied:

Case 1: i2 v α.
We define a morphism σ by σ(x) := bc if x = i and σ(x) := a if x 6= i. So, σ(i2) = bcbc.
According to Lemma 11, any nonerasing morphism τ : N+ → Σ+ with τ(α) = σ(α) and, for
some k ∈ var(α), τ(k) 6= σ(k), must satisfy τ(i) 6= σ(i), and this means that τ(i) should be
a proper factor of σ(i). This implies that τ(i) = b or τ(i) = c and as a result, τ(i2) = bb

or τ(i2) = cc. Since σ(α) does not contain the factors bb and cc, we can conclude that
τ(α) 6= σ(α) and consequently, σ is weakly unambiguous with respect to α.

Case 2: i2 6v α, and one of the following cases is satisfied:
Case 2.1: If ε /∈ Li, then there exists a j ∈ Li such that Rj 6= {i}, and if ε /∈ Ri, then there
exits a j′ ∈ Ri such that Lj′ 6= {i}.
Case 2.2: ε ∈ Li and ε ∈ Ri.
Let σ : N+ → {a, b, c}+ be the morphism defined in Case 1. Due to Lemma 11, any
morphism τ : N+ → Σ+ with τ(α) = σ(α) and, for some k ∈ var(α), τ(k) 6= σ(k), must
satisfy τ(i) 6= σ(i), and this means that τ(i) should be a proper factor of σ(i). Thus, τ(i) = b

or τ(i) = c.
With regard to Case 2.1, consider τ(i) = c, and ε /∈ Li. Due to the number of c in σ(α),
which equals the number of occurrences of i in α, and also due to σ(i) = bc, the positions of
c of τ(i) should be at the same positions as c of σ(i) in σ(α). So, to have τ(α) = σ(α), for
every l ∈ Li, b is a suffix of τ(l), and as a result b is suffix of τ(j). However, since Rj 6= {i},
the number of occurrences of b in τ(α) is greater than the number of occurrences of b in
σ(α). Hence, τ(α) 6= σ(α). Consider τ(i) = b, and ε /∈ Ri. Due to the number of b in σ(α),
which equals the number of occurrences of i in α, and also due to σ(i) = bc, the positions of
b of τ(i) should be at the same positions as b of σ(i) in σ(α). Hence, to have τ(α) = σ(α),
for every r ∈ Ri, c is a prefix of τ(r), and consequently, c is prefix of τ(j′). However, since
Lj′ 6= {i}, the number of occurrences of c in τ(α) is greater than the number of occurrences
of c in σ(α). This again implies τ(α) 6= σ(α).
Case 2.2 means that α = iα′i, α′ ∈ N∗. So, σ(α) = bcσ(α′)bc. As mentioned above, due to
Lemma 11, τ(i) = b or τ(i) = c. This implies that τ(α) starts with b and finishes with b,
or it starts with c and finishes with c. Thus, τ(α) 6= σ(α). Hence, we can conclude that if
Eα 6= ∅, then there is a weakly unambiguous length-increasing morphism with respect to α.

We now prove the only if direction. In fact, we want to show that if there is a weakly
unambiguous length-increasing morphism σ : N+ → Σ+ with respect to α, then Eα is not
empty. Assume that σ maps one of the variables of α to a word of length more than 1, and let
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this variable be i. Also, let σ(i) := a1a2[...]an with n ≥ 2 and, for every q, 1 ≤ q ≤ n, aq ∈ Σ.
Assume to the contrary that Eα is empty. Thus, due to Lemma 12, i2 6v α. According to
Definition 5, one of the following cases is satisfied:

Case 1: ε /∈ Li and, for every j ∈ Li, Rj = {i}.
From this condition, we can directly conclude that

α := α1 · l1 · i · α2 · l2 · i · [...] · αm · lm · i · αm+1,

with |α|i = m and, for every k, 1 ≤ k ≤ m and, for every k′, 1 ≤ k′ ≤ m + 1, lk ∈ Li,
αk′ ∈ N∗, i 6= lk and, i, lk /∈ var(αk′). Thus,

σ(α) = σ(α1)σ(l1) a1a2[...]an · σ(α2)σ(l2)a1a2[...]an
·[...] · σ(αm)σ(lm) a1a2[...]an · σ(αm+1)

We now define the nonerasing morphism τ such that, for every k, 1 ≤ k ≤ m, τ(lk) := σ(lk)a1,
τ(i) := a2a3[...]an and, for all other variables in α, τ is identical to σ. Due to the fact that,
for every k, 1 ≤ k ≤ m, Rlk = {i}, we can conclude that τ(α) = σ(α); since τ is nonerasing,
σ is not weakly unambiguous.

