B Loughborough
University

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence
conditions.

@creative
ommon

COMMONS D E E D

Attribution-NonCommercial-NoDerivs 2.5
You are free:
» to copy, distribute, display, and perform the waorlk

Under the following conditions:

Attribution. ¥ou rmust attribute the wark in the manner specified by
the author or licensor,

MWoncommercial. vou may not use this work for commercial purposes,

Mo Derivative Works, vou may not alter, transform, or build upon
this work,

& For any reuse or distribution, vou must make clear to others the license terms of
this work,

» Any of these conditions can be waived if you get permission from the copyright
holder,

Your fair use and other rights are in no way affected by the above.

This is a hurman-readable summary of the Legal Code (the full license).

Disclaimer BN

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

On the Equivalence Problem for
E-pattern Languages over Small Alphabets

Daniel Reidenbach*

Fachbereich Informatik, Technische Universitdt Kaiserslautern,
Postfach 3049, 67653 Kaiserslautern, Germany
reidenba@informatik.uni-kl.de

Abstract. We contribute new facets to the discussion on the equiva-
lence problem for E-pattern languages (also referred to as extended or
erasing pattern languages). This fundamental open question asks for the
existence of a computable function that, given any pair of patterns, de-
cides whether or not they generate the same language. Our main result
disproves Ohlebusch and Ukkonen’s conjecture (Theoretical Computer
Science 186, 1997) on the equivalence problem; the respective argumen-
tation, that largely deals with the nondeterminism of pattern languages,
is restricted to terminal alphabets with at most four distinct letters.

1 Introduction

Patterns—finite strings that consist of variables and terminal symbols—are com-
pact and “natural” devices for the definition of numerous regular and nonregular
formal languages. A pattern generates a word by a uniform substitution of the
variables with arbitrary strings of terminal symbols, and, accordingly, its lan-
guage is the set of all words that can be obtained by suchlike morphisms. For
instance, the language generated by the pattern o = x1 z1 a b xo (with variables
x1, T2 and terminals a, b) includes all words where the prefix consists of two
occurrences of the same string, followed by the string ab and concluded by an ar-
bitrary suffix. Thus, the language of o contains, e.g., the wordsw; =babaaba
and wy, = abbb, whereas v; =bbbbaand vy =baabb are not covered by a.

The investigation of patterns in strings—initiated by Thue [16, 17]—may be
seen as a classical topic in the research on word monoids and combinatorics of
words (cf., e.g., [2], a survey is given in [3]). Contrary to this, the definition
of pattern languages as described above—introduced by Angluin [1]—originally
has been motivated by considerations on algorithmic language learning within
the scope of inductive inference. Since then, however, the properties of pattern
languages have been intensively studied from a language theoretical point of view
as well, e.g. by Jiang, Kinber, Salomaa, Salomaa, Yu [7, 8]; for a survey see [10].
These examinations reveal that the characteristics of languages generated by a
definition which disallows the substitution of variables with the empty word—as
given by Angluin—and of those produced by a definition allowing the empty

* Supported by the Deutsche Forschungsgemeinschaft (DFG), Grant Wi 1638/1-3

substitution (as applied when generating ws in our example) differ significantly.
Languages of the latter type have been introduced by Shinohara [15]; they are
called extended, erasing, or simply E-pattern languages.

In spite of the wide range of profound examinations, a number of fundamen-
tal properties of E-pattern languages is still unresolved; one of the best-known
open problems among these is the decidability of the equivalence, i.e. the ques-
tion on the existence of a total computable function that, given any pair of
patterns, decides whether or not they generate the same language. This prob-
lem, that for Angluin’s pattern languages has a trivial answer in the affirmative,
has been tackled several times (cf. [5,7,8,4,11,13]), contributing a number of
positive results on subclasses, properties, conjectures, and conditions, but no
comprehensive answer. Consequently, the anticipation of a positive outcome, as
expressed in [8], so far could be neither verified nor refuted.

The current state of knowledge on E-pattern languages reveals that several
of their properties strongly depend on the size of the terminal alphabet. For
instance, the subclass generated by terminal-free patterns is learnable if and
only if the alphabet is not binary (cf. [12]), whereas the full class is learnable
for unary alphabets, but not for those with two, three or four letters (cf. [13]).
Consequently, and particularly for small alphabets, E-pattern languages show
a variety of (frequently fairly surprising) discontinuities. This phenomenon is
brought about by the fact that especially those words over only a few distinct
letters tend to be ambiguous, i.e. one and the same pattern can generate such
a word by different substitutions. The influence of this nondeterminism of E-
pattern languages—that is even more complex provided that the patterns do not
consist of variables only—on several open problems is not completely understood
yet, and therefore most corresponding partial results are restricted to those cases
where ambiguity of words is somewhat easy to grasp (cf., e.g., [7,8,11]).

