

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288385694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Genetic algorithm based software integration with minimum software risk

L Yang1*, B F Jones2, and S H Yang1

1Computer Science Department, Loughborough University, Loughborough, LE11 3TU, UK

2Applied Computing Department, University of Derby, Derby, DE22 1GB, UK

Abstract. This paper investigates an approach of integrating software with a minimum risk using Genetic

Algorithms (GA). The problem was initially proposed by the need of sharing common software components

among various departments within a same organization. Two significant contributions have been made in this

study: (1) an assimilation exchange based software integration approach is proposed; (2) the software integration

problem is formulated as a search problem and solved by using a GA. A case study is based on an on-going

software integration project carried out in the Derbyshire Fire Rescue Service, and used to illustrate the

application of the approach.

Keywords: software integration; software risk; genetic algorithm; fire risk management.

* Corresponding author.
Email address: L.Yang@Lboro.ac.uk (Dr L. Yang). The short version of this paper was presented in the International
Conference on IEA/AIES 2004 in Canada.

1. Introduction

Any large organization encompasses many islands of information and automation. To decrease costs and increase

productivity, these large organizations need to eliminate silos of information and automation through software

application integration. There are various ways to categorize the software application integration. Twenty years

ago Miller [1] categorised software integration as database integration, operating environment integration, and

user interface integration. Twenty years later, with the support of the web and Internet technologies, Johnson [2]

categorized software integration capabilities into data integration, process integration and content integration.

Data integration lets applications share and exchange relevant data and transactions. The goal of data integration

is to deliver a single virtual database through data-oriented application integration. Process integration lets

applications and people initiate the consume events and participate in various business processes that span

multiple applications or organizations. Process integration can increase the efficiency in executing the process by

increasing the level of process automation internally and externally. Content integration lets application users

access, aggregate, deliver, and exchange all relevant content, regardless of how the content is managed or where

the content resides. The cornerstone of content integration is providing a single point of access to relevant

content, no matter where it’s managed. These three types of integration are complementary and greater than the

sum of their parts. Neglecting any one type of integration will cause the enterprise or organization not to realize

its goals of decreased costs, increased efficiency, and increased revenue. There are other categorizations of

software application integration – such as Enterprise Application Integration (EAI) [3], Business-to-Business

(B2B) integration [4], and Application-to-Application (A2A) integration [5, 6].

This work was initially proposed by the need of sharing common software components among various

departments within a same organization in order to reduce IT infrastructure costs. In our previous work [7, 8] a

generic architecture of an Assimilation Exchange (AX) has been proposed and this can be used to underpin

strategies for enterprise integration in EAI, and knowledge and complexity management in B2B. Such an

exchange is constructed through the assimilation of parts of information infrastructure and business processes

from various organizations. Integration of a partner IT infrastructure and technology into an AX can mean

significant cost savings in terms of reduced IT infrastructure costs and overheads since resources and systems

can be assimilated into the exchange and shared with other partners, thus introducing a shared cost saving. One

of the key issues in the design of the AX is how to choose the participating software components to meet the

specified functionality and achieve a minimum risk as well. This article will extend the AX into a generic

software integration approach and give a systematic method for establishing the AX. The design of the AX is

transferred to an optimal search problem with the objectives of both minimizing the software risk and achieving

the specified functionality.

Software risk is a measure of the likelihood and loss of an unsatisfactory outcome affecting the software product.

It is hard to precisely estimate the software risk. The Software Engineering Institute (SEI) deals with software

risk on a high/medium/low (H/M/L) basis. Some researchers [9, 10] used quantitative factors such as complexity

factors, connection factors, and severity indices for the estimation of software risk. The more complex the

software is, the higher the probability that it will have faults. The complexity of the software is composed of

component complexity and connection complexity. The former describes the complexity of the behaviour of

individual components, which can be specified using state-charts that define the component’s states and how it

responds to external stimuli according to its state. The latter describes the interaction between components,

which can be specified using sequence diagrams, and defined as the sequence of interactions between

components in a timely ordered manner. The complexity of a component is not a sufficient measure for assessing

the risk associated with its failure. Those components in the software system, which require special development

resources due to the severity and/or criticality of their failures, must be taken into consideration. The Failure

Mode and Effect Analysis (FMEA) technique is a systematic approach that details all possible failure modes and

identifies their resulting effect on the software system [11].

