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Abstract

We analyze the effects of synaptic depression or facilitation on the existence

and stability of the splay or asynchronous state in a population of all-to-

all, pulse-coupled neural oscillators. We use mean-field techniques to derive

conditions for the local stability of the splay state and determine how stability

depends on the degree of synaptic depression or facilitation. We also consider

the effects of noise. Extensions of the mean-field results to finite networks are

developed in terms of the nonlinear firing time map.
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I. INTRODUCTION

An important property of synaptic transmission between cortical cells is that the post-

synaptic response depends on the temporal sequence of action potentials arriving at the

presynaptic terminal [1]. This form of short-term synaptic plasticity can either lead to an

effective reduction in the amplitude of response (synaptic depression) or to an effective in-

crease in response (synaptic facilitation). Recent studies of excitatory pathways in slices of

cortical pyramidal cells found that, under repeated stimulation, the dominant form of short-

term plasticity is synaptic depression, which develops after only a few spikes [2–4]. It was

also established in these studies how synaptic depression could provide a dynamical gain

mechanism that increases sensitivity to small input rate changes, as well as an enhanced

capability of detecting synchronous activity (see also [5]). Given the fact that synaptic

depression (and facilitation) can significantly influence the response of single neurons to in-

coming spike trains, it is likely that such factors also affect behavior at the network level.

Indeed, a recent theoretical investigation of a discrete-time oscillator network suggests that

dynamic synapses could support a mechanism for central pattern generation [6]. Moreover,

complex patterns of network activity have been found in a rate model describing a large

population of excitatory neurons with dynamic synapses [7].

In this paper we analyze the effects of synaptic depression and facilitation on mode-

locking in a globally coupled network of N integrate-and-fire (IF) neuronal oscillators. We

first show how synaptic depression (facilitation) can increase (decrease) the collective period

of oscillations of a phase-locked state (section II). We then use mean-field theory (MFT)

to derive an evolution equation for the mean activity of the population in the large-N

limit (section III). This extends previous work on activity-independent synapses [8–12] by

introducing a second macroscopic variable that determines the total synaptic input. (In the

absence of dynamic synapses the latter is directly related to the population activity). From

a computational viewpoint, one of the interesting properties of the population activity is

that it can respond almost instantaneously to sudden changes in input [13,14]. The network
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is usually assumed to be in a so-called asynchronous or splay state – all the neurons fire at

the same mean rate but the firing times are maximally distributed over the common firing

period. We use our mean-field equations to determine how the stability of the splay state

is affected by dynamic synapses. We also show how mean-field theory can be extended to

take into account the effects of noise (section IV). Finally, we discuss an alternative to the

mean-field approach in which the firing times are considered as the fundamental dynamical

variables [15–22]. Such an approach is more generally applicable to finite, inhomogeneous

networks with arbitrary connectivity, and has recently led to a number of insights concerning

the dynamics of strongly coupled spiking neurons [20,21]. We use the firing time approach

to determine how the results of mean-field theory can be extended to finite networks (section

V).

II. SYNAPTIC DEPRESSION AND FACILITATION IN AN IF NETWORK

Consider a homogeneous network of N globally-coupled integrate-and-fire (IF) neurons.

Let Uj(t) denote the membrane potential of the jth neuron at time t with j = 1, . . . , N .

Each neuron evolves according to the equation

τm
dUj(t)

dt
= I − Uj(t) +

g

N − 1

∑
k 6=j

Rk(t) (2.1)

where τm is the membrane time constant, g is some global coupling constant, I is a constant

external input, and Rk(t) represents the post-synaptic response induced by the input spike

train from the kth neuron. For convenience we fix the units of time by setting τm = 1;

typically the membrane time constant is of the order 10msec. The sign of g determines

whether the network is excitatory (g > 0) or inhibitory (g < 0). Equation (2.1) is supple-

mented by the reset condition Uj(t
+) = 0 whenever Uj(t) = 1. Suppose that an isolated

action potential evokes a post-synaptic potential (PSP) whose shape can be represented by

an α-function, α2te−αt. Let Tmj , integer m, denote the mth firing time of the jth neuron,

that is, Tmj = inf{t | Uj(t) ≥ 1; t ≥ Tm−1
j }. In the case of activity-independent synapses,
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the total response Rk(t) at time t can be obtained by simply summing the responses arising

from the individual spikes. Therefore, assuming that each spike takes a time τa to propagate

along an axon connecting any two neurons, the total response is Rk(t) =
∑

m∈ZJ(t − Tmk )

where

J(τ) = α2(τ − τa)e−α(τ−τa)Θ(τ − τa) (2.2)

Here Θ(τ) = 1 if τ > 0 and is zero otherwise.

In order to incorporate the effects of dynamic synapses, we modify Rk(t) along the lines

of the phenomenological model considered in Refs. [2,4]. (See also the review of Abbott

and Marder [23]). This essentially involves the introduction of an amplitude factor C(Tmk )

that adjusts the magnitude of the single spike response at time Tmk based on previous input

history:

Rk(t) =
∑
m∈Z

C(Tmk )J(t− Tmk ) (2.3)