These observations establish the background of the present paper, that pro-
vides new insight into the consequences of nondeterminism of pattern languages.
We apply our approach to the prevailing conjecture on the equivalence problem
for E-pattern languages—given by Ohlebusch and Ukkonen [11]—according to
which, for terminal alphabets with at least three distinct letters, two arbitrary
patterns a and 3 generate the same language if and only if there exist terminal-
preserving morphisms ¢ and v such that ¢(a) = § and () = a. This conjec-
ture, that we recently have claimed to be incorrect for alphabets with exactly
three letters (cf. [13]), in the present paper is disproven for alphabets of size 4.

2 Preliminaries

We now proceed formally. For notions and preliminary results not given in this
paper we refer to [14] or, if appropriate, to the respective referenced literature.

N is the set of natural numbers, {0,1,2,...}. A word is a finite string of
symbols. For an arbitrary set A of symbols, AT denotes the set of all non-empty
words over A and A* the set of all (empty and non-empty) words over A. Any
set L C A* is a language over an alphabet A. We designate the empty word as

e. For the word that results from the n-fold concatenation of a letter a or of a
word w we write a” or (w)™, respectively. | - | denotes the size of a set or the
length of a word, respectively, and |w|, the frequency of a letter a in a word w.

The following notion allows to address certain parts of a word w over an
alphabet A: If w contains n, n > 1, occurrences of a subword u then for every 4,
1 < i <mn, u(i) is the ith occurrence (from the left) of u in w. For that case, the
subword [w/u(i)] is the prefix of w up to (but not including) the leftmost letter
of u(i) and the subword [u(i)\w] is the suffix of w beginning with the first letter
that is to the right of w(i). Moreover, for every word w that contains at least i
occurrences of a subword u, j occurrences of subword v and that satisfies w =
wy u (i) we v(j) wg with wy, wa, w3 € A*, we use [u(i)\w/v(j)] as an abbreviation
for [u(i)\[w/v(j)]]. Thus, for appropriate u, v, w, the specified subwords satisfy
w = [w/ul®)] uli) [i\w] or w = [w/u@)] ul) [wi\w/v()] vG) (),
respectively; e.g., with w = abcabb, u = a and v = ab, the definition leads to
[w/u(2)] = abec, [u(2)\w] =bb, and [u{l)\w/v(2)] =bec.

We proceed with the pattern specific terminology. X' is a finite alphabet of
terminal symbols and X = {x, 2, x3, ... } an infinite set of variables, Y NX = (.
Henceforth, we use lower case letters in typewriter font, e.g. a, b, c, as terminal
symbols exclusively, and terminal words are named as u, v, or w.

A pattern is a non-empty word over X U X, a terminal-free pattern is a
non-empty word over X; naming patterns we use lower case letters from the
beginning of the Greek alphabet such as «, 3,~. var(a) denotes the set of all
variables of a pattern a. We write Paty, for the set of all patterns over the union
of X and a specific alphabet X or, if there is no need to emphasise the terminal
alphabet, Pat for short.

Following [4] we designate two patterns «, 8 as similar if and only if a =
QQ UL U « .. U1 Uy and B = By w11 us ... Bm_1 UmBm with m € N,
o, B € XT for 1 <4 <m, ag,Boym,Bm € X* and u; € YT for i < m; in
other words, we call patterns similar if their terminal substrings are identical
and occur in the same order in the patterns.

A morphism ¢ : (YUX)* — (X UX)* is terminal-preserving if and only if,
for every a € X, ¢(a) = a. If additionally, for a terminal-preserving morphism
¢ and for all z; € X, ¢(x;) € X* then we call ¢ similarity-preserving. We
say that patterns «, [are (morphically) coincident if there exist similarity-
preserving morphisms ¢ and ¢ such that ¢(«) = 8 and ¥(8) = «; we call them
(morphically) semi-coincident if there is either such a ¢ or such a 4, and, for
the case that there is neither such a ¢ nor such a 1, they are designated as
(morphically) incoincident.

A terminal-preserving morphism o is a substitution if and only if, for every
x; € X, o(x;) € X*. The E-pattern language Lx () of a pattern « is defined as
the set of all w € X* such that o(a) = w for some substitution o. For any word
w = o) we say that o generates w, and for any language L = Lx(«) we say
that o generates L. If X' is understood then we denote the E-pattern language
of a pattern « simply as L(a)). We use ePAT as an abbreviation for the full class
of E-pattern languages (or ePATy; if the corresponding alphabet is of interest).

