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Abstract

The scattering of water waves by a dock of finite width and infinite length in water of

finite depth is solved using the modified residue calculus technique. The problem is for-

mulated for obliquely incident waves and the case of normal incidence is recovered by

taking an appropriate limit. Exciting forces and pitching moments are calculated as well

as reflection and transmission coefficients. The method presented in this paper takes ac-

count of the known solution for the scattering by a semi-infinite dock to produce new and

extremely accurate approximations for the reflection and transmission coefficients as well

as a highly efficient numerical procedure for the solution to the full linear problem.

AMS subject classification: 76B15
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1 Introduction

Problems concerning the interaction of water waves with a rigid plate of finite width
and infinite length lying in the free surface have a long history. Such problems
are interesting for many reasons. First, the simple geometry allows considerable
mathematical progress to be made and thus dock problems can be used as model
problems against which to test new techniques or numerical results. Secondly
they can be used as the first approximation in a perturbation analysis of wave
interactions with shallow-draft ships, as was done in [15] where an integral equation
technique was used to examine the heave radiation problem in deep water and in
[6] where a similar method was used to study the oblique scattering problem, again
for infinitely deep water.

If the rigid plate is semi-infinite in extent rather than of finite width, then many
interaction problems yield explicit solutions. Thus the Wiener-Hopf technique was
used in [7] to solve the interaction of oblique waves (generated by a line source
along the edge of the plate) with a semi-infinite dock in water of finite depth.
The case of normally incident waves is recovered by taking an appropriate limit.
The method used is also applicable to infinite depth, but in that case the method
breaks down in the limit corresponding to normally incident waves. However, this
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latter problem can be solved using complex variable theory and a method related
to Laplace transforms, see [5]. This method is reproduced in both [8] and [11].

Most work on finite dock problems has concentrated on the infinite depth case
and utilized an integral equation approach. A standard application of Green’s
theorem using a fundamental Green’s function for two-dimensional wave motions
leads to an inhomogeneous Fredholm integral equation of the second kind for the
velocity potential on the dock, in which the kernel is the vertical derivative of
the Green’s function. For normal incidence, Rubin [21] showed how this integral
equation could be transformed into one with a much simpler kernel (though a
more complicated right-hand side) and used this new formulation to prove the
existence and uniqueness of a solution. The transformed integral equation was
used in [22] and [15] to produce numerical solutions. For the case of oblique waves,
the transformation can still be made (see [14]), but results were computed in [6]
from the more complicated integral equation. The difficult subject of short wave
asymptotics for finite dock problems in infinite depth was also the subject of a
series of papers; [8, 9, 11, 12, 13], the last of these also including some results for
finite water depths.

The first results for the finite depth case were based on shallow water theory [23]
and then numerical calculations of the reflection and transmission coefficients were
presented in [18] for the scattering problem based on the full linear theory. Only the
case of normal incidence was considered in [18], though the matched eigenfunction
technique that was employed easily generalizes to the oblique incidence case. A
general numerical scheme, based on the finite element method, for the solution of
oblique scattering problems by infinite cylinders of constant cross-section lying in
the free surface in water of finite depth was developed in [2]. In particular, Bai
considered the diffraction of waves by a cylinder with rectangular cross-section,
including the case of zero draft, which corresponds to the finite dock problem.
Recently the finite depth and oblique incidence problem has been attacked using
the complicated machinery of dual integral transforms [3]. The solution given is
extremely complicated and no numerical results are presented.

The purpose of this paper is to show that this problem can in fact be solved
in an elegant manner, one which has the advantage over Mei and Black’s solution
procedure in that it takes into account the fact that the semi-infinite dock prob-
lem possesses an explicit solution. Another advantage of the method described
below over that used in [18] is that it accurately and explicitly models the known
singularity in the derivative of the potential at the plate edge.

