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Abstract. The behaviour of meromorphic solutions to differen-
tial equations has been the subject of much study. Research has
concentrated on the value distribution of meromorphic solutions
and their rates of growth. The purpose of the present paper is
to show that a thorough search will yield a list of all meromorphic
solutions to a multi-parameter ordinary differential equation intro-
duced by Hayman. This equation does not appear to be integrable
for generic choices of the parameters so we do not find all solutions
— only those that are meromorphic. This is achieved by combining
Wiman-Valiron theory and local series analysis. Hayman conjec-
tured that all entire solutions of this equation are of finite order.
All meromorphic solutions of this equation are shown to be either
polynomials or entire functions of order one.

1. Introduction

Much research has been undertaken concerning the behaviour of
meromorphic solutions to differential equations (see [19] and references
therein). In this paper we will consider the problem posed by Hayman
[11], p. 93 of showing that all meromorphic solutions to the ordinary
differential equation (ODE)

(1.1) ff ′′ − f ′
2

= k0 + k1f + k2f
′ + k3f

′′

where the kj are constants, are of finite order. We will solve this prob-
lem by finding all meromorphic solutions. The key mathematical meth-
ods that we use are Wiman-Valiron theory, local series analysis, and
reduction of order. It should be stressed that we do not find the general
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solution of equation (1.1) explicitly, which may well be impossible —
we only find the meromorphic solutions.

In general, finding explicit solutions to nonlinear differential equa-
tions in terms of finite combinations of known functions is difficult, if
not impossible. However, it was observed in the late nineteenth and
early twentieth centuries that ODEs whose general solutions are mero-
morphic appear to be integrable in that they can be solved explicitly or
they are the compatibility conditions of certain types of linear problems
(see, e.g. [1], chapter 7). In the 1880s Kowalevskaya [17, 18] consid-
ered the equations of motion for a spinning top, which is a sixth-order
system depending on parameters describing the mass, centre of mass,
and moments of inertia of the top. For special choices of these param-
eters the equations of motion had been solved by Euler and Lagrange.
Kowalevskaya observed that these solutions were meromorphic when
extended to the complex plane. She determined all choices of the pa-
rameters for which the general solution was meromorphic. She found
one new case, which she then solved explicitly in terms of ratios of
hyper-elliptic functions [5]. No further cases in which these equations
can be solved explicitly have been discovered in the intervening 112
years.

From the many examples known in the literature it appears that
many, perhaps all, ODEs whose general solutions are meromorphic can
be solved explicitly or are the compatibility condition for a related
spectral problem. Furthermore, the condition that the general solution
is meromorphic can be replaced by the condition that the ODE pos-
sesses the Painlevé property (that all solutions are single-valued about
all movable singularities) [1]. The Painlevé property will be discussed
in section 5.

The philosophy underlying Kowalevskaya’s work is that we should
be able to find the general solution of an ODE if its general solution is
meromorphic. Here we extend this idea to the problem of finding all
(particular) meromorphic solutions of an ODE, regardless of whether
the general solution is meromorphic. Hence meromorphicity can be
used to uncover explicit particular solutions of non-integrable equa-
tions.

We begin by discussing the significance of equation (1.1) in complex
function theory. Finite order functions have nice properties and so
they have been the subject of intense study (see [10] and the reference
therein). The major result concerning the order of growth of mero-
morphic solutions of first-order ODEs is the following theorem due to
Gol’dberg [6]. The major result for higher-order ODEs that admit finite
order solutions is due to Hayman [11] which will be discussed below.
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For the standard notation and terminology of Nevanlinna theory, see
[10, 19].

Theorem 1.1. (Gol’dberg) All meromorphic solutions of the first-
order ODE

(1.2) Ω(z, f, f ′) = 0,

where Ω is polynomial in all its arguments, are of finite order.