We designate a pattern « as succinct if and only if |a| < || for all patterns S
with L(8) = L(«). The pattern § = x12921 2, €.g., generates the same language
as a = 121, and therefore 3 is not succinct; « is succinct as L(x1) # L(«).

According to [9] we denote a word w as ambiguous (in respect of a pattern
«) if and only if it can be generated by several substitutions of «, i.e. there
exist substitutions ¢ and o', o(x;) # o'(z;) for some x; € var(a), such that
o(a) = w = o'(a). Correspondingly, we call a word w unambiguous (in respect
of a) if and only if there is exactly one substitution o with o(«) = w. The word
wi = aaba, for instance, is ambiguous in respect of a = xj1a x2 since it can
be generated by, e.g., o and ¢’ with o(z1) = a, o(z2) = ba and o'(x1) = &,
o'(x2) = aba. The example word wy = ba is unambiguous in respect of a.

We now proceed with some decidability problems on E-pattern languages:
Let ePAT* be any set of E-pattern languages. We say that the inclusion problem
for ePAT* is decidable if and only if there exists a computable function which,
given two arbitrary patterns «, 8 with L(«), L(5) € ePAT*, decides whether or
not L(a) C L(B). Accordingly, the equivalence problem is decidable if and only
if there exists another computable function which for every pair of patterns «,
B with L(a), L(B) € ePAT* decides whether or not L(a) = L(3). Obviously,
the decidability of the inclusion implies the decidability of the equivalence. As
mentioned in Section 1, the decidability of the equivalence problem for ePAT
has not been resolved yet, but there is a number of positive results on subclasses
given in [11]. The inclusion problem is known to be undecidable (cf. [8]). Under
certain circumstances, however, the inclusion problem is decidable; this results
from the following fact:

Fact 1 ([11]). Let X be an alphabet and «, 8 two arbitrary similar patterns such
that X contains two distinct letters not occurring in o and 3. Then Lx(8) C
Lyx(«) iff there exists a similarity-preserving morphism ¢ such that ¢(«) = (.

In particular, Fact 1 implies the decidability of the inclusion problem for the
class of terminal-free E-pattern languages if |X| > 2 (proven in [5] and [8]).

The following theorem shows that any consideration on the equivalence prob-
lem can be restricted to similar patterns. Therefore, Fact 1 implies the decid-
ability of the equivalence for all pairs of patterns if one of the two patterns does
not contain at least two distinct letters of the alphabet.

Fact 2 ([5] and [7]). Let X be an alphabet, |X| > 3, and let o, 8 € Paty. If
Lx(a) = Lx(B) then a and B are similar.

Moreover, Fact 2 suggests a possible approach to the equivalence problem, that
has been addressed by [4] and [11]: Obviously, the equivalence of E-pattern
languages is decidable provided that Fact 1 holds for all similar patterns (and
not only for those satisfying the additional condition).

We conclude this section with a definition that originates in [11] and that
is motivated by the facts stated above: Let X be an alphabet and define X’/ :=
Y U {a} for an arbitrary a ¢ X. We say that the equivalence for ePATy is
preserved under alphabet extension if and only if, for every pair «, 8 € Paty,
Lx(«) = Lx(B) implies Ly () = Lx/(8) and vice versa.

3 On Ohlebusch and Ukkonen’s conjecture

The equivalence problem for E-pattern languages has first been examined in [5)
and [7] and later in [8], [4], and [11]. The latter authors give a procedure that
for every pattern computes a shortest normal form. They conjecture that, for
alphabets with at least three letters, two patterns generate the same language if
and only if their normal forms are the same, and the authors paraphrase their
conjecture as follows:

Conjecture 1 ([11]). For an alphabet X', |X| > 3, and patterns a1, as € Paty,
Lx(aq) = Lx(ag) if and only if oy and ae are morphically coincident.

Furthermore, as a consequence of Fact 1 and Fact 2, the authors annotate that
the equivalence problem is decidable for |¥| > 3 if the equivalence for ePATy; is
preserved under alphabet extension (cf. [11], Open Question 2).

The choice of alphabet size 3 as a lower bound in Conjecture 1 might be
caused by the following observations: The patterns oy = x1azobzs and as =
x1 abxg, for instance, generate the same language if X = {a, b} (although they
are semi-coincident) since for every word in {o;(a1) | 0i(z2) # €} a second sub-
stitution o} can be given with o}(a1) = 0;(a1) and o’ (x2) = €. Thus, this specific
ambiguity of words, that is caused by the small alphabet and by the composition
of variables and terminal symbols in a1, brings about the equivalence of Lx(ay)
and Lyx(az). Contrary to this, for |X| > 3, the existence of analogue examples
seems to be rather implausible since for every variable in a pattern at least one
occurrence can be chosen for assigning a substitution that contains a letter which
differs from the terminal symbols to the left and to the right of the variable (cf.,
e.g., the proof of Fact 2 as given in [7]). Consequently, Conjecture 1 suggests
that such patterns do not exist for alphabets containing at least three letters.