The technique that we use is based on a combination of matched eigenfunction
expansions and residue calculus theory (the latter being a technique developed for
solving electromagnetic waveguide problems, see [19]). This is quite a technical pro-
cedure, but the resulting formulas for the reflection and transmission coefficients,
R and T , are simple and make it straightforward to evaluate these quantities. To
obtain numerical values it is necessary to first compute the equivalent quantities for
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the semi-infinite dock (for which there are explicit formulas) and then to compute
finite-width corrections by solving two infinite systems of real algebraic equations.
These systems are exponentially convergent with increasing dock width and con-
verge extremely rapidly provided the ratio of plate width to water depth (2a/h) is
not too small. As well as providing an efficient method for accurately computing R
and T , the formulation also enables us to derive an approximation based on a 1×1
truncation of the infinite systems, an approximation which leads to new simple
formulas for R and T that are extremely accurate except for very small values of
a/h.

2 Formulation

Cartesian coordinates are chosen with the (x, y)-plane corresponding to the undis-
turbed free surface and z pointing vertically upwards. We consider the diffraction
of an incident plane wave making an angle θI with the positive x-axis by a rigid
dock which occupies z = 0, −a ≤ x ≤ a, −∞ < y < ∞ in water of uniform
depth h. If we seek solutions which are time harmonic with angular frequency ω
then, under the usual assumptions of linear water wave theory, the solution can
be represented by a velocity potential Re

{
Φ(x, y, z)e−iωt

}
where Φ(x, y, z) satisfies

Laplace’s equation.
We begin by defining an orthogonal set of functions which are in fact the ap-

propriate depth eigenfunctions for this problem. Thus

ψn(z) = N−1
n cos kn(z + h), N2

n =
1
2

(
1 +

sin 2knh
2knh

)
, (2.1)

where u = ±kn, n ≥ 0 are the solutions to the dispersion relation K+u tanuh = 0
in which K = ω2/g, g being the acceleration due to gravity. Here k0 = −ik (k > 0)
is purely imaginary and kn, n ≥ 1 are real and positive and the depth eigenfunctions
form an orthogonal set since

1
h

∫ 0

−h
ψn(z)ψm(z) = δmn. (2.2)

The incident wave can be represented by the potential exp[iα(x+a) + i`y]ψ0(z)
where ` = k sin θI, α = k cos θI = (k2 − `2)1/2 and the oscillatory time dependence
has been suppressed. The total velocity potential for the scattering problem can
similarly be written φ(x, z) exp(i`y) where φ(x, z) satisfies

∇2
xzφ− `2φ = 0 in −h < z < 0, −∞ < x <∞, (2.3)

φz = 0 on z = −h, (2.4)
Kφ = φz on z = 0, |x| > a, (2.5)
φz = 0 on z = 0, |x| ≤ a (2.6)
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and we choose to define the reflection and transmission coefficients R and T through
the far-field behaviour

φ ∼ (eiα(x+a) +Re−iα(x+a))ψ0(z) as x→ −∞, (2.7)

φ ∼ T eiα(x−a)ψ0(z) as x→∞. (2.8)

The problem is linear so we can of course multiply the solution by an arbitrary
constant. The incident wave in (2.7) corresponds to a wave with free surface given
by η(x) exp(i`y) where η = (iω/gN0)eiα(x+a) cosh kh.

One final condition needs to be applied and that is a condition which specifies
the nature of the solution near the plate edge, (x, z) = (a, 0). If we insist that
φ is regular at this point then [24], Theorem 3.3, shows that φ ∼ P (r, r ln r) as
r = [(x− a)2 + z2]1/2 → 0, where P is some polynomial. It then follows that

∂φ

∂r
∼ A ln r as r → 0, (2.9)

for some constant A.
To make the solution procedure simpler we use the fact that

R =
1
2

(R+ +R−), T =
1
2

(R+ −R−), (2.10)

where R+ and R− are the reflection coefficients for symmetric and antisymmetric
problems in x < 0 (with potentials φ+ and φ−) and with the boundary conditions

φ+
x = 0 on x = 0, (2.11)

