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Abstract

The propagation of waves through a doubly-periodic array of identical rigid scatterers is

considered in the case that the field equation is the two-dimensional Helmholtz equation.

The method of matched asymptotic expansions is used to obtain the dispersion relation

corresponding to wave propagation through an array of scatterers of arbitrary shape

that are each small relative to both the wave length and the array periodicity. The

results obtained differ from those obtained from homogenization in that there is no

requirement that the wave length be much smaller than the array periodicity, and

hence it is possible to examine phenomena, such as band gaps, that are associated with

the array periodicity.

Keywords: Propagation; Scattering.

1 Introduction

There is a huge literature on the propagation of waves through periodic media in many physical

contexts that include acoustics, elasticity, electromagnetic theory and water waves (see [1] for a

substantial on-line bibliography). An important part of this literature is concerned with cylindrical

scatterers arranged in a doubly-periodic array. For example, Zalipaev et. al. [2] use a multipole

expansion method to investigate wave propagation through an elastic medium containing a doubly

periodic arrangement of circular holes and they obtain approximations as the wavelength becomes

large relative to both the radius a of the holes, and the length scale L of the array periodicity.

In particular, they do this in the case of anti-plane shear, for which the displacement of the elas-

tic medium satisfies the Helmholtz equation with wave number k and a homogeneous Neumann
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condition on the surfaces of the holes, and obtain simple approximate formulae for the effective re-

fractive index and the group velocity of waves. Essentially the same approximations were obtained

for scattering by rigid cylinders in the context of acoustic/water waves by Evans and Shipway [3]

using a different formalism based on work by Blevins [4] in which each rigid cylinder is replaced

by a suitably constrained cylinder of compressible fluid. The fundamental assumptions behind

these approximations are that kL � 1 and a/L � 1 (and hence ka � 1) so that the problem is

‘homogenized’ and variations on the scales of a and L are removed. A particular feature of such

approximations is that they are not able to describe phenomena associated with the periodicity of

the array such as band gaps (wave numbers for which plane waves cannot propagate through the

array). The aim here is to obtain simple approximations that do display these phenomena.

In the present work attention is restricted to the solution of the two-dimensional Helmholtz

equation in the region exterior to a doubly-periodic array of identical rigid scatterers (although

there is considerable scope for extending the ideas to other situations). The scatterers may be of

arbitrary shape as long as the characteristic size a satisfies both ka� 1 and a/L� 1, so that the

scatterers are small relative to both the wave length and the array periodicity. The results given

here are distinguished from those obtained through homogenization in that now kL is allowed to

be an order one quantity so that phenomena associated with the periodicity of the array may be

described. The main idea is to obtain perturbations of plane wave solutions due to the presence

of the scatterers, and the analysis is based on a scheme of matched asymptotic expansions that is

closely related to previous work on the description of wave trapping within a water-filled channel [5].

2 Formulation

Given two-dimensional Cartesian coordinates x and y, the aim is to find solutions for φ of the

Helmholtz equation
∂2φ

∂x2
+
∂2φ

∂y2
+ k2φ = 0 (1)

that satisfy the Neumann condition
∂φ

∂n
= 0 (2)

on identical scatterers Cj uniformly distributed in an infinite lattice Λ, where n is a coordinate

measured normal to Cj . Scatterer j is associated with a local origin Oj located at the lattice point

Rj = n1a1 + n2a2, n1, n2 ∈ Z, (3)

for given independent vectors a1 and a2. In particular, solutions are sought that, for all lattice

vectors, satisfy the ‘Bloch condition’

φ(r + Rj) = eiβTRj φ(r) (4)
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where r = (x, y)T and β = (q1, q2)T is a prescribed vector. This is an eigenvalue problem for the

Laplacian with −k2 as the eigenvalue and the eigensolutions correspond to waves that propagate

through the array.

In addition to the global coordinates, local polar coordinates (rj , θj) are used with origin at

Oj . The Bloch condition (4) allows the solution to be obtained through consideration of a primary

lattice cell chosen to be that containing the origin O of the global coordinates. The polar coordinates

with origin at O are denoted by (r, θ) and the scatterer associated with O by C.