The rest paper is organized as follows. Section 2 reviews two generations of software integration. The weaknesses

of them have been highlighted. Section 3 describes the AX based software integration approach. Section 4

reformulates the software integration problem as a search problem. Software component risk assessment is

presented in Section 5. Section 6 is the application of the AX based software integration approach to the

Derbyshire Fire Rescue Service. This case study was based on an on-going software integration project. Section 7

concludes the paper and discusses future extensions.

2. Two generations of software application integration

There are various approaches for achieving software application integration [2-6]. These approaches can be

summarized as two generations. The first generation involves establishing a basic data interchange infrastructure

between each pair of applications. It has been known as the point-to-point integration. Individual applications are

loosely coupled, permitting a degree of application independence. The shortcoming of the point-to-point

integration is that the number of interfaces required grows exponentially. With n applications, n(n-1) interfaces

may be required since each application may need an interface with every other application. The impact of minor

changes in communication requirements and that of adding a new application is significant. Maintenance is

clearly a nightmare. Two applications, running on the same computer, written to the same standard can

communicate easily. Unfortunately, most point-to-point integration doesn’t fit this perfect world. Therefore such

integration is impractical for a large-scale enterprise and organization.

The second generation of software application integration involves a mediator to establish a common

communication channel for all individual applications. A particular approach in this generation is message bus

based integration [6, 12], which requires interfacing each application to the message bus through an adapter.

Each application has only one programmatic interface, the message bus. Applications communicate by

publishing a message to the bus, which delivers the message to those who require. However, this solution may

not be logically much different from the point-to-point solution if every application needs a different messaging

interface with every other application. Another more serious problem is that the information flow is embedded in

the application and is practically impossible to be viewed at a high level of abstraction. Changes in the flow will

require changes in application logic.

3. AX based software integration

It has been recognized by large organizations that many duplicated functions and IT systems have been

implemented and used in their IT infrastructure. With the widespread availability of Internet technologies, there is

considerable potential for new forms of software application integration to reduce the duplicated IT systems and

eliminate the silos of information. One new form of integration is the AX proposed in our previous work [7, 8].

An AX is an advanced exchange that assimilates parts of existing systems from various applications and uses

them to create a value-adding infrastructure, shared by the partners. Each participant contributes to the AX a

number of components of their information infrastructure, which are assimilated, shared and inter-operated within

the AX. In doing so, the AX may offer the realisation of a shared system thus reducing costs, risks and overheads

through the sharing of common components and information infrastructure. The concept of the AX is illustrated

in Fig. 1. The AX can be constructed through the assimilation of parts of existing applications from various

organisations. As a simple case, the AX may present a hub for common communication infrastructure between

partnering applications. More complex forms will involve sophisticated forms of information infrastructure. The

infrastructure that is assimilated into an exchange may represent significant parts of an organization, even entire

departments, and therefore gives rise to a form of synchronised outsourcing as several organisations ‘synchronise’

their on-line cooperation.

In general, most applications can be separated into public, private and back-end part, as shown in Fig. 2. The

public parts should be typically developed by detailed agreement between various partners, or have been codified

by a standards body or consortium. The private parts communicate with the public parts and are not available to

the extended applications. Furthermore, to truly support the public parts, back-end internal parts also need to be

seamlessly integrated into the private parts through the application integration. The AX in the logic centre acts as

a coordinator and an information post office for all public parts contributed by various partners. Therefore,

external IT infrastructures are available for AX participators. All communications between participating

applications take place through the AX so that all applications can collaborate and synchronize together to

achieve the defined functionality.