φ− = 0 on x = 0. (2.12)

In x < −a we can expand the potentials as eigenfunction series as follows:

φ± = (e−α0(x+a) +R±eα0(x+a))ψ0(z) +
∞∑
n=1

A±n eαn(x+a)ψn(z), (2.13)

where α0 = −iα = −i(k2− `2)1/2, αn = (k2
n+ `2)1/2, n ≥ 1, whereas in −a < x < 0

we expand φ± as

φ± =
∞∑
n=0

εn
2
B±n

(
eβnx ± e−βnx

)
cosλnz, (2.14)

where βn = (λ2
n + `2)1/2 and λn = nπ/h. The edge condition (2.9) enables us to

determine the behaviour of the coefficients An and Bn for large n. We use the
result that

∑∞
n=1 n

−1 exp(−nx) ∼ − lnx as x → 0+ (this can be derived using
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Mellin transforms, see e.g. [16]). It follows that we must have nAn = O(n−1),
nBn exp(βna) = O(n−1) and hence that

An = O(n−2), Bneβna = O(n−2) as n→∞. (2.15)

Equations (2.13)–(2.15) ensure that φ± satisfies all the appropriate equations
and boundary conditions, provided φ± and φ±x are continuous across x = −a. Note
from (2.14) that there will be significant differences depending on whether or not
` = 0. In particular, if ` = 0 the n = 0 term will not contribute to φ− or φ+

x .
Below, we will assume that ` 6= 0 and then recover results for the ` = 0 case (i.e.
normal incidence) by letting `→ 0.

The continuity of φ± and the orthogonality of the functions cosλmz on (−h, 0)
can be used to show that

2c0m +
∞∑
n=0

A±n cnm = ±1
2
B±m

(
eβma ± e−βma

)
m ≥ 0, (2.16)

where

cnm =
1
h

∫ 0

−h
ψn(z) cosλmz dz =

kn sin knh
hNn(k2

n − λ2
m)
. (2.17)

Similarly, the equation

∞∑
n=0

αnA
±
n cnm = ∓βm

2
B±m

(
eβma ∓ e−βma

)
m ≥ 0, (2.18)

results from the continuity in velocity. If we eliminate B±m between (2.16) and
(2.18) we obtain

∞∑
n=0

αnA
±
n cnm

(
1
αn

+
eβma ± e−βma

βm(eβma ∓ e−βma)

)
= −2c0m m ≥ 0. (2.19)

If we now define V ±0 = A±0 + 1 = R± and V ±n = A±nN0kn sin knh/Nnk0 sin k0h and
note that α2

n − β2
m = k2

n − λ2
m, we can rewrite this system of equations in the form

∞∑
n=0

V ±n

(
1

αn − βm
± e−2βma

αn + βm

)
=

1
α0 + βm

± e−2βma

α0 − βm
m ≥ 0 (2.20)

and, from (2.15), we require V ±n = O(n−1) as n → ∞. The method that we use
to solve this system is the modified residue calculus technique originally devised in
[20] and described in [10], §2.12, which takes advantage of the fact that the terms
exp(−2βma) all tend to zero rapidly as a/h gets large.
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Consider the function f±(z) = G±g(z)h±(z), where

g(z) =
1

z + α0

∞∏
n=0

1− z/βn
1− z/αn

, (2.21)

h±(z) = 1 +
∞∑
n=0

C±n
z − βn

(2.22)

and G±, C±n , n ≥ 0, are constants to be determined. It is possible to show that
g(z) = O(z−1) as |z| → ∞ provided we avoid a discrete set of real, positive values
(see Appendix A). We then consider the numbers