As a by-product of learning theoretical studies, [13] anticipates that—at least
for alphabets with ezactly three letters—this conjecture is incorrect. More pre-
cisely, the paper claims that, for X' := {a,b,c}, X' := XU {d} and

~ o 2,.2.2 2 2 2 .2.2,.2 2
Qabe,1 = X1 @ X T3 Ty Ty Tg Tp Tg b Tg a To Tl Ty Ty Tg 11 8 b T12,

~ L 2 2.2 2 2.2
Qabe,2 = X1 @ T T3 Ty T7Xg b Tg a T2 X7y Ty T11 g b T2,

LZ](&abc,l) = Lﬂ(dabc,2)7 but LE/(&abc,l) D) LE’ (dabc,Z); and dabc,l and 6‘abc,2
are semi-coincident.

The present paper actually disproves Conjecture 1; to this end, however,
we regard different alphabets, namely those of size 4. Thus, we establish an
additional result to that in [13]. Besides, the chosen alphabet size is by far
more challenging, and therefore it requires a significantly more elaborate and
instructive reasoning. Hence, our presumably unexpected main result reads as
follows:

Theorem 1. Let X be an alphabet, |X| = 4. Then the equivalence for ePATy is
not preserved under alphabet extension.

Theorem 2. Let X' be an alphabet, |X| = 4. Then there exist morphically inco-
incident patterns oy, as € Paty such that Ly (a1) = Lyx(as).

Referring to these statements we can conclude that for “small” alphabets
(i.e. for those with at most four distinct letters) the equivalence of E-pattern
languages has some common properties, which nicely contrast with the expec-
tations (potentially) involved in Fact 2, Conjecture 1, and Theorem 7.2 of [8]:

Corollary 1. Let X' be an alphabet, |X| < 4. Then the equivalence for ePATx
is not preserved under alphabet extension.

Corollary 2. Let X' be an alphabet, |X| < 4. Then there exist morphically inco-
incident or semi-coincident patterns aq, as € Patyy such that Lx;(a1) = Lx(aw2).

The proof of Theorem 1 and Theorem 2, that for the given patterns uapc1
and Gape,2 can be adapted to the case | Y| = 3 with little effort, is accomplished in
Section 3.1. Its underlying principle follows the course indicated above: We com-
pose two sophisticated incoincident example patterns—each of them consisting
of 82 variables and terminals—and identify “decisive” words in their languages.
Then we precisely examine the ambiguity of these words and reveal that all of
them can be generated by substitutions assigning the empty word to at least
one among two specific variables; thereby we can conclude that both patterns
generate the same language. In other words, we analyse the nondeterminism of
E-pattern languages, that has been the subject, e.g., of [9]. However, the pre-
vailing point of view in literature does not exactly meet our requirements as
it investigates the ambiguity of pattern languages, i.e. the maximum ambiguity
among all words in the language, whereas we ask for the existence of particular
alternative substitutions for selected words. Thus, our method is rather related
to the research on equality sets (cf. [6]).

In spite of the extensive argumentation required even for a single alphabet,
we expect our method to be useful for future examinations of Conjecture 1
with regard to different alphabet sizes as well. Moreover, we suggest that the
(supposably necessary) complexity of our example patterns explains the lack of
comprehensive results on the equivalence problem so far, and we consider the
subsequent section to provide an insight into the extraordinary combinatorial
depth of E-pattern languages.

Obviously, with the present state of knowledge on the subject, the given re-
sults do not imply the non-decidability of the equivalence problem for ePATy
with |¥| = 4. They show, first, that the expected lower bound in terms of
alphabet size for a uniform behaviour of E-pattern languages concerning the
decidability of the equivalence—as expressed in Conjecture 1—needs to be re-
determined (provided such a bound exists at all). Second, they suggest that any
decision procedure for |X| = 4 (if any) presumably needs to be more elaborate
than that given in [11]—which, by the way, still might be applicable to |X| > 5.
Additional remarks on suchlike aspects are given in Section 3.2.

3.1 Proof of the Main Results

The present section contains four lemmata. Lemma 1 and Lemma 4 prove The-
orem 1; the argumentation on Theorem 2 is accomplished by Lemma 1 again
and, additionally, Lemma 3—which, in turn, utilises Lemma 2.