The Bloch condition (4) is satisfied by plane waves of the form

φm(r) = eiβT
mr (5)

where

βm = β + Km (6)

and each

Km = 2π(m1b1 +m2b2), m1,m2 ∈ Z, (7)

is a reciprocal lattice vector with

aT
i bj = δij , i, j = 1, 2. (8)

The reciprocal lattice vectors have the property that, for any lattice vector Rj ,

KT
mRj = 2πp, p ∈ Z. (9)

In the absence of the scatterers, each φm provides a solution to the Bloch problem provided k is

chosen to ensure that the field equation (1) is satisfied, in other words provided

k2 = β2
m where βm = |βm|. (10)

For example, for a square lattice of side L aligned with the coordinate axes, plane-wave solutions

satisfying the Bloch condition are

φm = ei[(q1+2πm1/L)x+(q2+2πm2/L)y], m1,m2 ∈ Z, (11)

and the field equation is satisfied as long as

k2 = (q1 + 2πm1/L)2 + (q2 + 2πm2/L)2. (12)

The results given here for the case when scatterers are present arise from consideration of pertur-

bations to combinations of the plane-wave solutions (5).

The method of matched asymptotic expansions is used under the assumptions that ε ≡ ka� 1

and kL is of order unity, where a is a typical dimension of the scatterer C and L is a typical
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dimension of a cell within the lattice Λ. It follows that a/L � 1 so that each scatterer is much

smaller than a cell of the lattice. To facilitate the solution each lattice cell is divided into two

overlapping regions. For the primary cell these are an outer region at distances r � a and an inner

region within distances r � k−1 of the scatterer; in the inner region a scaled coordinate ρ = r/a

will be used.

3 Solution

In the outer region, far from each scatterer, the solution is constructed from solutions of the

Helmholtz equation (1) that satisfy the Bloch condition (4) and that are singular at the lattice

points. Such solutions are

Gn(kr, θ) =
∑

Rj∈Λ

eiβTRj H(1)
n (krj) einθj , n ∈ Z, (13)

and each corresponds to disturbances that propagate away from the scatterers with phases adjusted

to ensure that Gn satisfies the Bloch condition (4). By Graf’s addition theorem

Gn(kr, θ) = H(1)
n (kr) einθ +

∑
p

(−1)n−pσn−pJp(kr) eipθ (14)

where the lattice sum

σn =
∑′

Rj∈Λ

eiβTRj H(1)
n (kRj) einαj (15)

and the dash indicates that Rj = 0 is omitted from the summation.

Angles τm are defined through

βm = βme1m (16)

where

epm =

(
cos pτm
sin pτm

)
. (17)

The lattice sums have simple poles at k = ±βm (see [6], for example) and, in particular, for each

unique vector βm

σn ∼
4in+1 einτm

A(k2 − β2
m)

as k2 → β2
m (18)

where A is the area of one cell of the lattice. The poles of the lattice sums correspond to the plane

wave solutions (5) that exist in the absence of the scatterers. There may be M ≥ 1 distinct vectors

βm with the same magnitude βm and, with this in mind, the lattice sums are written

σn =
M∑

m=1

σ
(1)
nm

(k2 − β2
m)L2

+ σ(2)
n (19)
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where

σ(1)
nm =

4in+1 einτm

A/L2
(20)

and σ(2)
n is an analytic function of k within neighbourhoods of k = ±βm.

Solutions are sought for k in a neighbourhood of βm and it is assumed here that

(k2 − β2
m)L2 = ε2δm (21)

where δm is strictly of order one in ε for k2 6= β2
m. It is not necessary to make the specific

assumption (21), the order in ε of k2 − β2
m can be obtained as part of the solution. However,

equation (21) is adopted now in order to simplify the presentation and it is consistent with previous

work concerned with wave motion around small objects [5] (the matching would fail if the relation

were incorrect). In view of (21), the matching may be carried out more conveniently if the singular

solutions of the Helmholtz equation defined in (13) are modified to

gn(kr, θ) = ε2Gn(kr, θ) = g(1)
n (kr, θ) + ε2g(2)

n (kr, θ) (22)

where

g(1)
n (kr, θ) =

M∑
m=1

1
δm

∑
p

(−1)n−pσ
(1)
n−p,mJp(kr) eipθ = (−1)n

M∑
m=1

σ
(1)
nm

δm
eikr cos(θ−τm) (23)

and

g(2)
n (kr, θ) = H(1)

n (kr) einθ +
∑

p

(−1)n−pσ
(2)
n−pJp(kr) eipθ (24)

(this modification ensures that ε does not appear in the denominator of any expression).

