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Abstract

We consider problems based on linear water wave theory concerning the interaction
of oblique waves with horizontal cylinders in a fluid consisting of a layer of finite depth
bounded above by a free surface and below by an infinite layer of fluid of greater density.
For such a situation time-harmonic waves can propagate with two different wavenum-
bers K and k. The particular problems of wave scattering by a horizontal circular
cylinder in either the upper or lower layer are solved using multipole expansions.

1 Introduction

The propagation of waves in a two-layer fluid with both a free surface and an interface (in the
absence of any obstacles) was first investigated by Stokes (1847) and a description of some of
the types of wave motion which can occur is given in Lamb (1932) Art. 231. However, until
recently, very little work has been done on wave/structure interactions in two-layer fluids.

With the free surface approximated by a rigid lid Sturova (1994) studied the radiation
of waves by an oscillating cylinder which is moving uniformly in a direction perpendicular
to its axis. Sturova (1999) later considered the radiation and scattering problem for a
cylinder in both a two- and a three-layer fluid bounded above and below by rigid horizontal
walls. For the three-layer case the middle layer was linearly stratified representing a smooth
pycnocline. Using the method of multipoles Sturova was able to calculate the hydrodynamic
characteristics of the cylinder. Gavrilov, Ermanyuk, and Sturova (1999) also investigated
the effects of a smooth pycnocline on wave scattering, again for a horizontal circular cylinder
where the fluid is bounded above and below by rigid walls. Their paper included a comparison
between theoretical and experimental results, with reasonable qualitative agreement but
notable quantitative disagreement.

A simpler approach is to assume that the pycnocline is very thin and to model the
interface between the two fluids as a sharp discontinuity between layers of constant density.
We will make this simplifying assumption here, but in contrast to the papers cited above, we
will assume that the upper surface of the upper fluid is free, and apply the linear free-surface
boundary condition there. In the absence of obstacles, the appropriate dispersion relation
for such a two-layer fluid has two solutions for a given frequency (Lamb 1932, Art. 231).
One of these solutions corresponds to waves where the majority of the disturbance is close
to the free surface and the other to waves on the interface between the two fluid layers.

When a wave is scattered by an obstacle there is the possibility that the wave energy will
be transferred between the two modes. Linton and McIver (1995, hereafter referred to as
LM) developed a general theory for two-dimensional wave scattering by horizontal cylinders
in an infinitely deep two-layer fluid, and calculated the amount of energy that was converted
from one wavenumber to the other for the case of circular cylinders in either the upper
or lower fluid layer. They also systematically derived the reciprocity relations that exist

1



between the various hydrodynamic characteristics of the cylinders. It is well-known that a
circular cylinder submerged in an infinitely-deep uniform fluid reflects no wave energy, and
it was shown in LM that this is also true for a cylinder in the lower layer of a two-layer fluid
(though when the cylinder is in the upper layer this is no longer the case).

Work on three-dimensional scattering can be found in Yeung and Nguyen (1999) and
Cadby and Linton (2000). In the former work an integral equation technique was employed
to solve radiation and diffraction problems for a rectangular barge in finite depth, whereas
in the latter paper multipole expansions were used to solve problems involving submerged
spheres in infinite depth. The symmetry relations for the added-mass and damping matrices
and an analogue to the Haskind relations were given in Yeung and Nguyen (1999); a more
complete derivation of reciprocity relations in three-dimensional scattering in two-layer fluids
can be found in Cadby and Linton (2000).

Other notable work on wave/structure interaction in two-layer fluids includes Zilman and
Miloh (1995, 1996) in which the effects of a shallow layer of fluid mud on the hydrodynamics
of floating bodies was analyzed. In Barthélemy, Kabbaj, and Germain (2000) the scattering
of surface waves by a step bottom in a two-layer fluid was considered. This problem is of
particular interest to understand how tides are scattered at the continental shelf break. A
WKBJ technique, which approximates the solution by simple travelling waves locally, was
employed to find the reflection and transmission coefficients of the surface waves past the
step and the proportion of the surface motion transferred to the interface.

In this paper we extend the work of LM to the case of oblique wave incidence and use
multipole expansions to solve scattering problems involving horizontal circular cylinders. For
the case of an incident wave on the interface we find some surprising results. There is a critical
angle (defined by the density ratio between the two fluids), and for an incident wave angle
above this no energy is transferred to the free surface in the scattering process. For angles
less than the critical angle, then energy transfer only occurs at high enough frequencies.
Within the regime where no energy transfer takes place we find the phenomenon of zero
transmission (and therefore total reflection) at particular frequencies. The general problem
of oblique wave incidence in two-layer fluids is formulated in §2 and then the case of a
cylinder in the lower layer is treated in §3 and a cylinder in the upper layer is treated in §4.