Case 2: ε /∈ Ri and, for every j ∈ Ri, Lj = {i}.
We can directly conclude that α := α1 · i · r1 ·α2 · i · r2 · [...] ·αm · i · rm ·αm+1, with |α|i = m

and, for every k, 1 ≤ k ≤ m and, for every k′, 1 ≤ k′ ≤ m + 1, rk ∈ Ri, αk′ ∈ N∗, i 6= rk,
and i, rk /∈ var(αk′). So,

σ(α) = σ(α1)a1a2[...]anσ(r1) · σ(α2)a1a2[...]anσ(r2)
·[...] · σ(αm)a1a2[...]anσ(rm·)σ(αm+1)

We now define the nonerasing morphism τ such that, for every k, 1 ≤ k ≤ m, τ(rk) := anσ(rk)
and τ(i) := a1a2[...]an−1 and, for all other variables in α, τ is identical to σ. As, for every
k, 1 ≤ k ≤ m, Lrk

= {i}, we can conclude that τ(α) = σ(α); since τ is nonerasing, σ is
not weakly unambiguous. Hence, Eα = ∅ implies that σ is not weakly unambiguous, which
contradicts the assumption. Consequently, Eα is not empty. J

In order to illustrate Theorem 13, we give two examples:

I Example 14. Let α := 1 · 2 · 3 · 4 · 1 · 2 · 3. According to Definition 6, Sα = {1, 2, 3}
and Eα = {4}. In other words, the variable 4 does not have loyal neighbours. We define
a morphism σ by σ(4) := bc and, for every other variable j ∈ var(α), σ(j) := a. Due to
Lemma 11, any morphism τ with τ(α) = σ(α) and, for a k ∈ var(α), τ(k) 6= σ(k) needs to
split the factor bc. Hence, τ(1) needs to contain c, or τ(3) needs to contain b. However, since
|α|1 = 2 and |α|3 = 2 , |τ(α)|c > |σ(α)|c, or |τ(α)|b > |σ(α)|b. Consequently, τ(α) 6= σ(α)
and as a result, σ is weakly unambiguous with respect to α.

I Example 15. Let α := 1 · 2 · 3 · 4 · 5 · 6 · 4 · 7 · 8 · 3. According to Definition 5, all variables
have loyal neighbours, or in other words, Eα = ∅. Hence, it follows from Theorem 13 that
there is no weakly unambiguous length-increasing morphism σ : N+ → Σ+, |Σ| ≥ 3, with
respect to α.

We now give an alternative version of Theorem 13 that is based on regular expressions.

I Corollary 16. Let α ∈ N+ and let Σ be an alphabet, |Σ| ≥ 3. There is no weakly
unambiguous length-increasing morphism σ : N+ → Σ+ with respect to α if and only if, for
every i ∈ var(α), at least one of the following statements is satisfied:

STACS’11



220 Weakly Unambiguous Morphisms

there exists a partition L,N, {i} of var(α) such that α ∈ (N∗Li)+N∗,
there exists a partition R,N, {i} of var(α) such that α ∈ (N∗iR)+N∗.

We conclude this section by determining the complexity of the decision problem resulting
from Theorem 13.

I Theorem 17. Let α ∈ N+ with |α| > 1, and let |Σ| ≥ 3. The problem of whether there is a
weakly unambiguous length-increasing morphism σ : N+ → Σ+ with respect to α is decidable
in polynomial time.

Hence, the complexity of Problem 2 is comparable to that of the equivalent problem for
strongly unambiguous nonerasing morphisms (this is a consequence of the characterisation
by Freydenberger et al. [3] and the complexity consideration by Holub [6]). In contrast to
this, when we ask for the existence of strongly unambiguous erasing morphisms, the problem
is NP-hard (according to Schneider [12]).

5 Weakly unambiguous morphisms with |Σ| = 2

As we shall demonstrate below, our characterisation in Theorem 13 does not hold for binary
target alphabets Σ (see Corollary 24). Hence, we have to study this case separately. The
most significant result of our considerations is a necessary condition on the structure of
those patterns α that satisfy Eα 6= ∅, but nevertheless do not have a weakly unambiguous
morphism σ : N+ → Σ+, |Σ| = 2.