As the boundary-value problem is homogeneous, the leading-order outer solution may be taken

as strictly order one in ε and written

Ψ(0) =
∑

n

Ang
(1)
n (kr, θ). (25)

where Ψ(m) denotes the outer solution up to terms in εm. Note that each g
(1)
n (kr, θ) is a sum over

plane waves of the type given in (5), and hence the leading-order outer solution is a combination

of such plane waves. From (23)

Ψ(0,1) =
∑

n

An(−1)n
M∑

m=1

σ
(1)
nm

δm

[
1 + iερ eT

1m

(
cos θ

sin θ

)]
(26)

where Ψ(m,l) denotes the expansion up to εl of Ψ(m) after it is written in terms of the inner

coordinate ρ. In the inner region, the inner solution up to terms in εl is denoted by ψ(l) and ψ(l,m)

denotes its expansion up to εm after it is written in terms of the outer coordinate kr. Matching is

enforced by requiring Ψ(m,l) ≡ ψ(l,m) for every m and l [7].
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In terms of the inner variables the field equation for the inner solution ψ is

1
ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+

1
ρ2

∂2ψ

∂θ2
+ ε2ψ = 0. (27)

The form of Ψ(0,1) indicates an inner development

ψ(1) = ψ0 + εψ1 (28)

where, from equating powers of ε in the field equation (27) and boundary condition (2), both ψ0

and ψ1 are harmonic functions that satisfy the homogeneous Neumann condition on C. The inner

expansion Ψ(0,1) ‘drives’ a flow past the scatterer C and to effect the matching it is necessary to

take

ψ(1) = B0 + ε

{
B1 + uT

1

[
ρ

(
cos θ

sin θ

)
+ χ1(ρ, θ)

]}
; (29)

here, from (2),

∂χ1

∂n
= − ∂

∂n

[
ρ

(
cos θ

sin θ

)]
on C, (30)

χ1 −
M

ρ

(
cos θ

sin θ

)
= o(ρ−1) as ρ→∞ (31)

and

M =

(
µ11 µ12

µ21 µ22

)
(32)

is the matrix of dipole coefficients determined by the shape of the scatterer [8, p. 127]. As the

solution to a homogeneous problem is sought the choice B0 = 1 is made without loss of generality.

The outer expansion of the leading order inner solution ψ(1) has terms no more singular than a

dipole, and hence cannot be matched to higher singularities in the outer solution; thus

An = 0, |n| ≥ 2 (33)

and now

Ψ(0,1) =
1∑

n=−1

An(−1)n
M∑

m=1

σ
(1)
nm

δm

[
1 + iερ eT

1m

(
cos θ

sin θ

)]
. (34)

From (29)

ψ(1,0) = 1 + ε

{
B1 + ρuT

1

(
cos θ

sin θ

)}
(35)

and the matching of Ψ(0,1) with ψ(1,0) yields

1∑
n=−1

An(−1)n
M∑

m=1

σ
(1)
nm

δm
= 1 (36)
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and

u1 = i
1∑

n=−1

An(−1)n
M∑

m=1

σ
(1)
nm

δm
e1m. (37)

The outer solution is continued as

Ψ(2) =
1∑

n=−1

An

{
g(1)
n (kr, θ) + ε2g(2)

n (kr, θ)
}

+ ε
∑

n

Cng
(1)
n (kr, θ) + ε2

∑
n

Dng
(1)
n (kr, θ) (38)