2 Formulation

Cartesian coordinates are chosen such that the (x, y)-plane coincides with the undisturbed
interface between the two fluids. The z-axis points vertically upwards with z = 0 as the
interface and z = d > 0 as the free surface. Under the usual assumptions of linear water
wave theory we can define a velocity potential in the form

Φ(x, y, z, t) = Re{φ(x, z)eilye−iωt} (2.1)

and since Φ is harmonic, φ must satisfy the modified Helmholtz equation

(∇2
xz − l2)φ = 0. (2.2)

The upper fluid, 0 < z < d, will be referred to as region I, whilst the lower fluid, z < 0, will
be referred to as region II. The potential in the upper fluid (of density ρI) will be denoted
by φI and that in the lower fluid (of density ρII > ρI) by φII . If we define ρ = ρI/ρII (< 1)
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then the linearized boundary conditions on the interface and free surface are

φI
z = φII

z on z = 0, (2.3)

ρ(φI
z − KφI) = φII

z − KφII on z = 0, (2.4)

φI
z = KφI on z = d, (2.5)

where K = ω2/g, g being the acceleration due to gravity. The boundary conditions (2.3) and
(2.4) represent the continuity of normal velocity and pressure at the interface respectively.

Within this framework progressive waves take the form (up to an arbitrary multiplicative
constant)

φI = e±ix
√

u2−l2
(
(u + K)eu(z−d) + (u − K)e−u(z−d)

)
, (2.6)

φII = e±ix
√

u2−l2euz
(
(u + K)e−ud − (u − K)eud

)
, (2.7)

where u satisfies the dispersion relation

(u − K)
(
K(σ + e−2ud) − u(1 − e−2ud)

)
= 0 (2.8)

in which σ = (1 + ρ)/(1 − ρ). It follows that either u = K or u = k where

K(σ + e−2kd) = k(1 − e−2kd). (2.9)

This equation has exactly one positive root k, which is always greater than K.
For the case u = K, progressive waves are thus of the form

φI = φII = e±iβxeKz, (2.10)

where β =
√

K2 − l2 and we clearly must have K > l. For the case u = k on the other hand,
we have

φI = e±ibxg(z), φII = e±ibxekz, (2.11)

where b =
√

k2 − l2 and

g(z) =
Kσ − k

K(σ − 1)
ekz +

K − k

K(σ − 1)
e−kz. (2.12)

In this case we require k > l for the waves to exist. A general scattered potential thus has
the far-field behaviour described by

φI ∼ A±e±iβxeKz + B±e±ibxg(z) + C±e∓iβxeKz + D±e∓ibxg(z), (2.13)

φII ∼ A±e±iβxeKz + B±e±ibxekz + C±e∓iβxeKz + D±e∓ibxekz, (2.14)

as x → ±∞, for which a convenient shorthand is

φ ∼ {A−, B−, C−, D−; A+, B+, C+, D+}. (2.15)

An incident plane wave φinc of wavenumber K making an angle αinc (0 ≤ αinc < 1
2
π) with

the positive x-axis has the form (in both layers)

φinc = eiKx cos αinceKz. (2.16)
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In this case

l = K sin αinc, β = K cos αinc, b =
√

k2 − K2 sin2 αinc. (2.17)

We know that b is real since k > K and so scattered waves of wavenumber k will exist for
all values of K and all angles αinc. The angle αk of the scattered waves of wavenumber k is
given by

tan αk =
l

b
=

K sin αinc√
k2 − K2 sin2 αinc

. (2.18)

Since b > β we know that tan αk < tan αinc and hence |αk| < αinc.
An incident plane wave of wavenumber k making an angle αinc with the positive x-axis

is given by
φI

inc = eikx cos αincg(z), φII
inc = eikx cos αincekz. (2.19)

In this case

l = k sin αinc, β =
√

K2 − k2 sin2 αinc, b = k cos αinc. (2.20)

For a given angle αinc there maybe a value of K for which K = k sin αinc and thus β = 0.
We will call this the cut-off frequency and denote it by Kc. For K > Kc we have real β and
so waves of wavenumber K will propagate in the fluid. When K < Kc, however, β will be
imaginary, corresponding to an evanescent mode, and hence we have no propagating waves
of wavenumber K. From the dispersion relation (2.9) we have

Kcd = 1
2
sin αinc ln

(
1 + sin αinc

1 − σ sin αinc

)
. (2.21)