Despite being restricted to ternary or larger alphabets, Theorem 13 and its proof have
two important implications that also hold for unary and binary alphabets. The first of them
shows that Eα being empty for any given pattern α is a sufficient condition for α not having
any weakly unambiguous length-increasing morphism:

I Corollary 18. Let α ∈ N+, and let Σ be any alphabet. If Eα = ∅, then there is no weakly
unambiguous length-increasing morphism σ : N+ → Σ+ with respect to α. In general, the
converse of this statement does not hold true.

Hence, if we wish to characterise those patterns with respect to which there is a weakly
unambiguous morphism σ : N+ → Σ+, |Σ| ≤ 2, then we can safely restrict our considerations
to those patterns α where Eα is a nonempty set.

The second implication of Theorem 13 demonstrates that any length-increasing morphism
that is weakly unambiguous with respect to a pattern α must have a particular, and very
simple, shape for all variables in Sα:

I Corollary 19. Let α ∈ N+, let Σ be any alphabet, and let σ : N+ → Σ+ be a length-
increasing morphism that is weakly unambiguous with respect to α. Then, for every i ∈ Sα,
|σ(i)| = 1.

Thus, any weakly unambiguous length-increasing morphism with respect to a pattern α must
not be length-increasing for the variables in Sα. This insight is very useful when searching
for morphisms that might be weakly unambiguous with respect to a given pattern.

As shown by Corollary 18, if Eα is empty, then there is no weakly unambiguous length-
increasing morphism σ : N+ → Σ+ with respect to α. In the next step, we give a strong
necessary condition on the structure of those patterns α that satisfy Eα 6= ∅, but nevertheless
do not have a weakly unambiguous morphism σ : N+ → Σ+, |Σ| = 2.
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I Theorem 20. Let α ∈ N+ such that Eα is nonempty. Let Σ be an alphabet, |Σ| = 2. If
there is no weakly unambiguous length-increasing morphism σ : N+ → Σ+ with respect to α,
then for every e ∈ Eα there exists an e′ ∈ Eα, e′ 6= e, such that e · e′ and e′ · e are factors of
α.

Theorem 20 (when compared to Theorem 13) provides deep insights into the difference
between binary and ternary target alphabets if the weak unambiguity of morphisms is
studied. In addition to this, it implies that whenever, for a given pattern α ∈ N+ with
Eα 6= ∅, there exists an e ∈ Eα such that, for every e′ ∈ Eα with e′ 6= e, the factors e · e′
or e′ · e do not occur in α, then there is a weakly unambiguous length-increasing morphism
σ : N+ → Σ+, Σ = {a, b}, with respect to α. It must be noted, though, that Theorem 20
does not describe a sufficient condition for the non-existence of weakly unambiguous length-
increasing morphisms in case of |Σ| = 2; this is easily demonstrated by the pattern 1 · 2 · 1
and further illustrated by Example 26.

As can be concluded from Example 7 and Theorem 13, there is a weakly unambiguous
length-increasing morphism σ : N+ → Σ+, |Σ| ≥ 3, with respect to α = 1·2·3 · 4·5·6·4 · 3·7·8.
We can define σ by σ(3) := bc and, for every j 6= 3, σ(j) := a. In contrast to this, the next
theorem implies that there is no weakly unambiguous morphism with respect to α if |Σ| = 2.
In order to substantiate this theorem, we need the following lemma.

I Lemma 21. Let Σ be an alphabet with |Σ| = 2, and let σ : N+ → Σ+ be a morphism.
For all x1, x2 ∈ N, there exist a1 v σ(x1) and a2 v σ(x2) such that a1a2 v σ(x1 · x2) and
a2a1 v σ(x2 · x1).

The next result introduces a sufficient condition on the non-existence of weakly unam-
biguous length-increasing morphisms σ : N+ → Σ+, |Σ| = 2. According to Theorem 20, it is
necessary for the non-existence of such morphisms, with respect to a given pattern α ∈ N+

that, for every e ∈ Eα, there exists an e′ ∈ Eα, e′ 6= e, such that e · e′ and e′ · e are factors of
α. Hence, this requirement must be satisfied in the following theorem.

I Theorem 22. Let α ∈ N+ satisfying Eα 6= ∅. Let Σ be an alphabet with |Σ| = 2. There is
no weakly unambiguous length-increasing morphism σ : N+ → Σ+ with respect to α if
1. for every e ∈ Eα, e2 6v α, and there is exactly one e′ ∈ Eα \ {e} such that e′ ∈ Le or

e′ ∈ Re, e′ ·e ·e′ 6v α, and there are s1, s2, s3, s4 ∈ Sα such that s1 ·e ·e′ ·s2 and s3 ·e′ ·e ·s4
are factors of α,

2. for every e ∈ Eα, ε /∈ Re and ε /∈ Le,
3. for any s, s′ ∈ Sα and e, e′ ∈ Eα, if (s · e · e′ · s′) < α, then, for all occurrences of s and s′

in α, the right neighbour of s is the factor e · e′ and the left neighbour of s′ is the factor
e · e′, and

4. for any s, s′ ∈ Sα and e ∈ Eα, if (s · e · s′) < α, then Rs = {e} and Ls′ = {e}.