Following the arrival of a spike at a presynaptic terminal, C is increased in the case of

facilitation and decreased in the case of depression. It is mathematically convenient to

model the former as an additive process and the latter as a multiplicative process in order

to avoid possible divergences (see below). That is, C → C+γ−1 with γ > 1 for facilitation,

and C → γC with γ < 1 for depression. In between spikes, C is assumed to return to its

equilibrium value of one according to the exponential process

τc
dC

dt
= 1− C (2.4)

where τc is an appropriately chosen time constant. (τc can vary between around 100msecs

and a few seconds [4]). For a given sequence of jumps at times {Tmk , m ∈ Z}, equation (2.4)

can be solved iteratively for the amplitude C(Tmk ). One finds that

C(Tmk ) = 1 + (γ − 1)
∑
m′<m

γ̂m−m
′−1e−(Tmk −Tm

′
k )/τc (2.5)

with
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γ̂ = γ (depression), γ̂ = 1 (facilitation) (2.6)

Suppose that we restrict our attention to phase-locked solutions of equation (2.1) in

which every oscillator resets or fires with the same self-consistent period T [17,20,21]. The

state of each oscillator is then characterized by a constant phase φk ∈ R \ Z such that the

firing times are of the form

Tmk = (m− φk)T (2.7)

for all m ∈ Z and k = 1, ..., N . Under such an ansatz, the amplitude factor C(Tmk ) in

equation (2.3) reduces to its steady-state value C∞(T ) so that

Rk(t) = C∞(T )
∑
m∈Z

J(t− (m− φk)T ) (2.8)

The amplitude C∞(T ) is obtained by substituting equation (2.7) into equations (2.5) and

(2.6), and summing the resulting geometric series [23]:

C∞(T ) =
1 + (γ − 2)e−T/τc

1− e−T/τc
(facilitation) (2.9)

C∞(T ) =
1− e−T/τc

1− γe−T/τc
(depression) (2.10)

Note that C∞(T ) ≡ 1 in the case of activity-independent synapses (γ = 1). It is clear from

equation (2.9) that if γ < 1 then C∞(T ) < 0 for a range of values of T , which reflects the

possibility that the series (2.5) diverges. Hence, we do not use an additive model of synaptic

depression. Similar comments concerning equation (2.10) precludes a multiplicative model

of synaptic facilitation.

For a given set of phases Φ = (φ1, ..., φN), substitute equation (2.8) into equation (2.1)

and integrate over the interval t ∈ (−Tφj, T −Tφj) using the reset condition Uj(−φjT ) = 0

and Uj(T − φjT ) = 1. This leads to the phase equation

1 = I[1− e−T ] + gNC∞(T )
∑
k 6=j

K(φk − φj, T ), j = 1, . . . , N (2.11)
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where gN = g/(N − 1) and

K(φ, T ) =
∑
m∈Z

∫ T

0

et−TJ(t+ (m+ φ)T )dt (2.12)

After choosing some reference oscillator, equation (2.11) determines N − 1 relative phases

and the collective period T .

It is clear from equation (2.11) that the presence of dynamic synapses does not alter the

basic structure of phase-locked solutions of equation (2.1). The phase interaction function

K(φ, T ) is simply scaled by the steady-state amplitude C∞(T ), the main effect of which is

to modify the collective period T . Therefore, just as in the case of activity-independent

synapses where C∞(T ) ≡ 1, the different classes of solution can be determined using group

theoretic methods [24]. Of particular interest are the so-called maximally symmetric solu-

tions for which equation (2.11) reduces to a single equation for the collective period T . The

underlying symmetry of the system guarantees the existence of these solutions, assuming

that a self-consistent T can be found. (This is a realization of the equivariant branching

lemma [25]). In this paper we shall focus on the synchronous or in-phase solution, φj = φ for

all j = 1, . . . , N , and the splay or rotating wave states φj = φ± j/N . For these maximally

symmetric solutions, equation (2.11) takes the form

1 = I[1− e−T ] + gNC∞(T )
N−1∑
k=1

∑
m∈Z

∫ T

0

et−TJ(t+ (m+ kχ/N)T )dt (2.13)

with χ = ±1 corresponding to the splay states and χ = 0 corresponding to the in-phase

state.

To illustrate the effects of synaptic depression/facilitation on the collective period of

oscillations T , consider the large-N limit of equation (2.13) in the case of the splay state

(χ = 1). Using Fourier/Laplace transforms it can be shown that (see appendix A)

1

N − 1

N−1∑
k=1

∑
m∈Z

J(t+ (m+ k/N)T ) =
1

T

[
J̃(0)− 1

N − 1

∑
n6=0

J̃(2πin/T )

]
(2.14)

where J̃(λ) is the Laplace transform of the delay kernel J(t) of equation (2.2),
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J̃(λ) =
α2e−τaλ

(α + λ)2
(2.15)

Therefore, taking the large-N limit of equation (2.13) and noting that J̃(0) = 1, we obtain

the self-consistency equation

T = ln

[
I + gC∞(T )/T

I − 1 + gC∞(T )/T

]
(2.16)

The dependence of the (unique) non-trivial solution of equation (2.16) as a function of the

degree of synaptic depression is illustrated in Fig. 1 for g > 0 [26]. (In all figures the

variables are in dimensionless units obtained by taking τm = 1 and the firing threshold to be

unity). It can be seen that decreasing γ increases the collective period T , that is, depressive

synapses reduce the mean firing rate in an excitatory network. On the other hand, facilitating

synapses increase the firing rate as shown in Fig. 2. (The effects of synaptic depression and

facilitation on T are reversed for inhibitory networks). Interestingly, it can be seen from

Fig. 2 that for fixed positive coupling g there exists a critical value γc > 1 such that if

1 < γ < γc then there exist two non-trivial solution branches for T whereas there are no

non-trivial solutions when γ > γc. The upper branch for a given g and 1 < γ < γc is the

continuation from the activity-independent case and, hence, we shall focus on the stability

properties of this solution in subsequent sections rather than the lower branch. Finally, note

that the collective period tends to depend only weakly on the size of the network N .