We begin with the example patterns that constitute the core of our reasoning;:

Definition 1 (first version). The patterns Gapca,1 and Gapca,2 are given by

~ L 2.2 92 2 2.2.2 2
Qlabeq,] ‘= L1 @ X2 T3 Ty Ty Tg Trb Xg a T Tg Ty Ty T T7 b o1

C T12 xfg xﬁ zir) sz T17d T18 C T12 zfg :L'il zir) x%o r17 d T21

1y z?s 1y z?s aty 50?5 29 @4 zg a 50§ a 50§ T23 T4 T14 T24
(labea,2 1= @1 @ T T3 T3 T3 TG ¥7b Ty @ Ty g w3 X5 ¥ 7 b w11

C T12 xfg xi :Cir) :C%G r17d T18 € T12 ,T%g :Cil :Cir) x%o r17 d T21

2 2 .2 2 2 2 2.2 2.2 2 2
L4 L15 L14 T15 L4 L5 L22 Ly Ty Ly L5 Ly L5 L23 L14 L4 T24.

Since (apeq,1 and Qapea,2 Might be regarded as fairly intricate we give a second
version of Definition 1 revealing the structure of the patterns:

Definition 1 (second version). Consider the patterns

2.2
Y1 =2y X5,
.2 .2
V2 = T4 X155
o 2 2
B1 = 22 T3 Y1 g 7,
/L 2 2
1= X2 Tg V1 T1g L7,
., 2 2
B2 = 12 T3 V2 T1g L17,
/o 2 2
2 1= T12 T1g V2 Loo L17
/ /
zrafrbrgapf bripcPadaigc By d s,

(72)* 22 (m1)°.

Qg

a9 .

Then Gtapea,1 := O G2 Ta3 T4 T14 Tog ANA apea,2 1= 1 G2 T23 T14 T4 T24.

In order to facilitate the understanding of our reasoning we give some brief
informal explanatory remarks before proceeding with the actual proof of Theo-
rems 1 and 2: Evidently, concerning the question whether or not L(&apca,1) and
L(&abcq,2) are different, only those words are of interest that are generated by
a substitution which is not empty for both x4 and x14, as the order of the last
occurrences of these variables is the only difference between the patterns. There-
fore, the components of (tapca,1 and Gapcq,2 are tailor-made for ensuring the ambi-
guity of all words generated by a substitution o that satisfies o(z4) # € # o(x14).

With regard to the subpatterns of Gapca,1 and Gtapca,2, we first examine the
kernels, i.e. y1 and ~,. Obviously, for any substitution o, if (1) or o(y2) do not
contain at least two different letters then o(v1) or o(72), respectively, are am-
biguous and can be generated simply by x5 or x15, respectively; thus, x4 or x14
can be substituted empty. In our formal argumentation, we utilise this fact only
for (1) € {c}*U{d}* or o(72) € {a}*U{b}*. The other cases are covered by the
ambiguity of o(x1 a 81 bag) (resp. o(x11 ¢ 2 d x18)) whenever o (1) (resp. o(y2))
contains—possibly among others—the letters a or b (resp. c or d), leading again
to an optional empty substitution for x4 (resp. x14). Thus, o only can generate
a decisive word if o (1) consists of ¢ and d and o(y2) of a and b. Such a choice

of a substitution utilising letters that are distinguishable from the terminals to
the left and to the right of the corresponding variable subword in the pattern
probably is the most natural option and is used frequently (see, e.g., proof on
Theorem 7.2 in [8]). However, for that case, o(d2) = wpabw; abwy cdws cdwy
for some words w;, i < 4. Consequently, o(&apca,1) and o(Gabea,2) can be gen-
erated by the (sub-)pattern x; ab zg ab x1; ¢d 218 c¢d 21, and therefore x4
and x14 can be substituted empty again. The variables with single occurrences,
such as zg and xa3, are used to compensate the side effects of the empty substi-
tution of x4 or z14; the modified repetitions of 81 (as 3]) and fa (as () and,
particularly, those variables that distinguish 31 from 3] (e.g. x3) and [from ()
(e.g. w13) guarantee that dapca,1 and Gapea,2 are incoincident. The latter point,
one of the statements of Theorem 2, is discussed in Lemma 3.

As the ambiguity of decisive words affects Gtapca,1 and Gtapca,2 in the same
way, the stated phenomenon allows us to prove the following, crucial lemma:

Lemma 1. Let Xy = {a,b,c,d}. Then Ly, (Gabca,1) = Ly (Qabea,2)-

Proof. We first prove Ly, (&abea,1) € L, (Gabea,2). Hence, let o be an arbitrary
substitution that is applicable to &apca,1. We show that there exists a substitution
o’ such that 0’ (Gapca,2) = 0(Gapea,1). To this end, we refer to Gapeq,1 and Gapea,2
as declared in the second version of Definition 1 and regard the following cases—
that evidently can be restricted to a consideration of o(y1) and o(v2):