In order to illustrate Theorem 22, we consider a few examples:

I Example 23. Let,

α := 1 · 2 · 3 · 4 · 5 · 6 · 4 · 3 · 7 · 8 · 3 · 9 · 10,
β := 1 · 2 · 4 · 5 · 6 · 3 · 4 · 7 · 8 · 3 · 9 · 10 · 4 · 3 · 11 · 12,
γ := 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 4 · 3 · 11 · 12 · 8 · 7 · 13 · 14.

Then, according to Definition 6, Eα, Eβ and Eγ are nonempty (the respective variables are
typeset in bold face). However, since the patterns satisfy Theorem 22, there is no weakly
unambiguous morphism σ : N+ → Σ+ with respect to them if |Σ| = 2.
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Theorem 22 and Example 23 directly imply the insight mentioned above that Theorem 13
does not hold for binary alphabets Σ:

I Corollary 24. Let Σ be an alphabet with |Σ| = 2. There is an α ∈ N+ such that Eα is not
empty and there is no weakly unambiguous length-increasing morphism σ : N+ → Σ+ with
respect to α.

In contrast to the previous theorems, the following result features a sufficient condition
on the existence of weakly unambiguous length-increasing morphisms σ : N+ → Σ+, |Σ| = 2,
with respect to a given pattern. This phenomenon partly depends on the question of whether
we can avoid short squares in the morphic image.

I Theorem 25. Let α ∈ N+, and let Σ be an alphabet, |Σ| = 2. Also, assume that
i · e · e′ < α and i · e′ · e < α, or
e · e′ · i < α and e′ · e · i < α,

with e, e′ ∈ Eα and i ∈ var(α). If a morphism σ : N+ → Σ+ satisfies
|σ(e)| = 2 and |σ(e′)| = 2,
for every j ∈ var(α) \ {e, e′}, |σ(j)| = 1, and
there is no x ∈ Σ with x2 v σ(α),

then σ is weakly unambiguous with respect to α.

The main difference between Theorem 25 and Theorem 22 is that those patterns α being
examined in Theorem 25 do not satisfy Condition 3 of Theorem 22. Thus, the two theorems
demonstrate what subtleties in the structure of a pattern can determine whether or not it
has a weakly unambiguous morphism with a binary target alphabet.

In order to illustrate Theorem 25, we now give some examples. In contrast to Example 23,
the factors 3 · 4 and 4 · 3 of the patterns in the following example have an identical right
neighbour or an identical left neighbour.

I Example 26. Let σ : N+ → {a, b}+ be a morphism. We define the morphism σ for the
following patterns α (where the factors featured by Theorem 25 are typeset in bold face) as
follows:

α = 1 · 2 · 5 · 3 · 4 · 6 · 7 · 8 · 5 · 4 · 3 · 9 · 10.
σ is defined by σ(1) := a, σ(2) := b, σ(5) := a, σ(3) := ba, σ(4) := ba, σ(6) := b,
σ(7) := a, σ(8) := b, σ(9) := b and σ(10) := a.
α = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 4 · 3 · 5 · 8 · 9.
σ is defined by σ(1) := a, σ(2) := b, σ(3) := ab, σ(4) := ab, σ(5) := b, σ(6) := a, σ(7) := b,
σ(8) := b and σ(9) := a.
α = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 3 · 4 · 9 · 10 · 11 · 8 · 4 · 3 · 12 · 13.
σ is defined by σ(1) := b, σ(2) := a, σ(3) := ba, σ(4) := ba, σ(5) := b, σ(6) := a, σ(7) := b,
σ(8) := a, σ(9) := b, σ(10) := a, σ(11) := b, σ(12) := b and σ(13) := a.

With reference to Theorem 25, it can be easily verified that, in all above cases, σ is length-
increasing and weakly unambiguous with respect to α.

The patterns in Example 26 further illustrate that the converse of Theorem 20 does not
hold true. More precisely, although for every pattern α in this example, for every e ∈ Eα
there exists an e′ ∈ Eα, e′ 6= e, such that e · e′ and e′ · e are factors of α, there is a weakly
unambiguous length-increasing morphism σ : N+ → {a, b}+ with respect to α.