III. MEAN-FIELD THEORY

One method for studying the dynamics of a large globally coupled network is to reformu-

late the dynamics as a continuity equation describing a flow of phases [8,9]. An alternative

approach [10–12], which we shall follow here, is to construct a mean-field equation for the

population activity

A(t) = lim
N→∞

1

N

N∑
j=1

∑
m∈Z

δ(t− Tmj ) (3.1)
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Here A(t)∆t determines the fraction of neurons firing in the small interval of time ∆t. In

the mean-field limit all oscillators have the same synaptic input R(t),

R(t) =

∫ ∞
0

J(τ)X(t− τ)dτ (3.2)

where X(t) is an additional macroscopic variable (see equations (2.1) and (2.3))

X(t) = lim
N→∞

1

N

N∑
j=1

∑
m∈Z

C(Tmj )δ(t− Tmj ) (3.3)

In the case of activity-independent synapses X(t) reduces to A(t).

Suppose that if an oscillator last fired at time t̂ then it fires again with probability one

at time t = t̂ + T (t̂). It follows that in the mean field limit, the activity A(t) satisfies the

integral equation [12]

A(t) =

∫ t

−∞
δ(t− t̂− T (t̂))A(t̂)dt̂ =

[
1 +

dT

dt̂

]−1

A(t− T ) (3.4)

In order to obtain a closed system of equations, it is first necessary to express the function

T (t̂) in terms of the mean field R(t). Let us solve the IF equation (2.1) in the mean-field

limit for successive firing times t̂ and t̂+ T . This leads to the implicit equation

1 = I[1− e−T ] + g

∫ T

0

es−TR(s+ t̂)ds (3.5)

Differentiating both sides of equation (3.5) with respect to t̂ then gives

dT

dt̂
= −g

∫ T
0

es−TR′(s+ t̂)ds

I − 1 + gR(t̂+ T )
(3.6)

In the case of activity-independent synapses, (3.4) and (3.6) form a closed system of equa-

tions since R(t) =
∫∞

0
J(τ)A(t − τ)dτ . Unfortunately, this is no longer true for dynamic

synapses since R(t) then satisfies equation (3.2) with the macroscopic dynamics of X(t)

still undetermined. Constructing a dynamical mean-field equation for X(t) does not appear

possible unless additional approximations are made. Here we shall work within a linear

approximation scheme, which is used to analyze the stability of the splay state.
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In the mean-field limit the splay state is a state with time-independent activity for which

A(t) = A0 ≡ 1/T and X(t) = X0 ≡ C∞(T )A0, where T is the solution to the self-consistency

equation (2.16). Consider perturbations about the splay state of the form

a(t) ≡ A(t)− A0 = ã(λ)eλt, x(t) ≡ X(t)−X0 = x̃(λ)eλt (3.7)

where λ ∈ C. Substituting (3.7) into (3.2) implies that R(t) = X0 + eλtJ̃(λ)x̃(λ) and

R′(t) = eλtλJ̃(λ)x̃(λ) where J̃(λ) is the Laplace transform (2.15). Substituting equation

(3.6) into (3.4) and expanding to first order in ã(λ) and x̃(λ) then gives

ã(λ)
[
eλT − 1

]
= gA0x̃(λ)

λJ̃(λ)

[1 + λ]

[
eλT − e−T

] [
eT − 1

]
(3.8)

We have used the result that I − 1 + gA0C∞(T ) = [eT − 1]−1 (see equation (2.16)).

It remains to derive an expression for x̃(λ) in terms of ã(λ). This will be accomplished

by linearizing equations (3.1) and (3.3) about the splay state, and using this to construct a

linear differential equation for x(t) in terms of a(t). In order to carry out this linearization

procedure, it is necessary to consider perturbations of the individual firing times (see section

V). Let T̂mk = (m + k/N)T denote the firing times of the splay state and consider the

perturbed state Tmk = T̂mk + umk with umk = ake
mλT . Expanding equation (3.3) to first order

in ak using equation (2.5) yields the linear equation

x(t) ≈ C∞(T )

[
a(t)− (γ − 1)Γ(λT ) lim

N→∞

1

N

N∑
k=1

∑
m∈Z

emλTakδ(t− T̂mk )

]
(3.9)

where

Γ(λ) =
∑
m′<m

γ̂m−m
′−1e−(m−m′)T/τc

(
1− e−(m−m′)λ

)
=

[
e−T/τc

1− γ̂e−T/τc
− e−T/τc−λ

1− γ̂e−T/τc−λ

]
(3.10)

Similarly, expanding equation (3.1) gives

a(t) ≈ − lim
N→∞

1

N

N∑
k=1

∑
m∈Z

emλTakδ
′(t− T̂mk ) (3.11)
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Hence, comparison of equations (3.9) and (3.11) leads to the linear differential equation

(valid to first order in a(t))

dx(t)

dt
= C∞(T )

[
da

dt
+ (γ − 1)Γ(λT )a(t)

]
(3.12)

(More precisely, this relationship between the two distributions a(t) and x(t) should be

formulated in terms of integrals
∫∞
−∞ f(t)a(t)dt and

∫∞
−∞ f(t)a(t)dt for an arbitrary smooth

function f(t) such that
∫∞
−∞ f(t)dt < ∞). Substituting equation (3.7) into equation (3.12)

yields the result

x̃(λ) = C∞(T )ã(λ)

[
1 +

(γ − 1)

λ
Γ(λT )

]
(3.13)

Finally, combining equations (3.8) and (3.13) we obtain the characteristic equation

(eλT − 1) = gΛ(T ) [λ+ (γ − 1)Γ(λT )]
J̃(λ)

1 + λ

(
eλT − e−T

)
(3.14)

where Λ(T ) =
C∞(T )

T

(
eT − 1

)
.