Case 1 o(y1) € {a,b,c,d} T\ {b,c,d}*:

Define o/(z1) := o(x1 a 23 23) [0(71)/ a(1)],
o'(x2) := [a(1) \a (1)},
a’(:z:g —

o(ws a w2 23) [o(11)/ a(1)],
x22 (11)%),
T23 T4),

i), xj € var(f2 B5) U {xe, o7, 10, T11, T18, T21, T24},
i) =g, x; € var(y1) U{z3,z9}.
Case 2 o(71) € {b,c,d} T\ {c,d}T:

a(
0(
o
oz

8

N

; ™)
NN AN NG AN N NI

Define o' (z7) := [o(11)/b(1)],
o'(zs) := [b(1) \o(11)] (25 27 b xs),
o' (x11) == [b(1) \o(m)] o(23y 27 b @11),
o' (x22) := o(x22 (m)*),
o' (x23) := o (223 ,7:4
o'(x5) :=o(x;), xj € var(B2 B5) U {x1, 2, 23, T9, T18, T21, T2},
o'(xj) :==¢, x; € var(y1) U {z¢, z10}-

Case 3 o(v1) € {c}*U{a}™

Define o'(z4) =,
o'(x5) := o(xq x5),
o' (x23) := o (23 x4),
o'(x) = o(xj), xj € var(Qapca2) \ (var(y1) U {za3}).

Case 4 o(y1) € {c,d}T\ {c}TU{d}T) and o(72) € {a,b,c,d}T \ {a,b,d}T:

Define o'(z11) := o(x11 ¢ w12 235) [0(2)/ c(1)],
o' (z12) := [e(1) \o(v2)],
o' (218) = o(218 ¢ 212 2%y) [0(72)/ (1)),
o' (222) := 0((72)* 22),
o' (x24) := o (214 T24),
o'(x;) = U(»’Cj), z; € var(f1 1) U {1, x8, 16, T17, T20, T21, T23 },
o'(xj) :=¢, x;j € var(yz2) U {x13, T19}.

Case 5 o(m1) € {c,d} T\ ({C}Jr U{d}*) and o(y2) € {a,b,d} " \ {a,b}*:
Define o (x17 = [o(v2)/ d(1)],

= [d(1)\o(12)] o(ats 217 4 718),

[(1) \o(v2)] o(239 217 d z21),

((72 T22),

(9614 1324)’

(SCj), x; € var(By 1) U {1, 8, 711, T12, T13, T19, T23 },
;€ var(y2) U{z16, T20}.

Case 6 o(y1) € {c,d}" \ ({C}+ U{d}") and o(y2) € {a}* U {b}*:

Define o'(x14) := ¢,
(5015) U($14 5E15)

o' (24) 1= 0(%14 T24),

o'(x;) = 0(x;), x; € var(dapca,2) \ (var(y2) U{wa4}).

Case 7 o(m) € {c,a}+ \({c}+ U{a}*) and o(3) € {a,b}*\ ({a}+ U [} +):
Consequently, o((v1)3) contains at least two occurrences of the subword
cd and o((72)?) contains at least two occurrences of the subword ab. Fur-
thermore, due to the shape of these subwords, their occurrences must be
non-overlapping. Therefore ¢’ can be given as follows:

(62)/ ab(1)],

Define o'(z1) := o(&1)

[o
o'(zs) = [ab(1)\o(a2)/ ab(2)],
o'(z11) = [ab(2)\o(G2)/ cd(1)],
o'(z18) = [cd(1)\o(G2)/ cd(2)],
o' (z21) := [cd(2)\o(42)] 0(23 T4 T14 T24),
o'(x;) =€, xj € var(Gavbca,2) \ {21, Ts, T11, T18, T21 }-

With the annotations on the shape of dapca,1 and Gapeq,2 in mind, it is obvious
that, in every of the seven cases, 0/ (&abca,2) = 0(Qabca,1)- Thus, since o has been
chosen arbitrarily and as the cases are exhaustive, Lx;, (Fabca,1) C L3, (Gabeq,2)-

The proof for Ly, (Gavea,2) € L, (Gapea,1) is similar: In the argumentation
given above, it is sufficient to replace Qapca,1 DY Gtabca,2 and vice versa and,
additionally, to adapt o’(x23) and o’(z24) in Cases 1-7 in an adequate manner
such that it matches the shape of &apca,1. The rest is verbatim the same. O

With Lemma 1, the crucial element of Theorem 1 and Theorem 2 is proven.
In the next step we complete the proof of Theorem 2. As a prerequisite thereof,
we proceed with an evident lemma that is of great use for the upcoming proof
of Lemma 3 and that is a direct consequence of Lemma 1 in [13]:

Lemma 2. Let o be a terminal-free pattern and let ¢ : X* — X™* be a mor-
phism with ¢(a) = a. Then either ¢p(z;) = x; for every x; € var(«) or there is
an xj € var(a) such that |¢p(z;)| > 2 and xj € var(p(z;1)).