A generalization of Gol’dberg’s result to second-order algebraic equa-
tions has been conjectured by Bank [4]. Let f be any meromorphic
solution of the ODE

(1.3) Ω
(
z, f, f ′, f ′′

)
= 0,

where Ω is polynomial in all of its arguments. In terms of the Nevan-
linna Characteristic T (r, f) (see, e.g., [10] or [19]), Bank [4] conjectured
that

(1.4) T (r, f) < K2 exp(K1r
c), 0 ≤ r < +∞,

where K1, K2 and c are positive constants. In [11], Hayman described
a generalization of this conjecture to nth-order ODEs, known as the
classical conjecture. If f(z) is a meromorphic solution of

(1.5) Ω
(
z, f, f ′, · · · , f (n)

)
= 0,

where Ω is polynomial in z, f ′, · · · , f (n), then we have

(1.6) T (r, f) < a expn−1(br
c), 0 ≤ r < +∞

where a, b and c are constants and exp� is defined by

exp0(x) = x, exp1(x) = ex, exp� = exp
{
exp�−1(x)

}
.

Clearly the Bank conjecture (1.4) is a special case of the Classical

Conjecture when n = 2. Hayman credited the conjecture to S. Bank
and L. Rubel.

Steinmetz proved the classical conjecture for any second-order poly-
nomial equation which is homogeneous in its dependent variable and
its derivatives. Furthermore, he showed how the solution of such an
equation can be expressed in terms of entire functions of finite order.
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Theorem 1.2. (Steinmetz) Suppose that in (1.3), Ω is homogeneous
in f, f ′, f ′′. Then all meromorphic solutions of (1.3) take the form

(1.7) f(z) =
g1(z)

g2(z)
exp{g3(z)},

where gj(z), j = 1, 2, 3, are entire functions of finite order. In partic-
ular f satisfies (1.4).

In particular, the function f(z) = eez
satisfies (1.4) and the differen-

tial equation

(1.8) ff ′′ − (f ′)2 − ff ′ = 0

and is of infinite order.
Bank proved in [4] that if a meromorphic solution f of (1.3) satisfies

N(r, aj, f) = O(erc
) for aj, j = 1, 2 belongs to the extended complex

plane Ĉ where c is some positive constant, then f satisfies (1.4). This
result improved upon Bank’s own result [3] where a weaker assumption
that N(r, aj, f) = O(rc) for aj, j = 1, 2 is assumed. In fact, Gol’dberg
[7] proved a stronger result for a special subclass of (1.9). Hayman
[11] generalized this result to higher-order algebraic ODEs of the form
(1.5). Let Ω take the form

(1.9) Ω =
∑
λ∈Λ

dλ(z)f i0(f ′)i1 · · · (f (n))in ,

and where Λ = {(i0, i1, · · · , in) ∈ Nn : ni ∈ N} is a finite set and dλ

are polynomials in z.
Hayman formulated the following theorem in terms of the degree
|λ| = i0 + i1 + · · ·+ in and the weight ‖λ‖ = i0 + 2i1 + · · ·+ (n + 1)in
of the terms in equation (1.5).

Theorem 1.3. (Hayman) Let f(z) be an entire solution of the equa-
tion (1.5) where Omega is given by (1.9). Let Γ be the subset of Λ in
(1.5) such that it contains those terms in (1.9) with the highest weights
among those with the highest degree. Let the highest degree among all
the polynomials dλ(z) be d and suppose further that

(1.10)
∑
λ∈Γ

dλ(z) 
= 0.

Then f(z) has finite order of growth max{2d, d + 1} at most.
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Hayman [11] has suggested the problem of showing that all entire
solutions to equation (1.1) where the kj are either constants or rational
functions of the independent variable z, are of finite order. As ex-
plained in [11], this is in some sense the simplest differential equation
that is neither covered by the results of Steinmetz (since (1.1) is not
homogeneous) nor Hayman (since (1.10) is violated) and yet appears
to have only finite-order solutions.

In this paper we will consider the case in which the kj are constants.
Not only will we show that Hayman’s conjecture is correct, namely
that all entire solutions to (1.1) have finite order, we will also show by
explicit construction that all meromorphic solutions are either polyno-
mials or entire functions of order one.