Figure 1 shows the cut-off frequency Kcd, plotted against incident wave angle, for a density
ratio of ρ = 0.5 (σ = 3). There is a critical angle αc, given by sin−1(1/σ), such that
as αinc → αc we have Kcd → ∞ and for αinc > αc there are no propagating waves of
wavenumber K for any frequency. When they do exist, the angle αK of the scattered waves
of wavenumber K is given by

tan αK =
k sin αinc√

K2 − k2 sin2 αinc

, (2.22)

and |αK | > αinc.
Relations between the various hydrodynamic quantities that arise in scattering problems

can be obtained by using Green’s theorem. The approach is almost identical to that described
in LM and the formulas derived in that paper (eqns 2.19–2.56) for the case of normal incidence
carry over to the oblique incidence case, except that now J = Jk/JK where

JK = iβ

(
1

K
+ 2ρ

∫ d

0
e2Kzdz

)
, Jk = ib

(
1

k
+ 2ρ

∫ d

0
[g(z)]2dz

)
. (2.23)

The scattering of an incident wave of wavenumber K can be characterized by

φK ∼ {RK , rK , 1, 0; TK , tK , 0, 0}, (2.24)

where RK and rK are the reflection coefficients, and TK and tK are the transmission coeffi-
cients of wavenumbers K and k, respectively, and we have

|RK |2 + |TK |2 + J(|rK |2 + |tK |2) = 1. (2.25)
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Figure 1: Cut-off frequency Kcd due to an incident wave of wavenumber k; ρ = 0.5.

For an incident wave of wavenumber k the velocity potential is characterized by

φk ∼ {Rk, rk, 0, 1; Tk, tk, 0, 0}, (2.26)

and
|Rk|2 + |Tk|2 + J(|rk|2 + |tk|2) = J. (2.27)

It is convenient to define energies as follows

ER
K = |RK |2, ET

K = |TK |2, Er
K = J |rK |2, Et

K = J |tK |2, (2.28)

ER
k = |Rk|2/J, ET

k = |Tk|2/J, Er
k = |rk|2, Et

k = |tk|2. (2.29)

The energy relations (2.25) and (2.27) then become

ER
j + ET

j + Er
j + Et

j = 1, j = k or K. (2.30)

This equation was used as a numerical check on all results obtained for the reflection and
transmission coefficients.

Equation (2.30) relates different far-field quantities that arise in the same scattering
problem. Many of the other relations derived in LM relate quantities from different problems
(for example, ER

K + ET
K = Er

k + Et
k). These relations only apply to oblique scattering when

the value of l is the same for both problems. For example, say we wish to relate a scattering
problem with potential φK and angle of incidence αK

inc to a problem with potential φk and
angle αk

inc. If we assign a value to αK
inc then the angle αk

inc is given by

αk
inc = sin−1

(
K

k
sin αK

inc

)
(2.31)
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and since k > K there will always be an angle αk
inc. However, unlike the normal incidence

relations, we can only relate the results between the two problems at one particular frequency.
(Or alternatively, the angle of incidence for the related problem depends on the frequency.)
If we assign αk

inc a value then

αK
inc = sin−1

(
k

K
sin αk

inc

)
. (2.32)

When K < Kc or when αk
inc > αc we will not be able to use such relations.

3 Cylinder in the lower fluid

A horizontal, circular cylinder of radius a has its axis at z = f < 0 and its generator runs
parallel to the y-axis. Polar coordinates (r, θ) are defined in the (x, z)-plane where

x = r sin θ and z = f − r cos θ. (3.1)

Symmetric and antisymmetric multipoles, φs
n (n ≥ 0) and φa

n (n ≥ 1), respectively, are
defined by

φIs
n = (−1)n

∫ ∞

0
( cosh nu cos (lx sinh u)[AL(u)evz + BL(u)e−vz] du, (3.2)

φIIs
n = Kn(lr) cos nθ + (−1)n

∫ ∞

0
( cosh nu cos (lx sinh u)evzCL(u) du, (3.3)

φIa
n = (−1)n+1

∫ ∞

0
( sinh nu sin (lx sinh u)[AL(u)evz + BL(u)e−vz] du, (3.4)

φIIa
n = Kn(lr) sin nθ + (−1)n+1

∫ ∞

0
( sinh nu sin (lx sinh u)evzCL(u) du, (3.5)

where v = l cosh u,

AL(u) = K(1 + σ)(v + K)ev(f−2d)/(v − K)h(v), (3.6)

BL(u) = K(1 + σ)evf/h(v), (3.7)

CL(u) = (v + K)
[
(v + Kσ)e−2vd − v + K

]
evf/(v − K)h(v), (3.8)

and

h(v) = (v + K)e−2vd − v + Kσ. (3.9)

The functions φs
n and φa

n are singular solutions to the modified Helmholtz equation which
satisfy all of the boundary conditions (including an outgoing radiation condition), except
that on the body boundary. We note that the functions (3.6)–(3.8) are the same as (3.7)–
(3.9) in LM with u replaced by v (= l cosh u).