We call any z;: satisfying these two conditions an anchor variable (in respect of
the morphism ¢).

Now we can prove that there are no similarity-preserving morphisms mapping
Qlabcd,1 and (Qlapeq,2 ONto each other:

Lemma 3. Qapcq,1 and Qapea,2 are morphically incoincident.

Proof. Assume to the contrary there is a similarity-preserving morphism ¢ with
@(Qabed,1) = Glabed,2 OF With ¢(@abca,2) = Gabca,1- Then, obviously, ¢(z4) # x4 or
@¢(r14) # x14. Consequently—since, e.g., 81 and [occur in @apca,1 as well as
in Gapea,2 and since necessarily ¢(51) = 01 and ¢(B2) = Bo—there must be an
anchor variable z; in §1 or 2 (cf. Lemma 2).

We start with (;. First, for j/ € {3,4,5,6}, z;; being an anchor variable
implies that gb(x?,) = T 0z xR 0 With variables zx, i and § € X*, but there
is no substring in £; that equals the given shape of ¢(x;). Second, because of
the necessity of ¢(5]) = 1, x2 cannot be an anchor variable since ¢(z2) had to
equal both zox3d and xox9d for a § € X*. Finally, due to an analogous reason,
j' # 7. Thus, there is no anchor variable in var(8;). This contradicts ¢(x4) # 4.

With regard to (2, the argumentation is equivalent, and, consequently, there
is no anchor variable in var(f8z). Therefore, the assumption is incorrect. O

With Lemma 1 and Lemma 3, the proof of Theorem 2 is accomplished.
Consequently, and referring to Fact 1, it is obvious that, for a terminal alphabet
Y5 with at least six distinct letters, Lx,(Qabca,1) # Lxs(Gabea,2). Hence, for
|X| =4 or |¥| =5, the equivalence for ePATy; is not preserved under alphabet
extension. In order to conclude the proof of Theorem 1, we therefore have to
show explicitly that the given example patterns generate different languages for
alphabets with exactly five letters:

Lemma 4. Let X3 D {a,b,c,d,e}. Then Lx,(Gapca,1) 7 L, (Ravea,2)-

Proof. We show that there is a word in Ly, (Gabca,1) \ L5, (Gabea,2)- To this end,
we refer to Gapca,1 and (tapeq,2 as declared in the second version of Definition 1
and consider the substitution o given by

3j—1
35—1

ccedc |, xjevar(B B),
aae¥a |, xz; € var(fe),
e , else.

cedi2c ce
) e 3j—2
o(z;) =1 ae aae

Then o(@apca,1) has the following suffix generated by o(d 21 G2 Tag T4 T14 T24):

d((ae?a ae’aae??a)’(ae®a ae’a ae?®a)?)?

((ce®c cellcce?c)?(ce’®c celc ce'®c)?)?
cel%c cellc cel?c ae’aae?laae??a
and this is the only occurrence of that subword in o(&apeq,1)-

Now assume to the contrary there is a substitution ¢’ with o’(Qapea,2) =
0(@abea,1)- As, due to o(z;) € {a,c,e}* for all z; € var(@apca,1), the letters b
and d each occur exactly twice in o(@apca,1) We may conclude that o’ (8) = o(0)
for B € {51, 51, B2, B5}. Therefore—and since, according to Theorem 3 of [12],
the patterns 81 8] and (2 85 are succinct—Lemma 1 of [12] is applicable, which
shows that in the given case necessarily o/ (z;) = vg c ce¥ 1 c c vy, vg,v1 € X*,
for all z; € var(81 3}) and o'(z;) = vo a ae’’~la a vs, vo,v3 € X*, for all
x; € var(B2 3%). Consequently, o/ (x93 21424 724) =vs aaetaawccellccus,
vg,v5 € X*, for some w € {a,c,e}*. However, for every occurrence of this
subword in o (Gapea,1)—or, more precisely, in o(dz)—we have w = vg ae*ta vy,
ve, v7 € X* (see suffix of o(&apea,1) as depicted above). Thus, we may conclude
o' (115) # vs aetta vy, vg,v9 € X*, since the frequency of the subword ae**a
in 0(Qapea,1) €quals | Gabea2 |25 and since at least one occurrence of ae'ta—
in fact, it is even all six occurrences in o(dg)—is contained in o’ (214 x4). This
contradicts the claim o’(z;) =v2 a ae®!a a vs for all z; € var(Bs 35).