Note that the transformation f = w + a2 takes equation (1.1) to

(1.11) w
d2w

dz2
−

(
dw

dz

)2

= αw + β
dw

dz
+ γ,

where α = k1, β = k2, and γ = k0 + k1k3. For some purposes, which
will be apparent later, it will be convenient to write equation (1.11) as

(1.12) (w′′ − α)w = (w′ − a+)(w′ − a−),

where

a± =
−β ±

√
β2 − 4γ

2
.

We will see that equation (1.11) always contains some particular mero-
morphic solutions, however its general solution is meromorphic if and
only if either α = γ = 0 or β = 0. In these cases it is straightforward
(see section 5) to prove the following.

Proposition 1.4. If α = γ = 0 then the general solution to equation
(1.11) is given by

w(z) =
β

c1

+ c2e
c1z,(1.13)

w(z) = −βz + c1,(1.14)

w(z) = 0,(1.15)

where c1 and c2 are arbitrary constants.
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Proposition 1.5. If β = 0 then the general solution to equation (1.11)
is given by

w(z) = c1 exp

(
±i

α√
γ
z

)
+

γ

α
, if α 
= 0,(1.16)

w(z) = c1 ± i
√

γz,(1.17)

w(z) =
1

c2
1

[
α +

√
α + γc2

1 cosh (c1z + c2)

]
,(1.18)

w(z) = −α

2
z2 + c2αz − γ + c2

2α
2

2α
, if α 
= 0,(1.19)

where c1 and c2 are arbitrary constants.

The central result of this paper is the following.

Theorem 1.6. If α and γ are not both zero and if β 
= 0 then the only
meromorphic solutions to equation (1.11) are

(1.20) w(z) = c1 exp

(
αz

a∓

)
− γ

α
,

if α 
= 0 and

(1.21) w(z) = c1 + a±z,

if α = 0, where c1 is an arbitrary constant. If α = γ = 0 or β = 0
then the general solution of equation (1.11) is meromorphic and given
by Proposition 1.4 and Proposition 1.5 respectively.

The general solution of equation (1.11) depends on two parameters
(c1 and c2 in Propositions 1.4 and 1.5). The solutions described by
(1.20) and (1.21) each represent two one-parameter (c1) families of
special solutions to equation (1.11). The two families are parametrized
by the choice of a+ and a− (there is only one family if a+ = a−). In
the generic case, all solutions other than those given in Theorem 1.6
are branched.

The order of the transcendental meromorphic solutions to equation
(1.11) comes as an immediate corollary to Theorem 1.6.

Corollary 1.7. All transcendental meromorphic solutions of equation
(1.11), are entire and of order one.
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In section 2 we use asymptotic estimates from Wiman-Valiron the-
ory to show that the only non-vanishing entire solutions to equation
(1.11) are of the form c2e

c1z, where c1 and c2 are constants. Cauchy’s
existence and uniqueness theorem (see, e.g., [13], page 284) guarantees
that the initial value problem w(z0) = w0 and w′(z0) = wp for equa-
tion (1.11) has a unique analytic solution in a neighbourhood of z = z0

provided that w0 and wp are finite and w0 
= 0. Hence checking the exis-
tence of local series expansions will only provide information regarding
expansions about either the zeros or the poles of w. A straightfor-
ward leading-order analysis (see section 3) shows that no solution of
equation (1.12) can possess a pole of any order. This implies that all
meromorphic solutions are entire.

In section 3 we use local series analysis about a zero of w to show
that either the only entire solutions of equation (1.11) are those given
in equations (1.20) and (1.21) or at least one of the parameters β and
γ must be zero. In section 4 we complete the classification of entire
solutions by finding all entire solutions in the cases β = 0 and γ = 0.
Here we use the fact that equation (1.11) is autonomous (i.e. it does
not contain the independent variable z explicitly) to reduce it to a
first-order equation for y := w′(z) as a function of x := w(z). This
equation is of Abel type which we solve by transforming it to a separable
equation. This leads to a first-order equation for w as a function of z.