Note that there are two major γ-dependent contributions to equation (3.14) for a given

T . First, there is a static contribution associated with a simple rescaling of the coupling

according to g → C∞(T )g. Second, there is a dynamic contribution represented by the

term (γ − 1)Γ(λT ) in equation (3.14). Although the static contribution accounts for the

qualitative nature of the effect of synaptic depression/facilitation on stability as described

below, it underestimates the size of this effect.

In the weak coupling regime, solutions of equation (3.14) are of the form λT = 2πin+Λn

for integer n and Λn = O(g). The term Λn can be calculated by performing a perturbation

expansion in the coupling g. The lowest order contribution is simply determined by setting

λT = 2πin on the right-hand side of equation (3.14):

Λn = gΛ(T )(1− e−T )

(
2πin

T + 2πin

)
J̃(2πin/T ) +O(g2) (3.15)

It follows from equation (3.15) that dynamic synapses do not alter the weak coupling stability

of a splay state other than indirectly through a modification of its collective period T (see
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Figs. 1 and 2). Therefore, we can apply the stability results previously obtained for activity-

independent synapses [9,11,12]:

1. For zero axonal delays (τa = 0) and excitatory coupling (g > 0), the splay state is

stable with respect to excitation of the nth mode if and only if α < αn where

αn = −1 +
√

1 + 4n2π2/T 2 (3.16)

Hence, it is stable for sufficiently slow synapses, that is, α < α1. The splay state is

always unstable in the case of inhibitory coupling since the condition for stability with

respect to the nth harmonic is now α > αn, which cannot be satisfied for all n.

2. The splay state is almost always unstable for non-zero delays (in the noise-free case).

3. For large n, |Λn| ∼ 1/n2 so that higher harmonics grow or decay slowly.

Note that although the zero delay case is a singular limit in the absence of noise, it becomes

non-singular for arbitrarily small amounts of noise, where instabilities with respect to higher

harmonics are suppressed (see Refs. [9,11,12] and section IV). Finite-size effects play a similar

role. For, as will be shown in section V, equation (3.14) still holds for finite N except that

n is now restricted to have values in the range 0 ≤ n ≤ N − 1 (and g is scaled by a factor

N/(N − 1)).

A numerical investigation of the zero delay case with activity-independent synapses and

excitatory coupling shows that increasing g can stabilize the splay state for values of α > α1

[9]. This occurs due to eigenvalues associated with low order harmonics crossing over into

the left-half complex plane. We shall investigate how this result depends on γ. Set λT = iβ,

β ∈ R, in equation (3.14), and equate real and imaginary parts to obtain the pair of equations

cos(β)− 1 = gΛ(T )

(
(γ − 1)q0(β)P0(β)−

[
β

T
+ (γ − 1)q1(β)

]
P1(β)

)
(3.17)

sin(β) = gΛ(T )

([
β

T
+ (γ − 1)q1(β)

]
P0(β) + (γ − 1)q0(β)P1(β)

)
(3.18)
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where q0(β) = ReΓ(iβ), q1(β) = ImΓ(iβ),

P0(β) =
[
cos(β)− e−T

]
p0(β)− sin(β)p1(β)

P1(β) = sin(β)p0(β) +
[
cos(β)− e−T

]
p1(β)

and p0(β) = Re
J̃(iβ/T )

1 + iβ/T
, p1(β) = Im

J̃(iβ/T )

1 + iβ/T
. For a given coupling g, we search for the

smallest α for which a non-zero solution β of equations (3.17) and (3.18) exists. The results

are shown in Fig. 3 for synaptic depression. It can be seen that increasing the degree of

synaptic depression (by reducing γ) leads to a reduction in the critical inverse rise-time

for destabilization of the splay state. In other words, synaptic depression decreases the

region in the (g, α−1)-plane over which the splay state is stable. The γ-dependent shift in

the stability curves can be understood qualitatively in terms of the static rescaling of the

coupling g → gC∞(T ). Since C∞(T ) < 1 for synaptic depression (see inset of Fig. 1), there

is an effective reduction in the coupling that results in destabilization. This effect is further

enhanced by dynamic contributions (associated with the term (γ − 1)Γ(λT ) in equation

(3.14)). On the other hand, synaptic facilitation has a stabilizing effect in the sense that it

enlarges the region of stability as shown in Fig. 4. This is qualitatively consistent with an

effective increase in the coupling g → gC∞(T ) with C∞(T ) > 1 for synaptic facilitation.

IV. NOISE

One of the powerful features of the MFT approach to population dynamics is that it

provides an analytically tractable framework for incorporating the effects of noise, which

can be achieved through a generalization of the activity integral equation (3.4) [12,27].

Suppose for simplicity that the dynamics is described by a renewal process. That is, there

exists a conditional probability density PX(t|t̂) such that PX(t|t̂)δt is the probability of firing

in the interval [t, t + δt] given that the last spike occurred at t̂. The subscript X indicates

that the probability density depends on the time course of the mean field X(t′) (equation

(3.3)) for t′ < t. The integral equation (3.4) for the population activity A(t) now becomes

12



A(t) =

∫ t

−∞
PX(t|t̂)A(t̂)dt̂ (4.1)

with A appropriately normalized [27].