From the dispersion relation wee see that h(k) = 0, and hence the multipoles have poles
at u = γ1 and u = γ2, where

l cosh γ1 = K and l cosh γ2 = k. (3.10)

For l > K there is only one pole at u = γ2. The far-field form of the multipoles, in the lower
fluid, is given by

φIIs
n ∼ (−1)nπi

(
Cγ1

L cosh nγ1 e±iβxeKz + Cγ2

L cosh nγ2 e±ibxekz
)
, (3.11)

φIIa
n ∼ ∓(−1)nπ

(
Cγ1

L sinh nγ1 e±iβxeKz + Cγ2

L sinh nγ2 e±ibxekz
)
, (3.12)
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as x → ±∞. Here Cγ1

L and Cγ2

L are the residues of CL(u) at u = γ1 and u = γ2, given by

Cγ1

L =
2K(1 + σ)eK(f−2d)

β(2e−2Kd − 1 + σ)
(3.13)

and

Cγ2

L =
(k + K)ekf

[
(k + Kσ)e−2kd − k + K

]
b(k − K) [(1 − 2d(k + K))e−2kd − 1]

. (3.14)

The multipoles can be expanded in polar coordinates. If we put X = −lr and T =
exp(i[θ + iu]) in the well-known generating function (see, for example, Ursell 2001)

exp
[

1
2
X

(
T + T−1

)]
=

∞∑
m=0

1
2
εm

(
Tm + T−m

)
Im(X), (3.15)

where ε0 = 1, εm = 2, m ≥ 1, and then take the real and imaginary parts, the resulting
expressions can be substituted into (3.3) and (3.5), using (3.1), to give

φIIs
n = Kn(lr) cos nθ +

∞∑
m=0

As
nmIm(lr) cos mθ, (3.16)

φIIa
n = Kn(lr) sin nθ +

∞∑
m=1

Aa
nmIm(lr) sin mθ, (3.17)

where

As
nm = εm(−1)m+n

∫ ∞

0
( cosh mu cosh nu evfCL(u) du, (3.18)

Aa
nm = 2(−1)m+n

∫ ∞

0
( sinh mu sinh nu evfCL(u) du. (3.19)

Incident wavenumber K

Let us consider the case of an incident plane wave of wavenumber K making an angle αinc

with the positive x-axis, so that l = K sin αinc. The incident wave potential, (2.16), when
expanded about r = 0 has the form (in both layers)

φinc = eiβxeKz = eKf
∞∑

m=0

εm(−1)mIm(lr)(cosh mγ cos mθ − i sinh mγ sin mθ), (3.20)

where cosh γ = K/l = 1/ sin αinc. We write the velocity potential as

φK = φinc +
∞∑

m=0

(αmφa
m + βmφs

m) , (3.21)

where αm and βm are unknown coefficients and α0 is included for notational convenience. To
solve for αm and βm we substitute the polar expansions of the multipoles and of the incident
wave into (3.21) and apply the body boundary condition ∂φK/∂r = 0 on r = a. We then
use the orthogonality of the trigonometric functions to obtain infinite systems of equations
for the unknowns αm and βm which are

αn + Zn

∞∑
m=1

αmAa
mn = 2i (−1)nZneKf sinh nγ, n = 1, 2, . . . , (3.22)

βn + Zn

∞∑
m=0

βmAs
mn = εn(−1)n+1ZneKf cosh nγ, n = 0, 1, . . . , (3.23)
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where Zn = I ′
n(la)/K ′

n(la). These systems can be solved by truncation and in the com-
putations presented below 5 × 5 systems were used. When the cylinder has submergence
f/a = −2 this yields five decimal place accuracy whereas for f/a = −1.1 we have three
decimal place accuracy.

The far-field form for φK , in the lower fluid layer, can be written as

φII
K ∼




eiβxeKz+RKe−iβxeKz + rKe−ibxekz x → −∞,

TKeiβxeKz + tKeibxekz x → +∞.
(3.24)

Using (3.21), (3.11) and (3.12) we can extract the reflection and transmission coefficients:

TK = 1 + πCγ1

L

∞∑
m=0

(−1)m(−αm sinh mγ1 + iβm cosh mγ1), (3.25)

RK = πCγ1

L

∞∑
m=0

(−1)m(αm sinh mγ1 + iβm cosh mγ1), (3.26)

tK = πCγ2

L

∞∑
m=0

(−1)m(−αm sinh mγ2 + iβm cosh mγ2), (3.27)

rK = πCγ2

L

∞∑
m=0

(−1)m(αm sinh mγ2 + iβm cosh mγ2). (3.28)

Incident wavenumber k

We now consider the case of an incident plane wave of wavenumber k making an angle αinc

with the positive x-axis, so that l = k sin αinc, and

φII
inc = eibxekz = ekf

∞∑
m=0

εm(−1)mIm(lr)(cosh mγ cos mθ − i sinh mγ sin mθ), (3.29)

where cosh γ = k/l = 1/ sin αinc. The velocity potential φk for this scattering problem can
again be expanded in multipoles using (3.21) and the equations for αm and βm are given by
(3.22) and (3.23) as before, except that exp(Kf) must be replaced by exp(kf).