Although we do not construct the general solution (which is branched)
of equation (1.11) in the generic case (i.e. β 
= 0 and α, γ not both
zero), we are nonetheless able to find all entire (and therefore all mero-
morphic) solutions.

2. Zero-free solutions

In this section we will consider non-vanishing entire solutions w to
equation (1.11). In this case there exists an entire function g such that
the solution w has the form

(2.1) w(z) = eg(z).

We will show that g is necessarily a linear function of z. Specifically,
we will prove the following.
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Proposition 2.1. The only zero-free entire solutions of equation (1.11)
are given by

(2.2) w(z) =




c2e
c1z, if α = β = γ = 0,

c1e
−αz/β, if β 
= 0, γ = 0,

−γ/α, if α 
= 0,

where c1 and c2 are arbitrary non-zero constants.

We note that each of the three solutions given by (2.2) above is a
special case of the solutions in the list in Theorem 1.6. Our argument
relies on the classical result given below in Lemma 2.3, which states
that if g is transcendental then near its maximum on a large circle,
|z| = r, there is a simple asymptotic relationship between g and its
derivatives. We will use this relationship together with the fact that g
satisfies a particular third-order polynomial ODE (equation (2.7)) to
constrain the parameters α, β, and γ in equation (1.11). Subject to
these constraints, we are able to solve equation (1.11) exactly.

Substituting equation (2.1) into equation (1.11) and rearranging
gives

(2.3) e2gg′′ = (α + βg′)eg + γ.

Differentiating equation (2.3) with respect to z and dividing by eg gives

(2.4) eg (g′′′ + 2g′g′′) = αg′ + β
[
g′′ + (g′)2

]
.

We wish to divide equation (2.4) by g′′′ + 2g′g′′ which we can only do
provided this expression does not vanish identically. If g is entire and

(2.5) g′′′ + 2g′g′′ = 0

then g is linear in z. It follows from equation (2.1) that

(2.6) w(z) = AeBz,

where A and B are arbitrary constants. Substituting equation (2.6)
into equation (1.11) yields (α + βB)AeBz + γ = 0 for all z. Solving
this equation for A and B and using equation (2.6) shows that the only
solutions of equation (1.11) arising from equation (2.5) are those given
by (2.2).

Consider the case in which equation (2.5) is not satisfied identically.
Solving equation (2.4) for eg as a function of g′, g′′ and g′′′ and using
this to eliminate the eg and e2g terms in equation (2.3) shows that g
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satisfies the third-order ODE

g′′
{
αg′ + β[g′′ + (g′)2]

}2
= γ(g′′′ + 2g′g′′)2

+(α + βg′)(g′′′ + 2g′g′′)
{
αg′ + β[g′′ + (g′)2]

}
.(2.7)

We note that g cannot be a non-linear polynomial since, if it were, then
the left side of equation (2.4) would grow exponentially while the right
side would be a polynomial.

For the case in which g is transcendental entire, we will use Lemma
2.3 below to compare g and its derivatives in equation (2.7). Before
introducing the lemma, however, we define the central index of an entire
function.

Definition 2.2. Let

g(z) =
∞∑

n=0

anz
n

be entire. The central index ν(r, f) is the greatest non-negative integer
m such that

|am|rm = max
n≥0
|an|rn.

Note that if g is a polynomial of degree N then ν(r, g) = N for
sufficiently large r. If g is transcendental then ν(r, g) is increasing,
piecewise constant, right-continuous, and tends to +∞ as r → +∞.

In terms of the central index we have the following (see, for example,
[14], pp. 33–35, pp. 197–199; [9]; [19]; pp. 50–52, ).