From software engineering perspective, the AX is an integration of a number of software components offered by a

number of participants to achieve a defined goal with a minimum risk. The challenge is how to choose these

components from participants to achieve the defined functionality and minimize the risk at the same time. This

challenge is explored in the next section by reformulating the problem as a search problem.

4. Reformulating software integration as a search problem

Harman and Jones [13] proposed search-based software engineering in 2001, which mainly focused on software

testing and test data selection [14]. To the authors’ knowledge, meta-heuristic search-based approach has never

been used in software integration before. The principal intention of this section is to demonstrate that the

reformulation of software integration as a search problem is conceptually feasible.

In general, in order to present any problem as a meta-heuristic search problem, it is necessary to define:

• A representation of the problem which is amenable to symbolic manipulation,

• A fitness function defined in terms of this representation, and

• A set of manipulation operators.

The representation of a candidate solution is critical to shaping the nature of the search problem. Floating-point

numbers and binary code are representations, which are frequently used in existing applications. The fitness

function is the characterization of what is considered to be a good solution. Generally it will be sufficient to know

which of two candidate solutions is better according to the fitness function. Different search techniques use

different operators. As a minimum requirement, it will be necessary to mutate an individual representation of a

candidate solution. Genetic algorithms include three operators: mutation, crossover and reproduction. These

issues are covered in detail in the general literature on meta-heuristic search [15, 16].

4.1 Mathematical model of the AX

As described in Sections 3, the AX is an integration of a number of software components offered by a number of

participants. The selected AX components should achieve a defined functionality and minimise the risk as well. In

most cases it may be hard to define functionality as numerical values. The symbolic description and the set theory

are used in this study for modeling of the functionality of the AX. Obviously, the overall required functionality, F,

of the AX is the joint set of all the required sub-functionality, Fk, as shown in Equation 1, and must be provided

by the aggregated functionality, fij, of all the selected components mij, as shown in Equation 2. Occurij is a binary

value, representing the occurrence of a component mij in the AX. K is the number of the sub-functionalities. M is

the number of participants in the AX. Ni is the number of the components of the participant i (i=1, … M).

k

K

k
FF

1=
= U

(1)

 (2)

where







=)(0
)(1
dnotSelecteabsentijm

Selectedpresentijm
ijOccur

(3)

ijij

N

j

M

i
OccurfF

i

×=
== 11
UU

The functionality of the component, fij, can be the same as one of the sub-functionalities denoted by the symbol

‘=’, or include more than one sub-functionalities denoted by the symbol ‘⊃’, or be excluded from the overall

required functionality, F, denoted by the symbol ‘∩’. They are described in the following equations:









=
⊃
=

φkij

kij

kij

Ff
Ff
Ff

I

(4)

where ø is the empty set.

Similarly, the overall risk, R, is contributed by all the selected components ijm , and is represented in Equation 5.

ij

M

i

N

j
ij OccurRR

i

×=∑∑
= =1 1

(5)

where Rij is the risk associated with the component ijm , which is composed of a number of associated metrics or

parameters, l
ijp (l=1, 2, …, L), such as reliability, coupling, security, complexity, and so on. In principle, Rij is

described as Equation 6.

),,,,(1 L
ij

l
ijijijij pppRR LL= (6)

Equations 1 to 6 form the mathematical model of the AX based software integration problem. This problem can

be formally described as: choose the values of Occurij in Equations 2 and 5 for the components mij contributed by

the participants {P1, P2, …, PM} so that the overall risk R described in Equation 5 achieves its minimum value and

the overall functionality F described in Equation 1 fit Equation 2.