There are various ways of introducing noise into an IF network including threshold noise,

reset noise and input noise [27]. Here we shall consider a phenomenological approach in which

additive noise is introduced directly into the firing times. First, solve equation (2.1) in the

mean field limit for a sequence of firing times {T nj , n ∈ Z}. The resulting iterative equation

for the firing times can be written in the form

eT
n+1
j
[
I − 1 + gY (T n+1

j )
]

= eT
n
j
[
I + gY (T nj )

]
(4.2)

where

Y (t) =

∫ ∞
0

Ĵ(τ)X(t− τ)dτ, Ĵ(τ) =

∫ τ

0

es−τJ(s)ds (4.3)

This leads to the following implicit equation for T n+1
j as a function of T nj :

T n+1
j = T nj +H(T nj , T

n+1
j ) (4.4)

where

H(t, t′) = ln

[
gY (t) + I

gY (t′) + I − 1

]
(4.5)

A stochastic IF model is now introduced by assuming that the firing times evolve according

to the additive process

T n+1
j = T nj +H(T nj , T

n+1
j ) + ξnj (4.6)

where ξnj , for integer n and j = 1, . . . , N , are independent random variables generated from

a given probability density ρ. We shall assume that the width of the probability distribution

is sufficiently narrow so that the domain of ρ can be taken to be the whole real line. A further

simplification can be obtained by taking Y (t) to be a sufficiently slow function of time so

that H(T nj , T
n+1
j ) ≈ H(T nj , T

n
j + ∆T nj ) with ∆T nj = H(T nj , T

n
j ), which is uncorrelated with
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ξnj . Under this approximation, equation (4.6) describes a renewal process with conditional

probability density

PX(t|t̂) = ρ(t−H(t̂, t∗)− t̂) (4.7)

where t∗ = t̂ + H(t̂, t̂). We shall use equation (4.1) and the conditional probability density

(4.7) to investigate how noise can affect the stability of the splay state.

As in the noise-free case, define the splay state as a time-independent state A(t) = A0

and X(t) = X0. It follows from equation (4.6) that the firing times of the splay state

(denoted by T̂ nj ) evolve according to the simplified equation

T̂ n+1
j = T̂ nj +H(X0) + ξnj (4.8)

with

H(X) = ln

[
gX + I

gX + I − 1

]
(4.9)

The activity A0 is equal to the inverse of the mean inter-spike interval, that is,

1

A0

≡ T =

∫
ξρ(ξ −H(X0))dξ = H(X0) + ξ (4.10)

For convenience we shall take ξ = 0. The constant field X0 is obtained from equation (3.3)

as

X0 =
∑
m∈Z

〈
C(T̂m)δ(t− T̂m)

〉
(4.11)

where 〈C(T̂m)〉 = limN→∞
∑N

i=1 C(T̂mi )/N etc. For self-consistency, we require that the

right-hand side of equation (4.11) is t-independent. One way to ensure this is to assume

that in the large-N limit the following approximation holds:

X0 ≈
∑
m∈Z
〈C(T̂m)〉〈δ(t− T̂m)〉

= C(T )A0 (4.12)

where (for synaptic depression)
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C(T ) = 1 + (γ − 1)
∑
m′<m

γm−m
′−1〈e−(T̂m−T̂m′ )/τc〉

= 1 + (γ − 1)
∑
m′<m

γm−m
′−1e−(m−m′)T/τc〈e−(ξm+ξm−1+...+ξm

′
)/τc〉

=
1− κe−T/τc

1− γκe−T/τc
(4.13)

We have used the fact that the ξni are uncorrelated so that 〈e−(ξm+ξm−1+...+ξm
′
)/τc〉 = κm−m

′

with κ = e−ξ/τc . A similar result to equation (4.13) holds for synaptic facilitation:

C(T ) =
1 + (γ − 2)κe−T/τc

1− κe−T/τc
(4.14)

It follows from equations (4.10) and (4.12) that the collective period of oscillations satisfies

equation (2.16) with C∞(T ) replaced by C(T ).

In order to determine the stability of the splay state in the presence of noise, consider

perturbations of the form (3.7). Linearization of the integral equation (4.1) about the splay

state gives

ã(λ) [1− ρ̃0(λ)] = gA0
λx̃(λ)J̃(λ)

1 + λ

[
eT − 1

] [
eλT − e−T

]
ρ̃0(λ) (4.15)

where

ρ̃0(λ) =

∫ ∞
0

ρ(s−H(A0))e−sλds (4.16)

Following similar arguments to the deterministic case (section III), it can be shown that

a(t) and x(t) are related according to the linear equation (3.12) under the replacements

C∞(T )→ C(T ) and Γ(λ)→ Γ(λ) with C(T ) satisfying equation (4.13) or (4.14) and

Γ(λ) =
κe−T/τc

1− γ̂κe−T/τc
− κe−T/τc−λ

1− γ̂κe−T/τc−λ
(4.17)

(We are again assuming that the approximation (4.12) is valid). We conclude that in the

presence of noise, the characteristic equation for the splay state takes the form

1− ρ̃0(λ) = gΛ(T )
[
λ+ (γ − 1)Γ(λT )

] J̃(λ)

1 + λ

(
eλT − e−T

)
ρ̃0(λ) (4.18)

15



where Γ(λ) =
C(T )

T

(
eT − 1

)
. In the deterministic limit ρ̃0(λ) → e−λT with A0 = 1/T and

T satisfying equation (2.16), equation (4.18) reduces to equation (3.14).