Lemma 2.3. Let g be a transcendental entire function, and ν =
ν(r, g) be its central index. Let 0 < δ < 1/4 and z be such that |z| = r
and

(2.8) |g(z)| > M(r, g)ν(r, g)−
1
4
+δ

holds. Then there exists a set F ⊂ R of finite logarithmic measure,
i.e.,

∫
F

dt/t < +∞ such that

(2.9) g(m)(z) =

(
ν(r, g)

z

)m

(1 + o(1))g(z)

holds for all m ≥ 0 and r 
∈ F . If g has finite order σ

(2.10) σ = lim sup
r→+∞

log log M(r, g)

log r
= lim sup

r→+∞

log ν(r, g)

log r
.
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We now return to our analysis of transcendental entire solutions of
equation (2.7). Choose z on |z| = r 
∈ F such that (2.8) holds and
assume that g is transcendental. Using the asymptotic relation (2.9)
in (2.7) gives, to leading order, a polynomial equation in ν/z and g(z).
The terms β2(g′)4g′′ and 2β2(g′)4g′′ on the left and right sides of equa-
tion (2.7) respectively, are the only terms which generate the factor
(ν/z)6 (1 + o(1))g(z)5 on application of (2.9). All other terms have
degrees strictly less than both the exponents 6 and 5 appearing in the
leading order terms above. Therefore the only way that equation (2.7)
can hold for a transcendental entire function g is when β = 0. If β = 0
then equation (2.7) becomes,

(2.11) 4γg′g′′g′′′ + (4γ + α2)g′
2
g′′ + α2g′g′′′ + γg′′′

2
= 0.

The leading term in (2.11) is given by the term 4γg′g′′ = g′′′(ν/z)6
(
1+

o(1)
)
g3. Thus γ = 0. Similarly we deduce that α = 0 and this corre-

sponds to the case when α = β = γ = 0 in the solution (2.2) and so g
is linear — a contradiction.

3. Local Series Expansions

In this section we will consider local series expansions of solutions
to equation (1.11). We will show that all meromorphic solutions are
entire. We will also show that if w is an entire solution to equation
(1.11) that vanishes at a point z = z0 then either w is given by the
solutions (1.20–1.21) or at least one of the parameters β, γ in equation
(1.11) must vanish. In the last case, we will show in section 4 how
to obtain all entire solutions that have a zero using the method of
reduction of order.

Note that Cauchy’s existence and uniqueness theorem (see, e.g., [13,
12]) guarantees the existence of a unique locally analytic solution of
equation (1.11) with the initial conditions w(z0) = w0 and w′(z0) = wp

provided w0 and wp are finite and w0 
= 0. We will investigate the case
where w(z0) is zero or infinity.

Let w be a meromorphic solution of equation (1.11) that either van-
ishes or has a pole at some point z0 in the finite complex plane. Then
w has a Laurent expansion which converges in a punctured disc centred
at z = z0,

(3.1) w(z) =
∞∑

n=0

an(z − z0)
p+n,

where a0 
= 0 and p 
= 0 is an integer. We substitute the expansion
(3.1) into equation (1.11) and keep only the leading-order behaviour of
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each of the terms in the equation. This yields

[a2
0p(p− 1)(z − z0)

2p−2 + · · · ]− [a2
0p

2(z − z0)
2p−2 + · · · ]

= α[a0(z − z0)
p + · · · ] + β[a0p(z − z0)

p−1 + · · · ] + γ.(3.2)

The lowest power of z − z0 on the left of equation (3.2) is 2p − 2.
The lowest power of z − z0 on the right is either p − 1 or 0 (from the
constant term γ). We see that there is only one possible balance of
these powers, namely p = 1. When p = 1, we see on equating constant
terms in equation (3.2) that a0 = a±. The following two propositions
follow immediately.

Proposition 3.1. Any solution, w, of equation (1.11) does not pos-
sess a pole of any order. In particular, any meromorphic solution of
equation (1.11) is entire.

Proposition 3.2. Let w be any solution of equation (1.11) analytic in a
neighbourhood of the point z = z0 and let w(z0) = 0. Then w′(z0) = a±.

Having obtained the leading-order behaviour of any meromorphic
solution to equation (1.11) that vanishes at z = z0, we will now derive
a recurrence relation for the an in the expansion (3.1) with p = 1 and
a0 = a±. Equation (1.11) becomes

∞∑
n=0

[
n∑

m=0

(n−m + 1)(n− 2m− 1)aman−m

]
(z − z0)

n(3.3)

= [βa0 + γ] +
∞∑

n=1

[αan−1 + β(n + 1)an] (z − z0)
n.