4.2 Reformulating software integration as a GA problem

The above problem can be solved using genetic algorithms by applying Equation 2 as the constraint and using the

overall risk R as the fitness function. First all, a representation of the problem, i.e. a chromosome, is required. The

chromosome can be expressed as a binary string, which is the set of the occurrences, Occurij, of all the possible

components mij.

MMNMMN OccurOccurOccurOccurOccurOccur LLLL 2111211 1 (7)

The string length is equal to the total number of the components mij, i.e.∑
=

M

i

iN
1

. A population is composed of a

number of chromosomes. The initial value of the population is formed randomly and then subjected to

reproduction, mutation, and crossover to form the next population, which should contain better possibilities to

minimize the fitness function. The overall risk representation R is chosen as the fitness function here.

ij

M

i

N

j
ijfitness OccurRf

i

×= ∑∑
= =1 1

(8)

In order to satisfy the constraint shown in Equation 2, a penalty term is added into the fitness function, as shown

in Equation 9. This penalty term is represented by the number of missing sub-functionalities E.

EOccurRf ij

M

i

N

j
ijfitness

i

+×= ∑∑
= =1 1

(9)

The number of missing sub-functionalities, E, can be found by comparing the joint set of Fk (k=1, 2, …, K) and the

joint set of fij, i.e.

ijij

N

j

M

i
k

K

k
OccurfF

i

×−
=== 111
UUU

(10)

where K is the total number of sub-functionalities, which is obtained from the decomposition of the AX overall

functionality. If all sub-functionalities have been implemented E will be equal to zero and the fitness function,

ffitness, becomes the value of the risk.

5. Software component risk assessments

According to the NASA Technical Standard [17], risk is a function of the possible frequency of occurrence of an

undesired event, the potential severity of resulting consequences, and the uncertainties associated with the

frequencies and severity. In the most risk assessment risk is defined as the multiplication of two factors:

frequency (or possibility) of malfunctioning (failure) and the consequence of malfunctioning (severity), as shown

in Equation 11. In large hierarchical systems, a system is composed of several subsystems, which in turn, are

composed of components. The system risk is an aggregate of individual component risk factors [10, 18].

Risk = frequency × severity (11)

5.1 Frequency of failure

The frequency of failure depends on the probability of existence of a fault combined with the possibility of

exercising that fault. For the sake of the simplicity, in this study, the frequency of failure is estimated by

multiplying the frequency of failure for each line code with the number of lines of code (LOC). For example,

assuming that the frequency of failure for each line code is 10-5 per year, the frequency of failure for a 1000 lines

code component is computed to be about 0.01 per year. This estimating method was adopted by other researchers

as well [10]. For the companies that are using shrink-wrapped software in which the LOC is not known, other

proper risk analysis method is required.

5.2 Severity analysis

Severity analysis is a procedure by which each potential failure mode is ranked according to the consequences of

that failure mode. Severity considers the worst-case consequences of a failure determined by the degree of

injury, property damage, system damage, and mission loss that could ultimately occur. FMEA is suitable for

severity analysis. When analyzing failure modes, first, the analyst identifies failure modes of components, then

studies the effect of these failures, and finally ranks the severity of each failure, and identifies the worst-case

effect on the system. The domain expert determines a severity for the faulty component for each scenario by

comparing the faulty result with the normal operation. Severity classification recommended by

MIL_STD_1629A [11] is used in this study and illustrated in Table 1.

6. Case study
An on-going project in the Derbyshire Fire and Rescue Service (DFRS) has been selected as the case study to

illustrate the application of the proposed software integration approach. There are eight physically independent

systems being used in the DFRS. The goal of the case study is to deliver a single virtual application through the

AX based software integration so that the common used components in these isolated systems can be shared and

inter-operated within this virtual application. These eight systems are:

• Mobilising System (MOB): provide the current locations of the available fire engines at every fire station in

the DFRS, and record the emergency call details.

• Management Information System (MIS): provide the access to the fire incident databases, the personnel

databases, and the relevant documents.