It is clear from equation (4.18) that in the weak coupling regime solutions λ must have

negative real part in order for the left-hand side of (4.18) to be O(g). Therefore, we expect

the stability of the splay state to persist to arbitrarily large values of α when g is suffi-

ciently weak. Moreover, since the modulus of the right-hand side vanishes when |λ| → ∞

it follows that high order harmonics are suppressed. Consequently, the critical value of α

for destabilization of an excitatory network with zero axonal delays and intermediate or

strong coupling g should increase with the level of noise. This is indeed found to be the

case, both for activity-independent synapses (see Fig. 5a and Refs. [9,11]) and dynamic

synapses (see Fig. 5b). In the construction of Fig. 5 (and subsequent figures) we have taken

ρ(ξ) = e−ξ
2/2σ2

with standard deviation σ ¿ T so that ρ̃(λ) ≈ e−λT+λ2σ2/2 and κ = eσ
2/2τ2

c .

Another important consequence of noise is that it can stabilize the splay state in an in-

hibitory network by suppressing higher harmonics [9]. This is illustrated in Figs. 6 and

7 where we plot the stability boundary curves for the first two harmonics as a function of

α and |g| with τa = 0. It can be seen that noise reduces the region of instability of these

modes. Such an effect increases with the order n so that the splay state is stable in the

region outside the boundary curves of the low harmonics. In particular, the splay state is

stable for all α when the coupling is sufficiently weak. Interestingly, in the presence of noise,

synaptic depression can actually have a stabilizing effect provided that the coupling is not

too large. Indeed, Figs. 5b and 7 show that the stability boundary curves are shifted over to

larger values of |g| when γ is reduced from unity. An analogous result is found in excitatory

networks with non-zero axonal delays as illustrated in Fig. 8. We plot the boundary curves

of the first two harmonics as a function of σ and τa for fixed α and g. The region of stability

outside the boundary curves of the lower harmonics is enlarged by depressive synapses. As

in the noise-free case, these results can be understood qualitatively in terms of rescaling of

the coupling according to g → gC∞(T ).

16



V. FINITE NETWORKS

In this section we analyze the stability of the splay and in-phase states of a globally

coupled IF network directly in terms of the firing times. This will be used to determine how

the results of mean-field theory are modified for finite networks (in the absence of noise).

Following along similar lines to Ref. [20,21], integrate equation (2.1) from T nj to T n+1
j to

generate the nonlinear firing time map

eT
n+1
j = I

[
eT

n+1
j − eT

n
j

]
+ gN

∑
k 6=j

∑
m∈Z

C(Tmk )

[∫ Tn+1
j

Tnj

etJ(t− Tmk )dt

]
(5.1)

Set T nj = (n + jχ/N)T + unj , where unj represents a perturbation of the splay (χ = ±1) or

in-phase (χ = 0) states, and expand equation (5.1) as a power series in the perturbations

unj . To O(1) we recover equation (2.11) for the collective period T , whereas the O(u) terms

lead to an infinite-order linear difference equation given by

AN
[
un+1
j − unj

]
= gN

∑
k 6=j

∑
m∈Z

B1(n−m+ (j − k)χ/N)
[
umk − unj

]
(5.2)

+(γ − 1)gN
∑
k 6=j

∑
m∈Z

B0(n−m+ (j − k)χ/N)δmk [u]

where

AN = I − 1 + gNC∞(T )
N−1∑
k=1

∑
m∈Z

J([m+ kχ/N ]T ). (5.3)

B0(φ) = C∞(T )

∫ T

0

et−TJ(t+ φT )dt, B1(φ) =
1

T

dB0(φ)

dφ
(5.4)

and

δmk [u] =
∑
m′<m

γ̂m−m
′−1e−(m−m′)T/τc [umk − um

′
k ] (5.5)

with γ̂ defined by equation (2.6). Note that Br(φ) = 0 for r = 0, 1 and φ < −1 so that

equation (5.2) does not violate causality.

The linear map (5.2) has a discrete spectrum that can be found by taking
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umk = emλak, ak = ek(λχ+2πip)/N (5.6)

with λ ∈ C, 0 ≤ Im λ < 2π, and p = 0, . . . , N − 1. This generates the characteristic

equation

AN [eλ − 1] = g
[
B̃1N(λ, p)− B̃1N(0, 0) + (γ − 1)B̃0N(λ, p)Γ(λ)

]
(5.7)

where

B̃rN(λ, p) =
1

N − 1

N−1∑
k=1

∑
m∈Z

Br(m+ kχ/N)e−(m+kχ/N)λe−2πipk/N (5.8)

for r = 0, 1, and Γ(λ) is defined according to equation (3.10). Note that BrN(λ, p) and Γ(λ)

are analytic functions of λ in the right-half complex λ-plane, but have a countable number

of poles in the left-half plane. This can be seen explicitly in the case of Γ(λ), equation

(3.10), which has poles at λ = −[T + | ln(γ̂)|] + 2πin, n ∈ Z, arising from the analytic

continuation of the geometric series. The semi-analyticity of B̃rN reflects causality. One

solution of equation (5.7) is λ = 0, p = 0, which reflects invariance of the dynamics with

respect to uniform phase-shifts of the firing times, Tmj → Tmj + u for all j,m. Therefore,

the condition for linear stability of a splay or in-phase state is that all remaining solutions

of equation (5.7) satisfy Re λ < 0.