The constant term in (3.3) vanishes identically since a0 = a± solves
a2

0 + βa0 + γ = 0. Equating the coefficients of (z− z0)
n for n = 1, 2, . . .

gives the recurrence relation

(3.4) (n+1)([n−2]a0−β)an = Gn(a0, a1, . . . , an−1), n = 1, 2, . . . ,

where

Gn(a0, a1, . . . , an−1) := αan−1 −
n−1∑
m=1

(n−m + 1)(n− 2m− 1)aman−m.
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Note that if the coefficient of an on the left side of equation (3.4) does
not vanish for any positive integer n then we can uniquely determine
the power series expansion of w about z = z0 (after choosing either
a0 = a+ or a0 = a−). We have proved the following.

Proposition 3.3. Suppose (n− 2)a0 − β 
= 0 for all positive integers
n, where a0 = a+ or a0 = a−. Then there is at most one solution w
of equation (1.11) satisfying w(z0) = 0 and w′(z0) = a0.

For any choice of the parameters α, β, and γ we can in fact produce
an explicit solution to equation (1.11) which satisfies

(3.5) w(z0) = 0 and w′(z0) = a±.

This solution is given by choosing the constant c1 in the solutions (1.20)
and (1.21) listed in Theorem 1.6 such that w(z0) = 0. These solutions
will be derived systematically in section 4, for now it is sufficient to
note that they are indeed solutions. This gives the solutions

(3.6) w(z) =
γ

α

[
exp

(
α

a∓
(z − z0)

)
− 1

]
if α 
= 0 and

(3.7) w(z) = a±(z − z0)

if α = 0. So the following is a consequence of Propositions 3.2 and 3.3.

Proposition 3.4. Suppose (n− 2)a0 − β 
= 0 for all positive integers
n. Then (3.6–3.7) are the only solutions of equation (1.11) that are
analytic in a neighbourhood of z = z0 satisfying w(z0) = 0.

Now we consider the case in which the left side of equation (3.4)
vanishes for some positive integer n. Recall that solutions of equation
(1.11) can have at most two types of zeros as described in proposi-
tion 3.2. First we consider the case in which w vanishes at z+ and z−
and w′(z+) = a+ and w′(z−) = a− (a+ 
= a−). Since w is not one of
the solutions (3.6–3.7), it follows from Proposition 3.4 that the left side
of equation (3.4) must vanish at both z+ and z− for positive integers
n = N+ and n = N− respectively. It follows that

β = (N+ − 2)a+ = (N− − 2)a−.
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Recall that a+ + a− = −β, so if β 
= 0 then

1

N+

+
1

N−
= 1,

which is only possible if N+ = N− = 2. That is, if β = 0 — a
contradiction. So the only case in which a solution could have both
types of zeros considered above is when β = 0. This corresponds to
case 3 of Proposition 3.5 below.

The only case remaining is that in which w is entire and has at least
one zero and all the zeros of w are the same type (i.e. either w′(z0) = a+

at all zeros z0 or w′(z0) = a− at all zeros). Without loss of generality
we assume w′(z0) = a+ at all points z0 such that w(z0) = 0. We will
assume for the time being that γ 
= 0 so that a± 
= 0. In this case, the
function

(3.8) v :=
w′ − a+

w
is entire since the numerator vanishes at the zeros of the denominator
and these zeros are simple.

Re-writing equation (3.8) together with its derivative gives

w′ = vw + a+,(3.9)

w′′ = (v′ + v2)w + a+v.(3.10)

Equation (1.12) becomes

(3.11) v′w = α− a−v.

Note that if v is a constant then the solution of equation (3.9) is equa-
tion (1.20–1.21). We will show that if v is a non-constant entire function
then γ = 0. If v is not a constant then solving equation (3.11) for w
and substituting it into equation (3.9) gives

(3.12) a−(v2v′ + vv′′ − v′
2
)− a+v′

2
= α(v′′ + vv′).