Im = lim
N→∞

1
2πi

∫
CN

f±(z)
(

1
z − βm

± e−2βma

z + βm

)
dz m ≥ 0, (2.23)

where CN are contours chosen to avoid the discrete set of points mentioned above
and on which |z| → ∞ as N → ∞. The behaviour of g for large z implies that
Im = 0 and then Cauchy’s residue theorem gives

f±(βm)± e−2βmaf±(−βm) + R(f± : −α0)
(

1
−α0 − βm

± e−2βma

−α0 + βm

)
+
∞∑
n=0

R(f± : αn)
(

1
αn − βm

± e−2βma

αn + βm

)
= 0, (2.24)

for each m ≥ 0, where R(f : z0) means the residue of f(z) at z = z0. A comparison
with (2.20) shows that our solution will be given by V ±n = R(f± : αn) provided
R(f± : αn) = O(n−1) as n→∞, G± is chosen so that R(f± : −α0) = 1 and

f±(βm)± e−2βmaf±(−βm) = 0 m ≥ 0. (2.25)

The fact that R(f± : αn) = O(n−1) as n → ∞ can easily be demonstrated using
the fact that f±(z) = O(z−1) as z → ∞ (see, e.g., Appendix C of [4]). We thus
define

G± =
1

h±(−α0)

∞∏
n=0

1 + α0/αn
1 + α0/βn

(2.26)

and then provided (2.25) is satisfied we have

R± = R(f± : α0) =
h±(−iα)
h±(iα)

R∞, (2.27)

where

R∞ = e−2iθI

∞∏
n=1

(1− iα/αn)(1 + iα/βn)
(1 + iα/αn)(1− iα/βn)

= e−2iθIe2iδ∞ , (2.28)
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δ∞ =
∞∑
n=1

(
tan−1(α/βn)− tan−1(α/αn)

)
. (2.29)

Note that as a/h → ∞, (2.25) reduces to f±(βm) = 0, which in turn implies that
C±m = 0, m ≥ 0 and hence that h±(z) ≡ 1. Thus the functions h±(z) can be
thought of as accounting for the finite length of the dock. In particular, R∞ is the
reflection coefficient for the semi-infinite problem.

In order to satisfy (2.25), the coefficients C±m, m ≥ 0 are the solutions to the
infinite systems of real equations

C±m ±Dm

∞∑
n=0

C±n
βm + βn

= ±Dm m ≥ 0, (2.30)

where

D0 = 2`e−2`a
∞∏
n=1

(1− `/αn)(1 + `/βn)
(1 + `/αn)(1− `/βn)

, (2.31)

and for m ≥ 1,

Dm =
2βm(`+ βm)(αm − βm)

(`− βm)(αm + βm)
e−2βma

∞∏
n=1
n 6=m

(1− βm/αn)(1 + βm/βn)
(1 + βm/αn)(1− βm/βn)

. (2.32)

Because of the presence of the factor exp(−2βma) in the expression (2.32) for
Dm, the systems of equations (2.30) converge very quickly provided a/h is not too
small and provide an extremely efficient method for computing the unknowns C±m.
Moreover, it is possible to prove (using the method described in Appendix B of [4])
that, for sufficiently large a/h, (2.30) has a unique solution with

∑∞
m=1(C±m)2 <∞.

Since the coefficients C±m are real it immediately follows from (2.27) that, as
one would expect, |R∞| = |R±| = 1. Combining the symmetric and antisymmetric
solutions using (2.10) we thus obtain

R =
1
2

(e2iδ+
+ e2iδ−)e−2iθIe2iδ∞ , T =

1
2

(e2iδ+ − e2iδ−)e−2iθIe2iδ∞ , (2.33)

where

δ± = arg
(
h±(−iα)

)
= arg

(
1−

∞∑
n=0

C±n
iα+ βn

)
(2.34)

and δ∞ is given by (2.29).
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Results for normal incidence can be extracted from the above analysis by taking
the limit as θI → 0 (i.e. `→ 0 for fixed k). First we note that in this limit

ln
∞∏
n=1

(1− `/αn)(1 + `/βn)
(1 + `/αn)(1− `/βn)

=
∞∑
n=1

ln
(1− `/αn)(1 + `/βn)
(1 + `/αn)(1− `/βn)