(possible intermediate terms involving log ε prove impossible to match and are omitted) which has

an inner expansion

Ψ(2,2) =
1∑

n=−1

An(−1)n
M∑

m=1

σ
(1)
nm

δm

{
1 + iερ eT

1m

(
cos θ

sin θ

)
− 1

4ε
2ρ2

[
1 + eT

2m

(
cos 2θ

sin 2θ

)]}

+ ε2

{
A0

[
1 +

2i
π

(
log

ερ

2
+ γ
)

+ σ
(2)
0

]
+A1

[
− 2i
περ

eiθ −σ(2)
1

]
+ A−1

[
2i
περ

e−iθ −σ(2)
−1

]}

+
∑

n

Cn(−1)n
M∑

m=1

σ
(1)
nm

δm

[
1 + iερ eT

1m

(
cos θ

sin θ

)]
+
∑

n

Dn(−1)n
M∑

m=1

σ
(1)
nm

δm
. (39)

This inner expansion indicates that the inner solution must be continued as

ψ(2) = 1 + ε

{
B1 + uT

1

[
ρ

(
cos θ

sin θ

)
+ χ1(ρ, θ)

]}
+ ε2 log εE0 + ε2ψ2 (40)

where, from (27), ψ2 satisfies the field equation

1
ρ

∂

∂ρ

(
ρ
∂ψ2

∂ρ

)
+

1
ρ2

∂2ψ2

∂θ2
= −1 (41)

and also the homogeneous boundary condition

∂ψ2

∂n
= 0 on C. (42)

The appropriate form required to effect the matching with Ψ(2,2) is

ψ2 = −1
4ρ

2 + Ω(ρ, θ) + F0 + uT
2

[
ρ

(
cos θ

sin θ

)
+ χ1(ρ, θ)

]
+ vT

2

[
ρ2

(
cos 2θ

sin 2θ

)
+ χ2(ρ, θ)

]
, (43)

where Ω is a harmonic function introduced to compensate for the flux across C that is induced by

the first term in (43), and χ2(ρ, θ) = o(1) as ρ → ∞. Calculation of the flux across C shows that

as ρ→∞ it is required that

Ω(ρ, θ)− S

2πa2
log ρ→ 0 (44)
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where S is the area contained within C. It follows immediately that

ψ(2,2) = 1 + ε

{
B1 + uT

1

[
ρ

(
cos θ

sin θ

)
+

M

ρ

(
cos θ

sin θ

)]}
+ ε2 log εE0

+ ε2

{
−1

4ρ
2 +

S

2πa2
log ρ+ F0 + ρuT

2

(
cos θ

sin θ

)
+ ρ2vT

2

(
cos 2θ

sin 2θ

)}
(45)

and matching with Ψ(2,2) gives, in particular,

A0 = − iS
4a2

and
(
A,A−1

)
=
π

4i
uT

1 M

(
−1 1

i i

)
. (46)

With the values of An given by (46), equation (36) is

πL2

A

M∑
m=1

1
δm

[
S

πa2
+ 2iuT

1 M e1m

]
= 1 (47)

and equation (37) is

u1 =
πiL2

A

M∑
m=1

e1m

δm

[
S

πa2
+ 2iuT

1 M e1m

]
. (48)

Equation (48) may be solved for u1 and then equation (47) yields, for a given β, the relation

between the wave number k and the geometry of the scatterer C. An alternative is to introduce

Um =
1
δm

[
1 +

2iπa2

S
uT

1 M e1m

]
(49)

and rewrite equation (48) as

δpUp +
2πL2

A

M∑
m=1

[
eT

1mM e1m

]
Um = 1, p = 1, 2, . . .M. (50)

Equation (50) is readily solved for {Um : m = 1, 2, . . .M} and then equation (47) in the form

SL2

Aa2

M∑
m=1

Um = 1 (51)

again yields the wave number k. Calculations (both symbolic and numerical) for this paper were

carried out using the computer algebra package Mathematica and it is this second method that

proved to be the more efficient. With each method the same polynomial of degree M in k2 is ob-

tained. The geometry of the lattice appears through the reciprocal lattice vectors in the definitions

of each δm and e1m.
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4 Results