The far-field form for φk, in the lower fluid layer, can be written as

φII
k ∼




eibxekz+Rke
−iβxeKz + rke

−ibxekz x → −∞,

Tke
iβxeKz + tke

ibxekz x → +∞.
(3.30)

Using the far-field forms of the multipoles (3.11) and (3.12) with the expansion of φk we find
that the expressions for Rk and rk are the same as those for RK and rK given, respectively,
by (3.26) and (3.28). For the transmission coefficients we have

Tk = πCγ1

L

∞∑
m=0

(−1)m(−αm sinh mγ1 + iβm cosh mγ1), (3.31)

tk = 1 + πCγ2

L

∞∑
m=0

(−1)m(−αm sinh mγ2 + iβm cosh mγ2). (3.32)

For values of K less than the cut-off frequency Kc there are no waves of wavenumber K
propagating to infinity and so Tk = Rk = 0.
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Results

In figures 2–5 the reflection and transmission energies are shown for the case of a wave of
wavenumber K (a free-surface mode) incident on a cylinder in the lower fluid layer. In all
these plots the immersion depth f/a is −2, the depth of the upper fluid layer d/a is 2 and the
density ratio ρ is 0.5. For a two-layer fluid consisting of fresh water and salt water the value
of ρ would be around 0.97. The same qualitative features are observed for such a density
ratio, but the effects of the interface are much smaller. The different curves correspond
to different angles of incidence αinc, which are 1.35, 1.4, 1.53 and 1.56 covering the range
between about 75◦ and 89◦. These values were chosen to illustrate the scattering behaviour
when the angle of the incident wave approaches that of grazing (π/2). From figures 2 and 3
we see that as the angle of incidence increases, ET

K decreases while ER
K increases. This effect

is also observed in the oblique scattering problem in a single-layer fluid. The transmission
and reflection energies of the waves of wavenumber k, shown in figures 4 and 5, are small in
comparison to those of the incident wavenumber K but show that there is some conversion of
energy from one wavenumber to the other. As αinc → π/2, for fixed K, we see that Et

K , Er
K

and ET
K tend to zero whereas ER

K tends to unity. (For the single-layer problem Levine (1965)
showed analytically, based on a low-order truncation of an infinite system, that TK → 0
while RK → −1 in this limit.) Computations show that as αinc → 0 the results tend to those
for normal incidence given in LM. In particular, as αinc → 0 both ER

K and Er
K tend to zero.

The case of an incident wave of wavenumber k (an interfacial mode) is more interesting
due to the presence of the cut-off frequency, below which no energy is converted from one
wavenumber to the other. Figures 6–9 show the transmission and reflection energies for this
case, when the immersion depth of the cylinder is f/a = −1.1 and we have the values d/a = 2
and ρ = 0.5, as before. Each plot shows the results obtained for four different angles αinc of
the incident wave close to the critical angle, 0.3, 0.32, 0.33, and 0.34 (17.19◦–19.48◦). When
αinc = 0.34, which is greater than the critical angle αc = 0.3398 for the given parameter
values, we have no waves of wavenumber K propagating in the fluid. For the remaining
angles of incidence we have the following cut-off frequencies: Kca ≈ 0.180, 0.248 and 0.313.
Only for frequencies greater than the cut-off will there be conversion of energy from one
mode to the other. The transmission and reflection energies for the incident wavenumber
are shown in figures 8 and 9. For a particular frequency just less than the cut-off there is
zero transmission and full reflection of the incident wave. As αinc increases the frequency at
which this zero of transmission occurs increases and the spike from which it comes broadens.
When αinc = 0.34 there are in fact two zeros of transmission, the second occurring at a
higher frequency than those shown on the plot.