∼ 2`σ +O(`3),

(2.35)

where

σ =
∞∑
n=1

(
1
λn
− 1
kn

)
(2.36)

and hence

D0 ∼ 2`+ 4`2(σ − a) +O(`3). (2.37)

The m = 0 equation in (2.30) with the plus sign then becomes C+
0 = 0 and we only

need to solve the system for m ≥ 1. The leading order behaviour of the m = 0
equation in (2.30) with the minus sign is more complicated; we find that

(σ − a)C−0 +
∞∑
n=1

C−n
βn

= 1. (2.38)

Apart from these changes, we can simply set ` = 0 in the general expressions for
R and T .

It is also possible to examine the long wave limit, i.e. Kh→ 0, for fixed θI. In
this limit kh ∼ (Kh)1/2 and an analysis of (2.30) reveals that

δ+ ∼ θI − ka sin θI tan θI, δ− ∼ θI −
π

2
+ ka cos θI (2.39)

and hence that

R ∼ −ika sec θI, T ∼ 1 + ika sec θI cos 2θI. (2.40)

For θI = 0, these results agree with those in [17] after taking account the different
definitions of T used in that paper.

3 Forces

The non-dimensionalized vertical exciting force on the dock due to an incident wave
of unit amplitude is given by

F =
N0e−iαa

a cosh kh

∫ a

−a
φ
∣∣
z=0

dx =
N0e−iαa

a cosh kh

∫ a

0

φ+
∣∣
z=0

dx

=
N0e−iαa

cosh kh

∞∑
m=0

εmB
+
m

βma
sinhβma (3.1)
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and the non-dimensionalized pitching moment by

M =
N0e−iαa

a2 cosh kh

∫ a

−a
xφ
∣∣
z=0

dx =
N0e−iαa

a2 cosh kh

∫ a

0

xφ−
∣∣
z=0

dx

=
N0e−iαa

cosh kh

∞∑
m=0

εmB
−
m

β2
ma

2
(βma coshβma− sinhβma). (3.2)

We could calculate B± directly from (2.16) or (2.18) but it is more convenient to
proceed as follows. We rewrite equations (2.16) and (2.18) in the form

2βmc0m
eβma ± e−βma

+
∞∑
n=0

βmA
±
n cnm

eβma ± e−βma
= ±βmB

±
m

2
m ≥ 0, (3.3)

∞∑
n=0

αnA
±
n cnm

eβma ∓ e−βma
= ∓βmB

±
m

2
m ≥ 0, (3.4)

and then subtract one from the other.
The resulting system of equations can be reduced to

∞∑
n=0

V ±n

(
1

αn + βm
± e−2βma

αn − βm

)
=

1
α0 − βm

± e−2βma

α0 + βm
∓ 2hN0

k0 sin k0h
βmB

±
me−βma sinh 2βma m ≥ 0. (3.5)

We then consider

Im = lim
N→∞

1
2πi

∫
CN

f±(z)
(

1
z + βm

± e−2βma

z − βm

)
dz m ≥ 0 (3.6)

and obtain, since Im = 0,

∞∑
n=0

V ±n

(
1

αn + βm
± e−2βma

αn − βm

)
=

1
α0 − βm

± e−2βma

α0 + βm
− f±(−βm)∓ e−2βmaf±(βm) m ≥ 0. (3.7)

It follows that

± hN0

k0 sin k0h
βmB

±
meβma(1− e−4βma) = f±(−βm)± e−2βmaf±(βm) (3.8)

and if we use (2.25) we obtain

B±m = ±k0 sin k0h

hN0βm
f±(−βm)e−βma. (3.9)

9



It is straightforward to show that B±m exp(βma) = O(m−2) as m→∞ as required.
Hence

F = −Ke−iαa

2ah

∞∑
m=0

εm
β2
m

(1− e−2βma)f+(−βm) (3.10)