Consequently, there is no substitution o’ with ¢’(Gapca,2) = 0(Gapea,1)- O

Thus, with Lemma 1 and Lemma 4, Theorem 1 is proven. Moreover, the proof
of Lemma 4 shows that our way of composing example patterns cannot directly
be used for the transition between |X| = 5 and |¥| = 6. The argumentation
on Lemma 1 is based on the fact that every substitution either matches the
“easier” Cases 1 - 6 or exactly reconstructs the terminal substring of the pattern
(see Case 7). We are uncertain whether these substitutions can be avoided for
all patterns—and not only for our examples—in case of | X| > 5.

3.2 Some Notes

The proof of Lemma 4 can be extended canonically such that in addition to
LEQ (dabcd,Q) 2 LEQ (dabcd.l) the OPPOSite direction L22 (dabcd.l) 2 LEQ (dabcd,2)
is shown. Consequently, both languages are incomparable, and it seems as if,
for |X| = 4 and |X’| > 4, there is no pair of patterns «, 3 € Paty such that
Lx(a) = Lx(B) and Lx/(a) C Lx/(83). In contrast to this, for smaller alphabets
there are patterns that possess such a feature, for instance

= 2% and 3 = 2222 for the transition |¥| =1 vs. | Y| = 2,
— a=1x1abzy and § = z1 axe bag for the transition |X| = 2 vs. | 2| = 3, and
— & = Qape,2 and B = Qape,1 for the transition |X| =3 vs. | X| = 4.

|
Q
|

In this context, we conjecture that, for an alphabet X with four letters and
morphically semi-coincident patterns «, 8 € Paty, necessarily Lx(«) # Lx(8).
Particularly with regard to Theorem 2, we consider this fairly counter-intuitive.

We conclude this paper with a hint on a potential problem concerning any
common normal form for &apcq,1 and &apcq,2: We conjecture that both patterns
are succinct for all alphabets with at least four letters. If this is correct then,
for |X| = 4, not only the concrete algorithm in [11] has to fail (as shown in
Theorem 2), but any suchlike approach as there are E-pattern languages that
presumably do not have a “natural” unique shortest normal form.

Acknowledgements. The author wishes to thank Rolf Wiehagen and a referee
for their helpful comments on a draft of this paper.

References

1. D. Angluin. Finding patterns common to a set of strings. J. Comput. Syst. Sci.,
21:46-62, 1980.

2. D.R. Bean, A. Ehrenfeucht, and G.F. McNulty. Avoidable patterns in strings of
symbols. Pacific J. Math., 85:261-294, 1979.

3. C. Choffrut and J. Karhuméki. Combinatorics of words. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, volume 1, chapter 6, pages
329-438. Springer, 1997.

4. G. Dany and Z. Fiilop. A note on the equivalence problem of E-patterns. Inf.
Process. Lett., 57:125-128, 1996.

5. G. File. The relation of two patterns with comparable language. In Proc. STACS
1988, volume 294 of LNCS, pages 184-192, 1988.

6. T. Harju and J. Karhuméki. Morphisms. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 1, chapter 7, pages 439-510. Springer, 1997.

7. T. Jiang, E. Kinber, A. Salomaa, K. Salomaa, and S. Yu. Pattern languages with
and without erasing. Int. J. Comput. Math., 50:147-163, 1994.

8. T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Decision problems for patterns. J.
Comput. Syst. Sci., 50:53-63, 1995.

9. A. Mateescu and A. Salomaa. Finite degrees of ambiguity in pattern languages.
RAIRO Inform. théor., 28(3-4):233-253, 1994.

10. A. Mateescu and A. Salomaa. Patterns. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 1, chapter 4.6, pages 230—242. Springer,
1997.

11. E. Ohlebusch and E. Ukkonen. On the equivalence problem for E-pattern lan-
guages. Theor. Comp. Sci., 186:231-248, 1997.

12. D. Reidenbach. A discontinuity in pattern inference. In Proc. STACS 200/, volume
2996 of LNCS, pages 129-140, 2004.

13. D. Reidenbach. On the learnability of E-pattern languages over small alphabets.
In Proc. COLT 2004, volume 3120 of LNAI pages 140-154, 2004.

14. G. Rozenberg and A. Salomaa. Handbook of Formal Languages, volume 1. Springer,
Berlin, 1997.

15. T. Shinohara. Polynomial time inference of extended regular pattern languages.
In Proc. RIMS Symp., volume 147 of LNCS, pages 115-127, 1982.

16. A. Thue. Uber unendliche Zeichenreihen. Kra. Vidensk. Selsk. Skrifter. I Mat.
Nat. Kl., 7, 1906.

17. A. Thue. Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Kra.
Vidensk. Selsk. Skrifter. I Mat. Nat. Kl., 1, 1912.