• Risk Assessment System (RISK): provide a building risk categorization and an access plan to higher risk

premises.

• Geographical Information System (GIS): provide the risk information of buildings and areas in a visual way.

• Fire Safety System (SAFETY): is a database system, particularly designed for producing statistics reports

for the combined fire authority and assisting in forecasting of fire safety activities and fire occurrence.

• Crime and Disorder System (CRIME): store all the crime and disorder information, such as malicious call,

hoax fire call, and vehicle crime.

• Hydrant System (HYDRANT): provide hydrant information, including hydrant location, size, status, and

maintenance history.

• Location Optimisation System (OPTIM): provide a computing environment for optimising fire station

location, fire fighter and fire engine distribution.

6.1 Mathematical model of the DFRS

In terms of the above system description, there will be 8 participants in the AX. Each of them has a number of

public components that might be contributed to the AX. The functionality of each component is represented in a

set of symbolic variables, fij. The risk generated by the components is computed in the form of Equation 11, and

is represented in a numerical value. Table 2 lists the desired sub-functions, which the AX is expected to offer.

Table 3 summarizes the individual participants, the components provided by the participants, the functionality of

each component, and the risk generated by them. The risk in Table 3 is computed by the frequency of failure

multiplied by the severity index for each component. Table 4 shows the decomposition of the functionality of

each component. The parameters of the mathematical model of the DFRS described in Equations 1 to 6 are list in

Tables 2 to 4. Equation 6 has been replaced by Equation 11.

6.2 Results and analysis

After introducing the parameters in Tables 2, 3 and 4 into the mathematical models in Equations 1 to 10, Rij in

Equation 6 becomes a constant; the chromosome in Equation 7 is a 20-bits binary string. A GA developed in our

previous work [19] is applied to find a 20-bits binary string: namely, the one which makes the fitness function or

the risk have the smallest value among all possible values of the risk. We randomly choose 20 chromosomes to

form the first generation. The one with the smallest value of the risk is placed in the beginning of each

generation. The probabilities for the mutation and crossover operations are set as 0.1 and 0.6 respectively. A

satisfactory solution is derived after 30 generations. The final result and part of the generations are shown in

Table 5. The components with the occurrence value 1 are selected to build the AX and are shared by each other.

The components with the occurrence value 0 are not integrated in the AX for their functionalities have been

implemented by the selected components and/or they make a significant contribution to the overall risk. Because

all the sub-functionalities have been implemented in the AX, i.e. E in Equation 9 is equal to 0, the fitness

function is equal to the overall risk. The minimum risk achieved is 1.775 with this search result, as shown in Fig.

3.

7. Conclusions

This paper discussed the AX based approach to software integration with the special emphasis on the component

selection and the risk minimization. The AX based software integration is proposed by the need of sharing

common software components among various departments within a same organization. The AX assimilates parts

of existing systems from various applications and is shared by the partners. This paper has addressed one of the

challenges in the establishment of the AX that is how to choose the components to achieve the desired

functionality and to minimize the risk at the same time. For the sake of the simplicity, the software component

risk is estimated by the frequency of failure multiplied by the severity index. The software integration problem

has been re-formulated as a search problem and solved by using a GA. A case study from the DFRS is used to

illustrate the applicability of the approach. The enumeration method could be used to find exactly the same

solution for this case study through examining all possible combinations of available components for the AX so

as to achieve the lowest risk and implement the desired functions as well. In this case study the number of all

possible combinations of available components is 220. If the number of components and the number of the

functions become bigger and bigger it might be impossible to find the solution by using the enumeration method.

The advantage of using the GA for the AX based software integration is that the method is applicable for any

scale problem and obviously more efficient than any enumeration.

Acknowledgements

Professor M Gell has made an invaluable contribution to the AX study, which forms the starting point of this

paper. The data used in this work was collected from the Derbyshire Fire Rescue Service. Appreciation should

be made to their kindly collaboration during the data collection.