We wish to show that there are no non-constant entire solutions of
equation (3.12).

A simple leading-order analysis shows that equation (3.12) has no
non-constant polynomial solutions. If v has a transcendental entire
solution then applying the Wiman-Valiron formula (2.9) to equation
(3.12) shows that the only candidates for leading-order terms are a−(ν/z)v3

and −a+(ν/z)2v2 where ν ≡ ν(r, v) is the central index of v (see def-
inition 2.2). For large |z| = r, the central index ν(r, v) is negligible
compared to the magnitude of v, M(r, f) = max

|z|=r
|v(z)|. More pre-

cisely, Wiman (see, e.g., Hille [12], p. 168) showed that, given an entire

function v and a real number δ > 0 then ν(r, v) < [log M(r, v)]1/2+δ
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outside a set of finite logarithmic measure. It follows that the only
leading-order term is a−(ν/z)v3 which must vanish. Hence a− = 0
which implies that γ = 0.

We have proved the following.

Proposition 3.5. Let w be a solution of equation (1.11) such that
there is a point z0 ∈ C such that w(z0) = 0 and w is analytic in a
neighbourhood of z = z0. Then either

(1) w(z) =
γ

α

[
exp

(
α

a∓
(z − z0)

)
− 1

]
, (if α 
= 0), or

(2) w(z) = a±(z − z0), (if α = 0), or

(3) β = 0, or

(4) γ = 0.

Cases 1 and 2 of the above proposition correspond to the solutions
(1.20) and (1.21) of Theorem 1.6.

4. Reduction to First Order

In order to complete our analysis of equation (1.11), we need to find
all entire solutions when either β = 0 or γ = 0. First we will solve the
case β = 0 (case 1) exactly. We will then reduce equation (1.11) to a
first-order ODE for general parameters, which we will analyse in the
case γ = 0 (case 2).

Case 1: β = 0.
If α and γ are both zero then any constant will satisfy equation (1.11),
otherwise the only constant solution is w(z) = −γ/α (provided α 
= 0).
If w is not a constant then multiplying equation (1.11) by w′/w and
integrating gives

(4.1) w2
z = c2

1w
2 − 2αw − γ,

where c1 is a constant. Equation (4.1) can be integrated to give the
solutions (1.18), for c1 
= 0, and (1.19), for c1 = 0.

We will consider the case in which γ = 0. Before considering this
case, however, we will show how equation (1.11) can be reduced to a
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first-order ODE for w as a function of z for any choice of the parameters
α, β, and γ.

Since equation (1.11) is autonomous (i.e., it admits the symmetry
z �→ z + ε), it can be reduced to a first order equation for y := wz as
a function of x := w (in an domain in which w is one-to-one). This
yields the equation

(4.2)
dy

dx
=

y2 + αx + βy + γ

xy
⇔ dy

dx
=

(y − a+)(y − a−) + αx

xy
.

Equation (4.2) is an Abel equation of the second kind (see, e.g., [16]).
We first consider the case in which α = γ = 0. The general solution of
equation (4.2) is then given by

y(x) = c1x− β,

where c1 is an arbitrary constant, which corresponds to the solutions
(1.13) and (1.14) of equation (1.11). If α and γ do not both vanish and
y is not identically zero, then in terms of the new dependent variable

(4.3) u(x) =
αx + γ

y(x)
,

equation (4.2) becomes the separable equation

x(αx + γ)
du

dx
+ (u− a+)(u− a−)u = 0.

Hence, either

(4.4) u ≡ a∓

or separation of variables gives

(4.5)
du/dx

u(u− a+)(u− a−)
+

1

x(αx + γ)
= 0.

The solutions (4.4) correspond to

y(x) = a± +
α

a∓
x ⇔ w′(z) = a± +

α

a∓
w(z),

leading (again) to the solutions (1.20) and (1.21) in Theorem 1.6.
We now consider the case γ = 0. We assume that β 
= 0 since the

solutions for which β is also zero have been considered in case 1.