Let us now consider the splay state by setting χ = 1. Using appendix A, we can rewrite

equations (5.3) and (5.8) as

AN = I − 1 + g
C∞(T )

T

[
J̃(0)− 1

N − 1

∑
n6=0

J̃(2πin/T )

]
(5.9)

where J̃(λ) is the Laplace transform (2.15), and

B̃rN(λ, p) = B̃r(λ+ 2πip)− 1

N − 1

∑
n6=0

B̃r(λ+ 2πi[p+ n]) (5.10)

with

B̃r(λ) ≡
∫ ∞
−∞

e−λφBr(φ)dφ =
C∞(T )

T

(
eλ − e−T

) [λ/T ]r

1 + λ/T
J̃(λ/T ) (5.11)
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and Br(φ) defined by equation (5.4). Substitute equations (5.9) and (5.10) into the charac-

teristic equation (5.7) and take the large-N limit. This generates the characteristic equation

(eλ − 1)[I − 1 + g
C∞(T )

T
] (5.12)

= g
[
B̃1(λ+ 2πip)− B̃1(0) + (γ − 1)B̃0(λ+ 2πip)Γ(λ)

]
where p ∈ Z. Recall that 0 ≤ Im λ < 2π. Therefore, in equation (5.12) we can absorb 2πip

into the definition of λ by extending the domain of λ to the whole complex plane. After

substituting for B̃r using equation (5.11) and performing a rescaling λ→ λT we recover the

mean-field characteristic equation (3.14).

For finite N , the modifications to the characteristic equation (5.12) can be deduced

from equations (5.9) and (5.10). We shall illustrate this in the case of weak coupling. For

sufficiently small |g|, all solutions of equation (5.7) in the complex λ-plane will either be

in a neighborhood of the real solution λ = 0 or in a neighborhood of one of the poles of

B̃rN(λ, p),Γ(λ). Since the latter all have negative real parts, the stability of phase-locked

solutions will be determined by the eigenvalues around the origin. Therefore, expanding

equation (5.7) in powers of λ and using equation (5.3) shows that

λ[I − 1] = g
[
B̃1N(0, p)− B̃1N(0, 0)

]
+O(g2) (5.13)

Using the fact that B̃1N(0, p)− B̃1N(0, 0) = NB̃1(2πip)/(N − 1) when χ = 1 (see equation

(5.10)), it follows that equation (5.13) reduces to equation (3.15) with 0 ≤ n ≤ N − 1 and

g → Ng/(N −1). This also implies that higher harmonics are suppressed in finite networks.

VI. IN-PHASE STATE

So far we have focused on how dynamic synapses affect the existence and stability of the

splay state. In this final section we briefly discuss some results concerning the synchronous

or in-phase state. The linearized map of the firing times for this state is given by equation

(5.2) with χ = 0. For large N , it can be rewritten in the form
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A
[
un+1
j − unj

]
= g

∑
m∈Z

B1(n−m)
[
〈um〉 − unj

]
(6.1)

+g(γ − 1)
∑
m∈Z

B0(n−m)
∑
m′<m

Γmm′ [〈um〉 − 〈um
′〉]

with Γmm′ = γ̂m−m
′−1e−(m−m′)T , A = I − 1 + g

∑
m∈ZJ(mT ) and

〈um〉 = lim
N→∞

1

N

N∑
j=1

umj (6.2)

Following Ref. [18], we appeal to the law of large numbers and assume that for large N the

mean perturbation 〈um〉 ≈ 0 for all m. Equation (6.1) then simplifies to the one-dimensional,

first-order mapping

un+1
j =

[
1− gC∞(T )K ′(0, T )

A

]
unj ≡ βTu

n
j (6.3)

Since C∞(T ) > 0 and A > 0, equation (6.3) implies that the in-phase state will be stable in

the large-N limit if |βT | < 1, that is, if gK ′(0, T ) > 0. This is a version of the mode-locking

theorem of Gerstner et al [18], which we have shown extends to the case of a globally coupled

IF network with dynamic synapses. One finds from equations (2.2) and (2.12) that for τa = 0

and inhibitory coupling (g < 0) the synchronous state is stable for all 0 < α < ∞. If the

discrete delay τa is increased from zero, then alternating bands of stability and instability

are created that are periodic in τa with period T (see Fig. 9). This periodicity can be

deduced from the following Fourier series representation of K(φ, T ):

K(φ, T ) = α2 1− e−T

T

∑
m∈Z

e2πimφ e−2πimτa/T

[α + 2πim/T ]2[1 + 2πim/T ]
(6.4)

It is clear from equation (6.4) that changes in T due to variation of the parameter γ (charac-

terizing the degree of depression or facilitation) will alter stability through the dependence

of sign[K ′(φ, T )] on the dimensionless parameters αT and τa/T .

Elsewhere we have shown that reducing the size of the network can induce new insta-

bilities. For example, an inhibitory network of N IF oscillators and α-function synaptic

interactions can desynchronize in the strong coupling regime leading to oscillator death (a

state in which some neurons suppress the activity of others). More precisely, there exists a
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critical inverse rise-time αc(N) such that the in-phase state is stable for arbitrary coupling

g when α > αc(N) but becomes unstable at some critical coupling gc(N) when α < αc(N).

Moreover, limN→∞ αc(N) = 0 so that the mean field result is recovered in the large-N limit

[28].

VII. CONCLUSION

In this paper we used mean-field techniques to explore the effects of dynamic synapses on

mode-locking in a homogeneous IF oscillator network. A number of results were obtained:

1. Synaptic depression increases (decreases) the collective period of oscillations of the

splay state in an excitatory (inhibitory) network. The opposite holds for synaptic

facilitation.

2. In the noise-free case, depressive synapses tend to have a destabilizing effect in the

sense that they reduce the parameter domain over which the splay state is stable.

On the other hand, synaptic facilitation tends to have a stabilizing effect. These

modifications in stability involve a static contribution arising from a rescaling of the

coupling strength according to g → C∞(T )g, which is further enhanced by dynamic

contributions associated with adaptation of the synapses.