M =
Ke−iαa

2a2h

∞∑
m=0

εm
β3
m

(
βma− 1 + (βma+ 1)e−2βma

)
f−(−βm), (3.11)

where, from (2.21) and (2.26),

f±(−βm) =
2iα(`+ βm)(`+ iα)

k2(k2 + λ2
m)

h±(−βm)
h±(iα)

∞∏
n=1

(1− iα/αn)(1 + βm/βn)
(1− iα/βn)(1 + βm/αn)

. (3.12)

The long wave asymptotics of F and M are readily obtained from these expressions.
To leading order we have that as Kh→ 0, for fixed θI,

F → 2, M ∼ 2i
3
ka cos θI. (3.13)

4 Results

Equations (2.33)–(2.32) provide a numerically straightforward way of computing
the reflection and transmission coefficients for the finite dock problem in finite
depth. The infinite systems of equations that need to be solved converge extremely
rapidly and the sums and products that need to be evaluated cause no difficulty.
For example, the terms in the summation in the definition of δ∞, equation (2.29),
are O(n−3) as n→∞. This is computationally acceptable, but the series is easily
accelerated. By subtracting off the leading order asymptotics of the summand we
can derive the expression

δ∞ = −αhKh
π3

ζ(3) +
∞∑
n=1

(
tan−1(α/βn)− tan−1(α/αn) +

αhKh

n3π3

)
, (4.1)

in which ζ is the Riemann zeta function and the terms are O(n−5) as n→∞. All
the infinite products can be accelerated in the same way after first taking their
logarithms.

To demonstrate the rapid convergence of the infinite systems of equations we
can consider the case of a 1 × 1 truncation. If we only include one term from the
summation in (2.30), solve for C±0 and substitute into (2.34) we obtain

tan δ± ≈ ± sin 2θI

b−1 ± cos 2θI
, (4.2)
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a/h

θI 0.25 0.5 0.75 1

0◦ 8.6 0.94 0.13 0.021
40◦ 5.2 0.43 0.046 0.0056
80◦ 0.61 0.026 0.0020 0.00020

Table 1: Maximum percentage error (over all frequencies) when computing |R|
from the approximations (4.3) and (4.4).

where b = D0/2`. If we substitute this expression into (2.33) we obtain, after some
lengthy algebra, the approximations

R ≈ e2iδ∞e2iθI

(
b2 − 1
b2 − e4iθI

)
, T ≈ b e2iδ∞

(
1− e4iθI

b2 − e4iθI

)
. (4.3)

These approximations preserve the limiting behaviour in long waves given by (2.40).
If we take the limit of (4.3) as θI → 0 using (2.37) we obtain the following approx-
imations for the normal incidence case:

R ≈ k(σ − a)e2iδ∞

k(σ − a)− i
, T ≈ −ie2iδ∞

k(σ − a)− i
. (4.4)

The accuracy of these approximations, which appear to be new, depends strongly
on the value of a/h and to a lesser extent on the value of θI, with larger values
of either parameter resulting in greater accuracy. This is illustrated in Table 1
which shows the errors that result from using these approximations to compute
|R|. For each value of a/h and θI the table gives the maximum percentage error in
the computed value of |R| as K varies over the entire frequency range. The table
shows that 1% accuracy is achieved for all values of a/h ≥ 0.5, with the accuracy
increasing rapidly as a/h increases.

Table 2 shows a sample set of results for θI = 45◦ and a/h = 1, based on a 2×2
truncation of the system of equations (2.30). All the digits displayed are believed
to be accurate. Results for the same parameter values are displayed graphically
in Figure 1. Figure 2 shows how the quantities |R|, |T |, |F | and |M | vary with θI

for the case a/h = 1, Kh = 0.4 and Figure 3 shows the same quantities plotted
against a/h for the case θI = 60◦ and Kh = 0.5.