References

[1] M.J. Miller, Software integration, Popular Computing, 3 (2) (1983) 106-109, 118-&, 132-138.

[2] S. Johnson, End-to-end integration: data, process, and content, eAI Journal, December (2001) 41-43.

[3] D.S. Linthicum, Enterprise application integration, Addison-Wesley, London, 2000.

[4] L. Robison, Implementing B2B Commerce with .Net, Addison-Wesley, 2002.

[5] J. Schmidt, Enabling next generation enterprises, eAI Journal, July/August (2000) 74-80.

[6] B.N. Rao, Extreme application integration, eAI Journal, May (2002) 36-40.

[7] L. Yang, J. Hayes, M. Gell, Assimilation exchanges and integrated digital environments, Proceedings of the

1st CIRP (UK) seminar on digital enterprise technology, Durham, UK, 2002, pp. 303-305.

[8] L. Yang, Machine learning methodologies applied to fire risk management, PhD thesis, the University of

Derby, 2004.

[9] J. Munson, T. Khoshgoftaar, Software metrics for reliability assessment, in: M. Lyu, (Ed.), Handbook of

Software Reliability Engineering, 1996, pp. 493-529

[10] S.M. Yacoub, H.H. Ammar, A methodology for architecture-level reliability risk analysis, IEEE

Transactions on Software Engineering, 28 (6) (2002) 529-547.

[11] US MIL_STD_1629A, Procedures for performing failure mode effects and criticality analysis, November 1984.

[12] G. Cumming, K. Hanson, Interaction integration, eAI Journal, April (2002) 28-31.

[13] M. Harman, B.F. Jones, Search-based software engineering, Information and Software Technology, 43 (2001) 833-839.

[14] B. F. Jones, H. H. Sthamer, D. E. Eyres, Automatic structural testing using genetic algorithms, Software Engineering

Journal, September (1996) 299-306.

[15] D. E. Goldberg, Genetic algorithms in search, optimisation and machine learning, Addison-Wesley, Reading, MA,

1989.

[16] D. Whitely, A genetic algorithm tutorial, Statistics and computing, 4 (1994) 65-85.

[17] NASA-STD-8719.13A, Software safety, NASA Technical Standard, September 1997.

[18] D.E. Neumann, An enhanced neural network technique for software risk analysis, IEEE Transactions on Software

Engineering, 28 (2002) 904-912.

[19] L. Yang, M. Gell, C.W. Dawson, M.R. Brown, Clustering hoax fire calls using evolutionary computation technology,

Lecture Notes in Development in Applied Artificial Intelligence series, LNAI 2718, 2003, pp. 644-652.

Table 1 Severity classification

Category Description Severity index

Catastrophic A failure may cause death or total system loss. 0.95

Critical A failure may cause severe injury, major property damage, and major

system damage.

0.75

Marginal A failure may cause minor injury, minor property damage, and minor

system damage.

0.50

Minor A failure is not serious enough to cause injury, property damage, or

system damage, but will result in unscheduled maintenance or repair.

0.25

Table 2 AX functions

Function (K=11) Description

F1 Provide the available resource information in the DFRS, including available fire engines

and fire fighters.

F2 Provide the current fire incident information.

F3 Provide the fire incident information during different periods of time

F4 Provide the fire risk categorization for a particular building

F5 Provide an access plan for any particular higher risk premise

F6 Provide the fire risk categorization for a particular area

F7 Provide a forecasting function of the fire incident occurrence

F8 Provide various crime and disorder information such as hoax fire call, malicious call.

F9 Provide the location information of hydrant points

F10 Provide the maintenance information of hydrant points

F11 Provide a computing environment for locating fire stations, fire fighters and fire engines.