Case 2: γ = α = 0.
If w is not identically zero then we can divide equation (1.11) by w2

and integrate to find
dw

dz
= cw − β,
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where c is an arbitrary constant. Solving this linear ODE gives the
solutions (1.13–1.14).

Case 3: γ = 0, α 
= 0, β 
= 0. So a+ = 0 and a− = −β.
Using partial fractions to integrate equation (4.5) together with the
fact that u = (αw + γ)/wz, we obtain

(4.6)
wz

w
+

α

β
= c1 exp

(
β

α

[
wz + β

w

])
.

Recall that we were led to consider the case γ = 0 in Proposition 3.5
under the assumption that w vanishes at some point z0 ∈ C. From
equation (4.6) we see that the left side has a pole at z = z0 but accord-
ing to w′(z0) = a± the right side either has an essential singularity or
a regular point at z0 respectively. Hence there are no entire solutions
that vanish in this case.

5. Discussion

In this paper we have addressed the problem of showing that all
meromorphic solutions to equation (1.1) are of finite order by providing
a complete list of all such solutions. The advantage of producing such
lists for classes of differential equations is that from a large number of
examples further observations and conjectures can be generated (e.g.,
the non-polynomial entire solutions of equation 1.1 are of order one)
and also to illustrate the relative scarcity of meromorphic solutions in
the solution space of generic differential equations.

For differential equations, meromorphic solutions are the exception
rather than the rule – even for rational equations. Indeed, Malmquist’s
theorem [20] states that the only equation of the form

dw

dz
= R(z, w),

where R is rational in w and z that admits a transcendental meromor-
phic solution is the Riccati equation,

dw

dz
= a(z)w2 + b(z)w + c(z),

where a, b, and c are rational functions of z. Although no analogous
result is known for the case in which a second-order equation admits
a transcendental meromorphic solution, much is known about second-
order rational ODEs whose general solutions are meromorphic. In fact,
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much is known in the case that a second order ODE possesses the
Painlevé property, which we will now discuss.

An ODE is said to possess the Painlevé property if all solutions
are single-valued about all movable singularities. In particular, any
equation whose general solution is meromorphic possesses the Painlevé
property. Equations possessing the Painlevé property have attracted
much interest because of their connection with integrable systems and
the so-called soliton equations (see, e.g. [1]).

Painlevé, Gambier, and Fuchs classified all second-order equations
of the form

(5.1) w′′ = F (w, w′; z),

that possess the Painlevé property, where F is rational in w and w′ and
locally analytic in z (see [13, 12] and references therein). The notion of
the order of meromorphic solutions appears to play an important role
in the generalization of the Painlevé property to difference equations
[2].

All the equations found in this work of Painlevé et al can be solved
in terms of classically-known functions (e.g. elliptic functions, hyper-
geometric functions, etc.) except those equations that can be mapped
to one of six canonical equations, called the Painlevé equations. The
first two Painlevé equations (PI and PII) are

d2y

dz2
= 6y2 + z,(5.2)

d2y

dz2
= 2y3 + zy + α,(5.3)

where α is an arbitrary complex constant. Each of the Painlevé equa-
tions can be written as the compatibility of an associated linear (iso-
monodromy) problem [15]. The Painlevé equations are themselves used
to define new transcendental functions.

The general solution of equation (1.11) is meromorphic if and only
if either β = 0 or α = γ = 0 and is branched in all other cases. There-
fore it possesses the Painlevé property only for these choices of the
parameters α, β, and γ and we can solve the equation explicitly. In the
generic case in which the general solution is branched, we can nonethe-
less find those special solutions that are meromorphic. This suggests
the possibility of cataloguing all meromorphic solutions to particular
classes of ODEs. In [8] one-parameter families of solutions to an ODE
arising in general relativity are found such that all movable singulari-
ties are poles. This method appears to generate all exact solutions of
this equation in the literature again suggesting that meromorphicity
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or the absence of movable branch points can lead to explicit particular
solutions even when the equation is not integrable.
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