5 Conclusion

The classical problem of surface wave scattering by a finite dock in water of finite
depth has been solved using the modified residue calculus technique. This method
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Kh |R| |T | |F | |M |
0.2 0.5781 0.8160 1.7336 0.1903
0.4 0.7506 0.6608 1.5010 0.2428
0.6 0.8479 0.5302 1.2987 0.2682
0.8 0.9070 0.4211 1.1238 0.2793
1.0 0.9437 0.3307 0.9736 0.2816
1.2 0.9665 0.2566 0.8454 0.2784
1.4 0.9805 0.1966 0.7370 0.2719
1.6 0.9889 0.1489 0.6458 0.2633
1.8 0.9938 0.1115 0.5695 0.2537
2.0 0.9966 0.0826 0.5060 0.2438

Table 2: Values of |R|, |T |, |F | and |M | for different values of Kh when θI = 45◦

and a/h = 1.

appears to be superior to other known methods of solution because it takes into ac-
count the known exact results for the equivalent semi-infinite dock problem. It also
explicitly includes the correct form for the potential near to the edge of the dock.
Application of the method to the finite dock problem leads to a modification of the
semi-infinite dock solution by a term involving a set of unknown real coefficients.
These coefficients are the solution to an infinite system of real equations which can
be solved numerically by truncation. Crucially, this system is exponentially con-
vergent with increasing dock width and so only a very few equations are required
to obtain accurate numerical results for the various hydrodynamic quantities of
interest. Furthermore, if a 1 × 1 truncation is used, analytic manipulation yields
approximations for the reflection and transmission coefficients which are highly
accurate over the entire frequency range.

A Asymptotics of g(z) as z →∞
In this appendix we will determine the asymptotics for large z of the function

g(z) =
1

z + α0

∞∏
n=0

1− z/βn
1− z/αn

=
1− z/β0

(z + α0)(1− z/α0)
g1(z)
g2(z)

, (A.1)

where

g1(z) =
∞∏
n=1

(1− z/βn)ez/λn , g2(z) =
∞∏
n=1

(1− z/αn)ez/λn . (A.2)
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Figure 1: |R|, |T |, |F | and |M | plotted against Kh when θI = 45◦ and a/h = 1.

Here λn = nπ/h, αn = (k2
n + `2)1/2, βn = (λ2

n + `2)1/2 and as n→∞,

αn = λn +O(n−1), βn = λn +O(n−1). (A.3)

The asymptotics of g1 and g2 can be determined by making use of the identity
(see [1], eqn 6.1.3)

∞∏
n=1

(1− z/λn)ez/λn =
eγzh/π

Γ(1− zh/π)
(A.4)

in which Γ(·) is the Gamma function and γ ≈ 0.5772 is Euler’s constant. Thus

g1(z) =
eγzh/π

Γ(1− zh/π)

∞∏
n=1

λn
βn

∞∏
n=1

z − βn
z − λn

. (A.5)

Now

∞∏
n=1

λn
βn

=
∞∏
n=1

(
1 + `2/λ2

n

)−1/2
=
(

sinh `h
`h

)−1/2

, (A.6)
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Figure 2: |R|, |T |, |F | and |M | plotted against θI when Kh = 0.4 and a/h = 1.

and
∞∏
n=1

z − βn
z − λn

=
∞∏
n=1

(
1 +

λn − βn
z − λn

)
=
∞∏
n=1

(
1− `2

(z − λn)(λn + βn)

)
. (A.7)

It follows that as z →∞,

∞∏
n=1

λn
βn

∞∏
n=1

z − βn
z − λn

∼
(

sinh `h
`h

)−1/2

, (A.8)

provided z is not real and positive. Using Stirling’s formula, [1], eqn 6.1.37, we
thus have

g1(z) ∼
(

`

−2z sinh `h

)1/2

e(z), (A.9)

where

e(z) = exp
[
zh

π

(
γ − 1 + ln

−zh
π

)]
, (A.10)
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Figure 3: |R|, |T |, |F | and |M | plotted against a/h when Kh = 0.5 and θI = 60◦.