Further examples in which there are two zeros of transmission are shown in figures 10
and 11. Both these plots show the reflected energy of an incident wave of wavenumber k
where the values ρ = 0.5 and αinc = 0.34 have been used (since αinc > αc in this case there
is no energy converted to wavenumber K and hence a zero of transmission corresponds to
total reflection at the incident wavenumber). In figure 10 the submergence of the cylinder
is fixed at −1.95 and each curve corresponds to a different depth of the upper fluid layer,
d/a =2.7, 2.5, 2.2 and 2. When d/a ≈ 2.5 we see there is just one frequency of full reflection.
As the depth of the upper fluid layer decreases this splits and gives two frequencies at which
total reflection exists. A similar effect is observed when fixing the depth of the upper fluid
and varying the submergence of the cylinder as in figure 11. The occurrence of zeros of
transmission is somewhat surprising as normally incident waves on a cylinder in the lower
fluid are completely transmitted at all frequencies (see LM); moreover, they do not occur in
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Figure 2: Transmission energies due to a wave of wavenumber K incident on a cylinder in
the lower layer; ρ = 0.5, d/a = 2.0 and f/a = −2.0.
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Figure 3: Reflection energies due to a wave of wavenumber K incident on a cylinder in the
lower layer; ρ = 0.5, d/a = 2.0 and f/a = −2.0.
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Figure 4: Transmission energies due to a wave of wavenumber K incident on a cylinder in
the lower layer; ρ = 0.5, d/a = 2.0 and f/a = −2.0.
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Figure 5: Reflection energies due to a wave of wavenumber K incident on a cylinder in the
lower layer; ρ = 0.5, d/a = 2.0 and f/a = −2.0 .
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Figure 6: Transmission energies due to a wave of wavenumber k incident on a cylinder in
the lower layer; ρ = 0.5, d/a = 2.0 and f/a = −1.1 .
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Figure 7: Reflection energies due to a wave of wavenumber k incident on a cylinder in the
lower layer; ρ = 0.5, d/a = 2.0 and f/a = −1.1 .
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Figure 8: Transmission energies due to a wave of wavenumber k incident on a cylinder in
the lower layer; ρ = 0.5, d/a = 2.0 and f/a = −1.1 .
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Figure 9: Reflection energies due to a wave of wavenumber k incident on a cylinder in the
lower layer; ρ = 0.5, d/a = 2.0 and f/a = −1.1 .
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Figure 10: Reflection energies due to a wave of wavenumber k incident on a cylinder in the
lower layer; ρ = 0.5, f/a = −1.95 and αinc = 0.34 .

the single layer oblique-incidence problem.
For the scattering of an incident wave k as αinc → π/2 we find that Er

k → 1 while all the
other energies tend to zero. As αinc → 0 we again find the results tend to those of the normal
incidence case. If we let ρ → 0 in this problem then it can be shown that the multipoles
defined by (3.3) and (3.5) go over to the equivalent single-layer multipoles for infinite depth
(given in Linton and McIver 2001, for example). Thus by letting ρ → 0 in the above analysis
we recover the results for the scattering of oblique waves by a horizontal cylinder in deep
water.

4 Cylinder in the upper fluid

We now consider the case of a cylinder positioned in the upper fluid layer, f/a > 1. Polar
coordinates are again defined via (3.1) and suitable multipoles take the form

φIs
n = Kn(lr) cos nθ +

∫ ∞

0
( cosh nu cos (lx sinh u)[A

(0)
Un(u)evz + B

(0)
Un(u)e−vz] du, (4.1)

φIIs
n =

∫ ∞

0
( cosh nu cos (lx sinh u)evzC

(0)
Un(u) du, (4.2)

φIa
n = Kn(lr) sin nθ +

∫ ∞

0
( sinh nu sin (lx sinh u)[A

(1)
Un(u)evz + B

(1)
Un(u)e−vz] du, (4.3)

φIIa
n =

∫ ∞

0
( sinh nu sin (lx sinh u)evzC

(1)
Un(u) du, (4.4)
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Figure 11: Reflection energies due to a wave of wavenumber k incident on a cylinder in the
lower layer; ρ = 0.5, d/a = 2.0 and αinc = 0.34 .

where

A
(q)
Un(u) = (v + K)e−2vd[(−1)n+q+1(v − Kσ)evf − (v − K)e−vf ]/(v − K)h(v), (4.5)

B
(q)
Un(u) = [(−1)n+q+1(v + K)ev(f−2d) − (v − K)e−vf ]/h(v), (4.6)

C
(q)
Un(u) = K(1 − σ)B

(q)
Un(u)/(v − K). (4.7)

We note that the functions (4.5)–(4.7) are the same as (4.7)–(4.9) in LM with u replaced by
v (= l cosh u). When l < K, the multipoles have poles at u = γ1 and u = γ2, defined by
(3.10) as before, whereas for l > K there is only one pole at u = γ2.