In the case M = 1 equations (50) and (51) reduce to

δ1 =
πL2

A

(
S

πa2
− 2eT

11M e11

)
(52)

or

k2 = β2
1

{
1− πa2

A

(
S

πa2
− 2eT

11M e11

)}−1

(53)

and, for a given β, this shows explicitly how k depends upon the geometry of the scatterer through

S and M. This generalizes the relations obtained by other authors using homogenization to any

region of the parameter space that is in the neighbourhood of a single pole at k = β1. For a

scatterer that is symmetric about the two coordinate axes µ12 = µ21 = 0 and (53) reduces to

k2 = β2
1

{
1− πa2

A

(
S

πa2
− 2

[
µ11 cos2 τ1 + µ22 sin2 τ1

])}−1

. (54)

In some homogenization schemes the results have been expressed in terms of added mass coeffi-

cients aii rather than dipole coefficients µii; the two are related by

aii = ρ(2πµiia
2 − S) (55)

[9, p. 144]. In terms of the added mass (54) is

k2 = β2
1

{
1 +

S

A

[
a11

ρS
cos2 τ1 +

a22

ρS
sin2 τ1

]}−1

. (56)

In the case that C is a circle of radius a, a11 = a22 = ρS and hence

k2 = β2
1

[
1 +

πa2

A

]−1

. (57)

These results may be compared with results obtained elsewhere for the lowest mode, that is

when

β1 = β ≡ β

(
cos τ

sin τ

)
. (58)

In this case, Evans and Shipway [3] give the model field equation[
1 +

S

A

a11

ρS

]−1 ∂2φ

∂x2
+
[
1 +

S

A

a22

ρS

]−1 ∂2φ

∂y2
+ k2φ = 0 (59)

and seeking solutions in the form

φ = eiβ(x cos τ+y sin τ) (60)

yields

k2 = β2

{
cos2 τ

[
1 +

S

A

a11

ρS

]−1

+ sin2 τ

[
1 +

S

A

a22

ρS

]−1
}
. (61)
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0 0.25π 0.5π 0.75π π
q1L

0

π

2π

3π

4π

kL

Figure 1: Positions of poles of the lattice sums in wave number space when q2 = 0; single pole

( ), two poles (– – – –).

However, by assumption S/A � 1 and expansion of both of equations (56) and (61) in powers of

S/A yields the same approximation, namely

k2 = β2

{
1− S

A

[
a11

ρS
cos2 τ +

a22

ρS
sin2 τ

]}
. (62)

The theory for M > 1 will be illustrated in detail through a comparison of scatterers that are

either circles or ellipses arranged in a square lattice with cells of side L. The circles have radius a

and the ellipse semi-axes of length a and b parallel to the x and y axes respectively. For the ellipse

the matrix of dipole coefficients is

M =

b(a+ b)
2a2

0

0
a+ b

2a

 (63)

[9, p. 145] and S = πab. For the case q2 = 0 the positions of the poles of the lattice sums are

shown in figure 1 using a reduced zone scheme in which q1 ∈ [0, π] and all poles are obtained from

±q1 + 2nπ/L, n ∈ Z. The solid lines show the points in wave number space at which the lattice

sums have a single pole and the dashed lines correspond to points for which there are two poles.

At the intersections of these lines there may be up to four poles of the lattice sums. As remarked

earlier, in the absence of the scatterers the poles correspond to the plane waves (11) that satisfy

the Bloch condition (4).

Attention will next be focused upon (q1L, q2L, kL) = (π, 0, π) for which there are two poles and

for calculations within a neighbourhood of this point the forms

β1L = (q1L, q2L)T and β2L = (q1L− 2π, q2L)T (64)
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π
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kL

0.9π
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Figure 2: Solution surfaces in the vicinity of (q1L, q2L, kL) = (π, 0, π); circle of radius a = L/20

(left), ellipse with semi-axes a = L/10, b = L/20 (right).