provided z is not real and positive.
In order to obtain an asymptotic formula valid for real and positive z we note

that
∞∏
n=1

(1− z/βn)(1 + z/βn) =
∞∏
n=1

(
1− z2

λ2
n + `2

)
=
∞∏
n=1

1− (ζ/λn)2

1 + (`/λn)2
=

` sin ζh
ζ sinh `h

,

(A.11)

where ζ = (z2 − `2)1/2. It follows that

g1(z) =
` sin ζh
ζ sinh `h

/ ∞∏
n=1

(
1 +

z

βn

)
e−z/λn (A.12)

and thus using (A.9) with z replaced by −z that as z → ∞ through real positive
values,

g1(z) ∼ sin ζh
ζe(−z)

(
2z`

sinh `h

)1/2

. (A.13)
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The asymptotics of g2 are obtained in a similar fashion. We being by writing

g2(z) =
eγzh/π

Γ(1− zh/π)

∞∏
n=1

kn
αn

∞∏
n=1

λn(z − kn)
kn(z − λn)

∞∏
n=1

z − αn
z − kn

(A.14)

and note that
∞∏
n=1

kn
αn

=
∞∏
n=1

(
1 + `2/k2

n

)−1/2
=
(

K(1− `2/k2)
K cosh `h− ` sinh `h

)1/2

, (A.15)

where the last step follows from the identity

K cosh zh− z sinh zh = K

∞∏
n=0

(1 + z2/k2
n). (A.16)

Next
∞∏
n=1

λn(z − kn)
kn(z − λn)

=
∞∏
n=1

(
1 +

z(λn − kn)
kn(z − λn)

)
(A.17)

and
∞∏
n=1

z − αn
z − kn

=
∞∏
n=1

(
1− `2

(z − kn)(αn + kn)

)
(A.18)

which (since 0 < λn− kn < π/2h) shows that both infinite products are absolutely
convergent and therefore that as z →∞, avoiding real, positive values,

∞∏
n=1

λn(z − kn)
kn(z − λn)

→
∞∏
n=1

λn
kn
,

∞∏
n=1

z − αn
z − kn

→ 1. (A.19)

Stirling’s formula then shows that

g2(z) ∼ e(z)
( −K(1− `2/k2)

2zh(K cosh `h− ` sinh `h)

)1/2 ∞∏
n=1

λn
kn

(A.20)

provided z is not real and positive. Proceeding as in (A.11) we obtain

∞∏
n=1

(1− z/αn)(1 + z/αn) =
(K cos ζh− ζ sin ζh)(1− `2/k2)

(K cosh `h− ` sinh `h)(1 + ζ2/k2)
(A.21)

and hence we have that as z →∞ through real positive values

g2(z) ∼
(

2zh(1− `2/k2)
K(K cosh `h− ` sinh `h)

)1/2
K cos ζh− ζ sin ζh
(1 + ζ2/k2)e(−z)

∞∏
n=1

λn
kn
. (A.22)
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From (A.9) and (A.20) we thus have that as z →∞

g1(z)
g2(z)

∼
(
`h(K cosh `h− ` sinh `h)
K sinh `h(1− `2/k2)

)1/2 ∞∏
n=1

kn
λn

(A.23)

provided z is not real and positive, and from (A.13) and (A.22) we have

g1(z)
g2(z)

∼
(
K`(K cosh `h− ` sinh `h)
h sinh `h(1− `2/k2)

)1/2 (1 + ζ2/k2) sin ζh
ζ(K cos ζh− ζ sin ζh)

∞∏
n=1

kn
λn

(A.24)

as z →∞ through real positive values.
The objective of the above analysis is to show that g1(z)/g2(z) = O(1) (and

hence that g(z) = O(z−1)) as |z| → ∞ through an appropriate set of values.
Clearly we must avoid points at which ζ tan ζh = K, which are the points z = αn.
Hence if we define CN to be circles centred on the origin with radius (N + 1

2 )π/h
then we will have the desired behaviour as |z| → ∞ on CN as N →∞.
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