The far-field form of these multipoles, in the lower fluid layer, is given by

φIIs
n ∼ πi

(
C

(0)γ1

Un cosh nγ1 e±iβxeKz + C
(0)γ2

Un cosh nγ2 e±ibxekz
)
, (4.8)

φIIa
n ∼ ±π

(
C

(1)γ1

Un sinh nγ1 e±iβxeKz + C
(1)γ2

Un sinh nγ2 e±ibxekz
)
, (4.9)

as x → ±∞, where

C
(q)γ1

Un =
(−1)n+q+12K(1 − σ)eK(f−2d)

β(2e−2Kd − 1 + σ)
(4.10)

and

C
(q)γ2

Un =
K(1 − σ)

[
(−1)n+q+1(k + K)ek(f−2d) − (k − K)e−kf

]
b(k − K) [(1 − 2d(k + K))e−2kd − 1]

. (4.11)

15



The polar expansions of the multipoles are

φIs
n = Kn(lr) cos nθ +

∞∑
m=0

Bs
nmIm(lr) cos mθ, (4.12)

φIa
n = Kn(lr) sin nθ +

∞∑
m=1

Ba
nmIm(lr) sin mθ, (4.13)

where

Bs
nm = εm

∫ ∞

0
( cosh mu cosh nu

(
(−1)mA

(0)
Un(u)evf + B

(0)
Un(u)e−vf

)
du, (4.14)

Ba
nm = 2

∫ ∞

0
( sinh mu sinh nu

(
(−1)m+1A

(1)
Un(u)evf + B

(1)
Un(u)e−vf

)
du. (4.15)

Incident wavenumber K

The potential φK can again be expanded using (3.21), in which the incident wave is given
by (3.20) as before, but we now use the multipole expansions developed for the upper fluid
layer, (4.1)–(4.4). After applying the body boundary condition, ∂φK/∂r = 0 on r = a, we
obtain exactly the same systems of equations for αn and βn as before, (3.22) and (3.23),
except with Aa

mn and As
mn replaced by Ba

mn and Bs
mn, respectively. These equations were

solved by truncating to 4× 4 systems to produce the results presented below. The accuracy
achieved with this truncation parameter was three decimal places.

The transmission and reflection coefficients can extracted from the far-field form of the
potential φK . Using (3.21), (4.8) and (4.9) with (3.24) we obtain

TK = 1 + π
∞∑

m=0

(
αmC

(1)γ1

Um sinh mγ1 + iβmC
(0)γ1

Um cosh mγ1

)
, (4.16)

RK = π
∞∑

m=0

(
−αmC

(1)γ1

Um sinh mγ1 + iβmC
(0)γ1

Um cosh mγ1

)
, (4.17)

tK = π
∞∑

m=0

(
αmC

(1)γ2

Um sinh mγ2 + iβmC
(0)γ2

Um cosh mγ2

)
, (4.18)

rK = π
∞∑

m=0

(
−αmC

(1)γ2

Um sinh mγ2 + iβmC
(0)γ2

Um cosh mγ2

)
. (4.19)

Incident wavenumber k

For this problem φinc is given, in the upper fluid, by exp(ibx)g(z), where g(z) is defined in
(2.12). The polar expansion is

φI
inc =

1

K(σ − 1)

∞∑
m=0

εmIm(lr)
[ (

(−1)mekf (Kσ − k) + e−kf (K − k)
)

cos mθ cosh mγ

+ i
(
(−1)m+1ekf (Kσ − k) + e−kf (K − k)

)
sin mθ sinh mγ

]
, (4.20)

where cosh γ = k/l = 1/ sin αinc. The velocity potential φk is expanded as in (3.21), where
φs

m and φa
m are the symmetric and antisymmetric multipoles developed for the upper fluid.
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Figure 12: Transmission energies due to a wave of wavenumber K incident on a cylinder in
the upper layer; ρ = 0.5, d/a = 2.5 and f/a = 1.25.

After application of the body boundary condition we obtain the equations

αn + Zn

∞∑
m=1

αmBa
mn =

2iZn

K(σ − 1)

(
(−1)nekf (Kσ − k) − e−kf (K − k)

)
sinh nγ, (4.21)

βn + Zn

∞∑
m=0

βmBs
mn =

εnZn

K(σ − 1)

(
(−1)n+1ekf (Kσ − k) − e−kf (K − k)

)
cosh nγ. (4.22)

The expressions for Rk and rk are the same as those for RK and rK given, respectively, by
(4.17) and (4.19). For the transmission coefficients we have

Tk = π
∞∑

m=0

(
αmC

(1)γ1

Um sinh mγ1 + iβmC
(0)γ1

Um cosh mγ1

)
, (4.23)

tk = 1 + π
∞∑

m=0

(
αmC

(1)γ2

Um sinh mγ2 + iβmC
(0)γ2

Um cosh mγ2

)
. (4.24)

Results

Figures 12–15 show the reflection and transmission energies for an incident wave of wavenum-
ber K (a free-surface mode) on a cylinder submerged in the upper fluid layer. The submer-
gence of the cylinder f/a is fixed at 1.25, the depth d/a of the upper fluid layer is 2.5 and the
density ratio ρ is 0.5. The different curves correspond to four different angles of incidence,
αinc = 1.35, 1.4, 1.53 and 1.56. These angles are same as those used in figures 2–5. The
results are similar to those for the scattering of an incident wave of wavenumber K by a
cylinder in the lower fluid layer and display the same trends.