Table 3 Components and risks

Participant

(M=8)

Public

components

Functionality Risk

(Rij, i=1, …, 8; j=1, …,

Ni)

Number of the

components (Ni,

i=1, 2, …, 8)

P1, MOB m11, m12, m13, m14,

m15

f11, f12, f13, f14, f15 0.375, 0.1875, 0.375,

0.375, 0.3

5

P2, MIS m21, m22, m23 f21, f22, f23, 0.025, 0, 0.0625 3

P3, RISK m31, m32, m33 f31, f32, f33 0.375, 0.375, 0.375 3

P4, GIS m41, m42, m43 f41, f42, f43 0.375, 0.3, 0.3 3

P5,

SAFETY

m51, m52 f51, f52 0.1, 0.25 2

P6, CRIME m61, m62 f61, f62 0.15, 0.15 2

P7,

HYDRANT

m71 f71 0.1 1

P8, OPTI M m81 f81 0.1 1

Table 4 Functionality of components

Function Description Decomposition

f11 Provide the current available resource information in the DFRS,

including available fire engines and fire fighters.

f11= F1

f12 Provide the fire incident information during the latest eight hours. f12⊃ F2

f13 Provide the fire risk categorization for a particular building. f13= F4

f14 Provide an access plan for any particular higher risk premise. f14= F5

f15 Provide the location information of hydrant points. f15= F9

f21 Provide the access to the fire incident database f21⊃ F3

f21⊃ F8

f22 Provide the access to the personnel database f22∩ Fk=Φ, k=1,…,11

f23 Provide the access to the relevant documents f23⊃F10

f31 Provide the fire risk categorization for a particular building f31= F4

f32 Provide an access plan for a particular higher risk premise f32= F5

f33 Provide the fire risk categorization for a particular area f33= F6

f41 Provide the risk information of buildings f41⊃ F4

f42 Provide the risk information of areas f42⊃ F5

f42⊃ F6

f43 Provide the location information of hydrant points f43= F9

f51 Produce statistics reports f51∩ Fk=Φ, k=1,…,11

f52 Provide a forecasting function of the fire incident occurrence f52= F7

f61 Provide various crime and disorder information such as hoax fire

call, malicious call.

f61= F8

f62 Identify the higher crime and disorder areas f62∩ Fk=Φ, k=1,…,11

f71 Provide the location and maintenance information of hydrant points f71⊃ F9

f81 Provide a computing environment for locating fire stations, fire

fighters and fire engines.

f81= F11

Table 5 Components proposed by GA and corresponding fitness value

Components proposed by GA

MOB MIS RISK GIS SAFETY CRIME HYDRANT OPTIM

Fitness

function

ffitness

m11 m12 m13 m14 m15 m21 m22 m23 m31 m32 m33 m41 m42 m43 m51 m52 m61 m62 m71 m81

0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 0 0 7.975

0 0 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 7.225

0 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 7.088

1 1 0 0 0 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 6.900

0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 0 6.488

1 1 1 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 6.225

0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 6.188

1 0 0 1 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 5.763

1 1 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 5.450

1 1 1 0 1 1 0 0 0 0 1 1 0 1 0 1 1 1 1 1 5.063

1 1 1 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 4.788

1 1 1 0 0 0 1 1 1 0 1 0 1 0 0 1 0 0 1 1 4.500

1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 3.863

1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 0 0 1 2.950

1 1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 1 2.225

1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 1 0 0 1 1 2.225

1 1 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 1 1.775

 Note: 1 represents the component selected; 0 represents the component not selected

AX

Application
A

Application
C

Application
B

Application
D

Fig. 1. Conceptual model of the AX [7, 8].

AX

Application
A

Application
C

Application
B

Application
D

Private
components

Public
components

Back-end
components

Fig. 2. Decomposition of an application in the AX [8].

0
1
2
3
4
5
6
7
8
9

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Generation

Fi
tn

es
s

Va
lu

e

Fig. 3. Fitness values of the GA over the generations.