Due to Theorems 22 and 25, we expect that it is an extremely challenging task to find an
equivalent to the characterisation in Theorem 13 for the binary case. From our understanding
of the matter, we can therefore merely give the following conjecture on the decidability of
Problem 2 for binary target alphabets.
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I Conjecture 27. Let α ∈ N+ with |α| > 1, and let |Σ| := 2. The problem of whether there
is a weakly unambiguous length-increasing morphism σ : N+ → Σ+ with respect to α is
decidable by testing a finite number of morphisms.

The above conjecture is based on the fact that according to the Corollary 19, any weakly
unambiguous length-increasing morphism with respect to a pattern α must not be length-
increasing for the variables in Sα. On the other hand, increasing the length of the morphic
images of the variables in Eα under a morphism σ : N+ → Σ+, |Σ| = 2, seems to increase
the chance of the existence of a morphism τ : N+ → Σ+ satisfying τ(α) = σ(α) and, for
some i ∈ var(α), τ(i) 6= σ(i). Consequently, we believe that if all morphisms σ with, for
every e ∈ Eα and an x ∈ N, |σ(e)| ≤ x are not weakly unambiguous with respect to α, then
there does not exist a weakly unambiguous morphism σ with |σ(e)| > x for some e ∈ Eα,
either. For all patterns, we expect a value of x = 2 to be a sufficiently large bound for the
morphisms to be tested.

6 Weakly unambiguous morphisms with |Σ| = 1

It is not surprising that most of our considerations in the previous sections are not applicable
to morphisms with a unary target alphabet. On the other hand, Corollary 18 and Corollary 19
also hold for this special case, i. e., for any pattern α, every weakly unambiguous morphism
must map the variables in Sα to words of length 1, which implies that such a morphism
can only be length-increasing if Eα is not empty. Incorporating these observations, we now
consider an example.

I Example 28. Let α1 := 1 ·2 ·3 ·4 ·1 ·2 ·3. Consequently, Eα1 = {4}. We define a morphism
σ : N+ → {a}+ by σ(4) := aa and σ(i) := a, i ∈ N \ {4}. It can be easily verified that σ
is weakly unambiguous with respect to α1. Now let α2 := 1 · 2 · 3 · 4 · 1 · 2 · 3 · 5 · 6. As a
result, Eα2 = {4}. If we now consider the morphism τ , given by τ(4) := a, τ(5) := aa and
τ(i) := σ(i), i ∈ N \ {4, 5}, then we may conclude τ(α2) = σ(α2). Thus, σ is not weakly
unambiguous with respect to α2.

Quite obviously, the fact that σ is unambiguous with respect to α1 and ambiguous with
respect to α2 is due to 4 being the only variable in α1 that has a single occurrence, whereas
α2 also has single occurrences of the variables 5 and 6. This aspect is reflected by the
following characterisation that completely solves Problem 2 for morphisms with unary target
alphabets.

I Theorem 29. Let α ∈ N+, var(α) = {1, 2, 3, ..., n}. There is no weakly unambiguous
length-increasing morphism σ : N+ → {a}+ with respect to α if and only if, for every
i ∈ var(α), there exist n1, n2, ..., nn ∈ N ∪ {0}, such that

|α|i = n1|α|1 + n2|α|2 + [...] + ni−1|α|i−1 + ni+1|α|i+1 + [...] + nn|α|n.

Hence, we are able to provide a result on unary alphabets that is as strong as our result in
Theorem 13 on ternary and larger alphabets. However, while Theorem 13 needs to consider
the order of variables in the patterns, it is evident that Theorem 29 can exclusively refer to
their number of occurrences.

7 Conclusion

In this paper, we have demonstrated that there is a weakly unambiguous length-increasing
morphism σ : N+ → Σ+, |Σ| ≥ 3, with respect to α ∈ N+ if and only if Eα is not empty, where
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Eα ⊆ var(α) consists of those variables that have special, namely illoyal neighbour variables.
We have demonstrated that this condition is not characteristic, but only necessary for the case
|Σ| = 2, which leads to an interesting difference between binary and all other target alphabets
Σ. We have not been able to characterise the existence of weakly unambiguous length-
increasing morphisms with binary target alphabets, but we have found strong conditions
that are either sufficient or necessary. Finally, for |Σ| = 1, we have been able to demonstrate
that the existence of weakly unambiguous length-increasing morphisms σ : N+ → Σ+ solely
depends on particular equations that the numbers of occurrences of the variables in the
corresponding pattern need to satisfy.
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