Figures 16–19 show reflection and transmission energies of an incident wave of wavenum-
ber k (an interfacial mode) on a cylinder submerged in the upper fluid layer. The parameter
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Figure 13: Reflection energies due to a wave of wavenumber K incident on a cylinder in the
upper layer; ρ = 0.5, d/a = 2.5 and f/a = 1.25.
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Figure 14: Transmission energies due to a wave of wavenumber K incident on a cylinder in
the upper layer; ρ = 0.5, d/a = 2.5 and f/a = 1.25.
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Figure 15: Reflection energies due to a wave of wavenumber K incident on a cylinder in the
upper layer; ρ = 0.5, d/a = 2.5 and f/a = 1.25 .

settings are the same as in the previous set of figures and the different curves correspond to
αinc = 0.3, 0.32, 0.33 and 0.34. The critical angle αc is 0.3398 and the cut-off frequencies
for the first three angles are Kca ≈ 0.144, 0.198 and 0.250, respectively. Again there are
similarities with case of the cylinder in the lower fluid shown in figures 6–9. Energy conver-
sion between wavenumbers only occurs for frequencies greater than the cut-off frequency as
shown in figures 16 and 17. Figures 18 and 19 show the transmitted and reflected energies
at the incident wavenumber. There is a zero of transmission occurring before the cut-off
frequency. However, unlike in the case shown in figures 8 and 9, we have a point of total
transmission preceding this. As the angle of incidence is increased the frequencies of these
pairs of zero and total transmission increase and also separate.

More than one zero of transmission may occur for a given geometry. This is illustrated
in figure 20 which shows the transmission energies Et

k for an incident wave of wavenumber k
with angle αinc = 0.35, which is greater than the critical angle. The ratio of the depth of the
upper fluid layer to the submergence of the cylinder is fixed at d/f = 2 so that the cylinder is
always halfway between the interface and the free surface. The different curves correspond to
the values d/a = 2.24, 2.238, 2.234 and 2.23. For all the curves there is a frequency of total
transmission at Ka ≈ 0.213 followed immediately by a zero of transmission at Ka ≈ 0.227.
When d/a = 2.24 we have a local minimum at Ka ≈ 1.825 and as the depth of the upper
fluid layer is decreased, bringing the free surface and interface closer to the surface of the
cylinder, we obtain another zero of transmission. As the depth is decreased further this splits
and we obtain a total of three zeros of transmission.

If we let ρ → 0 in this problem then the multipoles defined by (4.1) and (4.3) go over to
the single-layer multipoles for finite depth (given in Linton and McIver 2001, for example).
Thus by letting ρ → 0 we can recover the results for the scattering of oblique waves by a
horizontal circular cylinder in finite water depth.
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Figure 16: Transmission energies due to a wave of wavenumber k incident on a cylinder in
the upper layer; ρ = 0.5, d/a = 2.5 and f/a = 1.25 .
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Figure 17: Reflection energies due to a wave of wavenumber k incident on a cylinder in the
upper layer; ρ = 0.5, d/a = 2.5 and f/a = 1.25 .
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Figure 18: Transmission energies due to a wave of wavenumber k incident on a cylinder in
the upper layer; ρ = 0.5, d/a = 2.5 and f/a = 1.25 .
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Figure 19: Reflection energies due to a wave of wavenumber k incident on a cylinder in the
upper layer; ρ = 0.5, d/a = 2.5 and f/a = 1.25 .
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Figure 20: Transmission energies due to a wave of wavenumber k incident on a cylinder in
the upper layer; ρ = 0.5, d/f = 2 and αinc = 0.35 .

5 Conclusion

In this paper we have studied the problem of oblique wave scattering by horizontal cylinders
in two-layer fluids using linear water wave theory. The upper layer is of finite thickness and
is bounded above by a free surface and below by an infinite layer of fluid of greater density.
In this situation waves can propagate at two different wavenumbers for the same frequency,
one of which corresponds to a free-surface disturbance and the other to an interfacial wave
motion. When the incident wave is on the free surface we always find energy transfer to the
interface, but for incident interfacial waves there are parameter ranges for which no energy
transfer to the free surface is possible.

We have analyzed the scattering problem of oblique waves by a horizontal circular cylinder
submerged in either the upper or lower layer of a two-layer fluid using multipole expansions.
When the cylinder is positioned in the lower fluid layer and waves are normally incident
upon it, it was shown in LM that all the energy is transmitted. We have shown that this is
not true for oblique waves. We have found that for oblique waves incident along the interface
when a cylinder is in either fluid layer there are isolated frequencies at which all the incident
energy is reflected.
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