3. Synaptic depression can enhance the stabilizing effects of noise on the splay state

for sufficiently weak coupling. As in the noise-free case, this effect has both a static

contribution arising from a rescaling of the coupling g and a dynamic contribution.

4. In the large-N limit, the stability criterion for the in-phase state is gK ′(0, T ) > 0,

irrespective of the degree of synaptic depression or facilitation, with K(φ, T ) given by

equation (2.12). However, dynamic synapses do influence stability indirectly through

changes in the collective period T .

In future work we shall investigate the more general problem of phase-locking instabilities

in networks of pulse-coupled IF neurons with dynamic synapses. It has recently been shown
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that, in the case of activity-independent synapses and strong coupling, phase-locked states

can bifurcate to states exhibiting more complex forms of behavior including oscillator death,

periodic bursting, and spatially periodic activity patterns [20,21]. It will be of interest to

determine how these bifurcations are modified by synaptic depression and facilitation.

APPENDIX A

Let F (t) be an arbitrary function of t such that
∫∞
−∞ F (t)dt < ∞. Define the average

〈〈F 〉〉N according to

〈〈F 〉〉N =
1

N − 1

N−1∑
j=1

∑
m∈Z

F ([m+ j/N ]T ). (A.1)

In terms of the Fourier transform of F (t),

〈〈F 〉〉N =
1

N − 1

N−1∑
j=1

∑
m∈Z

∫ ∞
−∞

eiω(m+j/N)T F̃ (ω)
dω

2π

=
1

N − 1

1

T

N−1∑
j=1

∑
n∈Z

F̃ (2πn/T )ei[2πnj/N ]

=
1

T

[
F̃ (0)− 1

N − 1

∑
n6=0

F̃ (2πn/T )

]
(A.2)

where

F̃ (ω) =

∫ ∞
−∞

e−iωtF (t)dt (A.3)

In the large-N limit, we obtain the result

〈〈F 〉〉∞ ≡ lim
N→∞

〈〈F 〉〉N =
1

T

∫ ∞
−∞

F (t)dt. (A.4)
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FIG. 1. Collective period T of a splay state in the large-N limit as a function of γ in the case

of synaptic depression. Results are shown for g = 0.1, 0.5, 1.0 and I = 2.0. Inset: Variation of

C∞(T ) with γ for g = 0.1 and I = 1.1. Dashed portion of curve represents continuation into the

facilitating regime (γ > 1), which corresponds to the upper branch of figure 2 for g = 0.1.
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FIG. 2. Collective period T of a splay state in the large-N limit as a function of γ in the case

of synaptic facilitation. Here g = 0.1, 0.2 and I = 1.1. Beyond a critical value of γ there no

longer exists a non-zero solution for T . For a given g, the upper branch is the continuation of the

non-trivial activity-independent solution at γ = 1.
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FIG. 3. Destabilizing effect of synaptic depression in an excitatory network with zero axonal

delays and finite rise-time α−1. The boundary curve separating stable and unstable regions of the

splay state is shown for various values of γ and fixed external input I = 1.5. Stability holds above

each boundary curve.
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FIG. 4. Stabilizing effect of synaptic facilitation in an excitatory network with zero axonal

delays and finite rise-time α−1. The splay state with the largest collective period is selected (see

Fig. 2). The boundary curve separating stable and unstable regions of the splay state is shown for

various values of γ and fixed external input I = 1.1. Stability holds above each boundary curve.
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FIG. 5. Stability of the splay state as a function of excitatory coupling g and rise-time α−1 in

the presence of synaptic depression and noise. The boundary curve above which the splay state

becomes stable is shown for I = 1.1, τa = 0 and various values of the standard deviation σ. (a)

γ = 1 (activity-independent synapses). (b) γ = 0.5 (synaptic depression).
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FIG. 6. Stability of the splay state as a function of inhibitory coupling |g| and inverse rise-time

α for synaptic depression without noise. The stability boundary curves for the first two harmonics

n = 1, 2 are shown for I = 2.0, τa = 0 and various values of γ. A mode is stable above its boundary

curve.

28



0.5 1 1.5 2

2

4

6

8

10

12

14

|g|

α

n = 2

n = 1

γ = 1.0 γ = 0.5

FIG. 7. Stability of the splay state as a function of inhibitory coupling |g| and inverse rise-time

α in the presence of synaptic depression and noise (σ = 0.01). The stability boundary curves

for the first two harmonics n = 1, 2 are shown for activity-independent synapses (solid lines) and

depressive synapses with γ = 0.5 (dashed lines). Here I = 2.0 and τa = 0. A mode is stable outside

its boundary curve.
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FIG. 8. Stability of the splay state as a function of axonal delay τa and noise σ for an excitatory

network. The stability boundary curves for the first two harmonics n = 1, 2 are shown for activ-

ity-independent synapses (solid lines) and depressive synapses with γ = 0.5 (dashed lines). For

each γ the single high peak corresponds to n = 1 and the pair of lower peaks corresponds to n = 2.

The delay τa has been scaled by the collective period T (which is approximately independent of

σ and τ for weak coupling); the stability diagram is periodic with respect to T . We have taken

I = 1.1, α = 10 and g = 0.1. A mode is stable outside its boundary curve.
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FIG. 9. Stability of the in-phase state φ = 0 as a function of the dimensionless variables

[αT ]−1 and τa/T for weak excitatory coupling. Stable and unstable regions are denoted by s and

u respectively. The stability diagrams are periodic in τa with period T .
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