are appropriate (because, when (q1L, q2L) = (π, 0), β1L = β2L = π ≡ kL and the lattice sums are

singular). With these βm, and for q2 = 0, equations (50) and (51) reduce to[
1 +

2πb2

L2

(
1− 2πa

L

(
a

L
+
b

L

))]
(kL)4 − 2

(
1 +

πb2

L2

)[
(q1L)2 − 2πq1L+ 2π2

]
(kL)2

+ (q1L)2(q1L− 2π)2 = 0. (65)

When q1L = π the positive roots of the last equation are

kL =
π√

1 + 2πb(a+ b)/L2
,

π√
1− 2πab/L2

(66)

which illustrates explicitly the appearance of a band gap (at least for q2 = 0) as the lengths of the

axes of the ellipse are increased from zero. The solution in the vicinity of (q1L, q2L, kL) = (π, 0, π)

is illustrated in figure 2 where elliptical and circular scatterers are compared. The band gap is wider

for the ellipse (which has a larger area), but the overall structure of the solution is very similar.

At (q1L, q2L, kL) = (π/2, 0, 5π/2) there are three poles of the lattice sums and within some

neighbourhood of this point the appropriate forms for the βm are

β1L = (q1L+2π, q2L)T, β2L = (q1L−2π, q2L+2π)T and β3L = (q1L−2π, q2L−2π)T; (67)

the solution in the vicinity of (q1L, q2L, kL) = (π/2, 0, 5π/2) is shown in figure 3. For (q1L, q2L, kL) =

(0, 0, 2π) there are four poles of the lattice sums and within some neighbourhood

β1,2L = (q1L± 2π, q2L)T and β3,4L = (q1L, q2L± 2π)T; (68)
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Figure 3: Solution surfaces in the vicinity of (q1L, q2L, kL) = (π/2, 0, 5π/2); circle of radius a =

L/20 (left), ellipse with semi-axes a = L/10, b = L/20 (right).

0

0.1πq1L 0

0.1π

q2L
1.9π

2π

2.1π

kL

0

0.1πq1L

0

0.1πq1L 0

0.1π

q2L
1.9π

2π

2.1π

kL

0

0.1πq1L

Figure 4: Solution surfaces in the vicinity of (q1L, q2L, kL) = (0, 0, 2π); circle of radius a = L/20

(left), ellipse with semi-axes a = L/10, b = L/20 (right).

the solution in the vicinity of (q1L, q2L, kL) = (0, 0, 2π) is shown in figure 4. In both these last two

cases the structure of the solution for the ellipse is distinguished from that for the circle in that

the diabolical points (where the sheets in wave number space touch [10]) are moved away from the

points of symmetry at q1L = 0, π/2.

The accuracy of the approximations given above is indicated in figure 5 through three compar-

isons with numerical calculations for a circle made with the Rayleigh-Ritz method [11]. In each
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Figure 5: Comparison of the present approximations ( ) with numerical calculations (• • • •)
for a circle of diameter 2a. (a) (q1L, q2L) = ( 9

10π,
1
10π), (b) (q1L, q2L) = (3

5π,
1
10π), (c) (q1L, q2L) =

( 1
10π,

1
10π).

case the wave number kL is given as a function of 2a/L for values of βL = (q1L, q2L) whose values

differ by (π/10, π/10) from those corresponding to the poles considered above. As kL increases

for a fixed 2a/L then the parameter ka, which is assumed to be small, also increases. The results

in figure 1 suggest that reasonable accuracy is obtained for values of ka up to about 0.4 (roughly

corresponding to, for example, 2a/L = 0.1 and kL = 2.6π). The results shown in figures 2–4 go

beyond this value of ka to more clearly show the phenomena under discussion.

5 Conclusion

A technique has been described that yields approximations to the dispersion relation for wave prop-

agation through a doubly-periodic array of small scatterers of arbitrary shape. More specifically,

the results show how the wave number of a plane wave is perturbed by the introduction of the

scatterers. An important feature of these approximations is that they display phenomena, such

as the appearance of band gaps, that are associated with the periodicity of the array. Although

the method has been applied here only to rigid scatterers within a medium governed by the two-

dimensional Helmholtz equation, many extensions are possible. For example, the method may be

applied in three dimensions and/or to scatterers that are not rigid.
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